Sequences and Series

Misha Lavrov

Solving Recurrences

Western PA ARML Practice

December 11, 2016

0 Useful Facts

Solving linear recurrences. To the recurrence $x_n = Ax_{n-1} + Bx_{n-2}$ is associated the characteristic equation $x^2 = Ax + B$. If this equation has two¹ distinct² roots r_1, r_2 , then $x_n = r_1^n$ and $x_n = r_2^n$ are solutions to the recurrence, and all other solutions have the form $x_n = C_1 r_1^n + C_2 r_2^n$.

Fixed points. If the recurrence $x_n = f(x_{n-1})$ (where f is an arbitrary function) eventually converges, approaching a fixed limit x, then that limit must satisfy x = f(x).

Monotonicity. If a sequence (x_n) satisfies $x_n < x_{n+1}$ and $x_n < M$ for all n (if it keeps growing, but never passes some fixed upper bound) then it converges.

1 Exercises

- 1. Solve the recurrence $a_n = 3a_{n-1} + 1$ with $a_0 = 0$.
- 2. Solve the recurrence $b_n = 3b_{n-1} + n$ with $b_0 = 0$.
- 3. Solve the recurrence $c_n = 3c_{n-1} + 2^n$ with $c_0 = 0$.
- 4. Solve the recurrence $d_n = d_{n-1} + d_{n-2} + 1$ with $d_0 = 1$ and $d_1 = 2$.
- 5. Solve the recurrence $e_n = e_{n-1} + 2e_{n-2}$ with $e_0 = 0$ and $e_1 = 1$.

2 Problems

6. Compute

$$2 + \frac{1}{2 + \frac{1}{1$$

¹We can use the same method to solve equations that go back more than two terms, but then the characteristic equation is cubic or worse.

²If the equation instead has a double root r, then $x_n = r^n$ and $x_n = n \cdot r^n$ are solutions, and all other solutions have the form $x_n = (C_1 + C_2 n) \cdot r^n$.

7. Compute

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}}$$

8. Compute

$$(-2 + (-2 + (-2 + (-2 + (-2 + (-2 + \cdots)^2)^2)^2)^2)^2)^2)^2)^2$$

- 9. The Fibonacci numbers are defined by the recurrence $F_n = F_{n-1} + F_{n-2}$, with $F_0 = 0$ and $F_1 = 1$. Find a recurrence for the squared Fibonacci numbers F_n^2 .
- 10. (a) Compute $\left(\frac{1+\sqrt{13}}{2}\right)^{10} + \left(\frac{1-\sqrt{13}}{2}\right)^{10}$.

(b) Compute the remainder $\left(\frac{1+\sqrt{13}}{2}\right)^{1000} + \left(\frac{1-\sqrt{13}}{2}\right)^{1000} \mod 18.$

- 11. (Concrete Math) Solve the recurrence $2T_n = nT_{n-1} + 3 \cdot n!$, with $T_0 = 5$.
- 12. (PUMaC 2007) Two sequences x_n and y_n are defined by $x_0 = y_0 = 7$ and

$$\begin{cases} x_n = 4x_{n-1} + 3y_{n-1}, \\ y_n = 3y_{n-1} + 2x_{n-1}. \end{cases}$$

Find the limiting value of $\frac{x_n}{y_n}$ as $n \to \infty$.

13. The Lucas–Lehmer test for whether a Mersenne number $2^p - 1$ is prime is to compute the remainder $s_{p-2} \mod 2^p - 1$, where s_i is a sequence recursively defined by $s_i = s_{i-1}^2 - 2$, with $s_0 = 4$.

(Specifically, $2^p - 1$ is prime if and only if p is prime and $s_{p-2} \equiv 0 \pmod{2^p - 1}$.)

Find a closed-form solution for s_n .

- 14. (Putnam 1985, modified) Solve the recurrence $a_{j+1} = a_j^2 + 2a_j$ with $a_0 = 1$.
- 15. (VTRMC 1990) The number of individuals in a certain population (in arbitrary real units) obeys, at discrete time intervals, the equation $y_{n+1} = y_n(2 y_n)$ for n = 0, 1, 2, ..., where y_0 is the initial population.
 - (a) Find all "steady-state" solutions y^* such that, if $y_0 = y^*$, then $y_n = y^*$ for n = 1, 2, ...
 - (b) Prove that if $0 < y_0 < 1$, then the sequence (y_n) converges monotonically to one of the steady-state solutions found in (a).
- 16. (Putnam 2016) Let x_0, x_1, x_2, \ldots be the sequence such that $x_0 = 1$ and for $n \ge 0$, $x_{n+1} = \ln(e^{x_n} x_n)$. Show that the infinite series $x_0 + x_1 + x_2 + \cdots$ converges and find its sum.