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1. Eeyore has 2012 sticks of length 1 cm, which he uses to make a rectangular grid in which each
cell is a 1 cm by 1 cm square. If P is the perimeter of the grid and S its area, find P + 4S.

Solution 1: The grid is made up of S cells, each with 4 sticks along the sides, so 4S will
count each stick as many times as it appears as the side of a cell. For sticks in the interior
of the grid, this is twice (each stick is the boundary between two cells), but for sticks on the
perimeter, this is only once. Therefore P + 4S will count each stick twice; if there are 2012
sticks, then P + 4S = 4024.

Solution 2: If the grid is a × b, then it is made up of a + 1 horizontal lines of b sticks each,
and b+ 1 vertical lines of a sticks each, for a total of (a+ 1)b+ (b+ 1)a = 2ab+ a+ b sticks.
So 2ab+ a+ b = 2012. But P + 4S = 2(a+ b) + 4ab = 2(2ab+ a+ b) = 2 · 2012 = 4024.

2. A sequence of k consecutive integers a + 1, a + 2, . . . , a + k is written on a chalkboard. If
exactly 52% of the integers are even, find k.

The integers alternate between odd and even, so if k is even, 50% of the integers will be even;
therefore k must be odd.

The 1st, 3rd, 5th, . . . , kth integers all have the same parity, and there are k+1
2 of them. The

remaining integers all have the same parity, and there are k−1
2 of them. Therefore the fraction

of odd integers is either k+1
2k > 1

2 or k−1
2k < 1

2 .

Since 52% = 52
100 = 13

25 >
1
2 , we must be in the first case, and can find k by solving k+1

2k = 13
25 ,

which yields k = 25.

3. The roots of the quadratic equation ax2 + bx + c = 0 are sin 42◦ and sin 48◦. Prove that
b2 = a2 + 2ac.

Note that sin 48◦ = cos 42◦, so if r and s are the two roots of the equation, then r2 + s2 =
sin2 42◦ + cos2 42◦ = 1.

If ax2+bx+c = 0 has roots r and s, then it factors as a(x−r)(x−s) = ax2−a(r+s)x+ars = 0,
so r + s = − b

a and rs = c
a . Therefore

b2

a2
= (r + s)2 = r2 + s2 + 2rs = 1 +

2c

a
,

and multiplying by a2 yields b2 = a2 + 2ac.

4. Is it possible to arrange the integers 1, 2, . . . , 100 around a circle such that for every pair of
adjacent integers x and y, at least one of the quantities x− y, y − x, xy ,

y
x is equal to 2?

This is impossible: under these rules, the integer 99 can only be adjacent to 97, but in any
circular arrangement, it would have two neighbors.



5. In 4ABC, BL is an angle bisector and ∠C = 3∠A. Point M on AB and point N on AC
are chosen so that ∠AML = ∠ANM = 90◦. Prove that BM + 2MN > BL+ LM .

We begin by observing some angle identities. Let α denote ∠BAC. Then ∠ACB = 3α,
so ∠ABC = 180◦ − 4α. Since this angle is bisected by BL, ∠ABL = 90◦ − 2α, and since
∠BML = 90◦, we have ∠BLM = 2α.

Also, since ∠AML = 90◦, ∠ALM = 90◦ − α.
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Reflect 4LMN over line AC, as shown above, to make 4LM ′N . We notice that ∠BLM ′ =
∠BLM + ∠MLN + ∠NLM ′ = 2α + (90◦ − α) + (90◦ − α) = 180◦. Therefore L lies on the
line BM ′.

By the triangle inequality, we have BM +MM ′ > BM ′. But MM ′ = MN +NM ′ = 2MN ,
and BM ′ = BL+ LM ′ = BL+ LM , so we obtain the inequality we wanted.

6. Prove that for distinct real numbers a, b, c, the system of equations
x3 − ax2 + b3 = 0

x3 − bx2 + c3 = 0

x3 − cx2 + a3 = 0

has no real solutions.

Suppose the contrary; that the three equations have a common real solution x. By taking
(b− c) times the first equation, (c− a) times the second equation, and (a− b) times the third
equation, and adding these up, we get the equation

b3(b− c) + c3(c− a) + a3(a− b) = 0,

or a4 + b4 + c4 = a3b+ b3c+ c3a.

By the AM-GM inequality, for a 6= b, 3a4+b4

4 >
4
√
a4 · a4 · a4 · b4 ≥ a3b. Similarly, we get

3b4+c4

4 > b3c, and 3c4+a4

4 > c3a. Adding these inequalities, we get

a4 + b4 + c4 > a3b+ b3c+ c3a,

which contradicts our earlier equation. (This inequality also follows from the rearrangement
inequality).

Since we arrived at a contradiction, the three equations cannot have a common solution x.



7. Circles ω1 and ω2 are externally tangent at P . Line `1 passes through the center of ω1 and
is tangent to ω2; similarly, line `2 passes through the center of ω2 and is tangent to ω1. If `1
and `2 intersect at X, prove that XP bisects one of the angles formed at X between `1 and
`2.

O1 O2P

T2

T1

X

Let ωi have center Oi, and Ti be the tangency point on `i, as shown in the diagram above.
Also, let O1P = r1 and O2P = r2 be the lengths of the radii of ω1 and ω2.

We have ∠O1T2X = ∠O2T1X = 90◦; also, ∠O1XT2 = ∠O2XT1. (In the diagram above, they
are vertical angles; there is a second case, when they are the same angle.) So 4O1XT2 ∼
4O2XT1. Since O1T2 = r1 and O2T1 = r2, the ratio of similarity is r1 : r2, so O1X : O2X =
r1 : r2.

But we also have O1P : O2P = r1 : r2 because those are actually the lengths of O1P and O2P .
So O1P

O2P
= O1X

O2X
, and by the converse to the angle bisector theorem, XP bisects ∠O1XO2.

8. Peter chose a natural number n > 1 and wrote the numbers

1 + n, 1 + n2, 1 + n3, . . . , 1 + n15

on a chalkboard. Then he erased some of the numbers so that among the remaining numbers,
any two are relatively prime. At most how many numbers could Peter have left on the board?

Recall the factorization xk + 1 = (x+ 1)(xk−1 − xk−2 + xk−3 − · · ·+ 1), valid when k is odd.
Therefore:

• Any element of {n+ 1, n3 + 1, n5 + 1, . . . , n13 + 1, n15 + 1} is divisible by n+ 1.

• Any element of {n2 + 1, n6 + 1, n10 + 1, n14 + 1} is divisible by n2 + 1.

• Any element of {n4 + 1, n12 + 1} is divisible by n4 + 1.

• There’s only one element in {n8 + 1}.

Accordingly, only one element from each group can be left on the board, so Peter must erase
all but four integers.



9. Let a and b be two distinct positive integers. The equations y = sin ax and y = sin bx are
graphed in the same coordinate plane, and all of their intersection points are marked. Prove
that there is a third positive integer c, distinct from a and b, such that the graph of y = sin cx
passes through all the marked points.

Without loss of generality, a > b. In that case, choosing c = 2(a + b)(a − b) + a will work,
which we check below.

Let (x, y) be a point such that y = sin ax = sin bx; then either ax = bx + 2kπ, or else
ax = π − bx+ 2kπ.

In the first case, x = 2kπ
a−b . Then cx = 2(a+ b)(a− b)x+ ax = ax+ 4k(a+ b)π. In the second

case, x = (2k+1)π
a+b . Then cx = 2(a+ b)(a− b)x+ ax = ax+ 2(2k + 1)(a− b)π.

In either case, cx differs from ax by an integer multiple of 2π, so sin cx = sin ax = y, and the
graph of y = sin cx passes through (x, y).


