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1 Useful identities

The following basic identities are ones you should learn without having to derive them every time
you use them.

n∑
k=1

k =
n(n+ 1)

2
(1)

n∑
k=0

(
n

k

)
= 2n (2)

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n (3)

n∑
k=0

xk =
xn+1 − 1

x− 1
(4)

∞∑
k=0

xk =
1

1− x
when |x| < 1 (5)

A more general form of (1) is that the sum of a finite arithmetic series is equal to the
number of terms multiplied by the average of the first and last term.

You can often apply these identities more generally by factoring out a common term, or splitting a
sum into two. For example, to find 3 + 3

2 + 3
4 + 3

8 + · · · , factor out 3 and then apply (5) with r = 1
2 .

The following are more advanced identities that still come up sometimes if you want more to learn.

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(6)

n∑
k=1

k3 =

(
n(n+ 1)

2

)2

(7)

n∑
k=1

(
k

r

)
=

(
n+ 1

r + 1

)
(8)

∞∑
k=1

kxk =
x

(x− 1)2
when |x| < 1 (9)

∞∑
k=0

(
k + r

r

)
xk =

1

(1− x)r+1
when |x| < 1 (10)
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2 Switching the order of summation

1. Prove useful identity (9). (Hint: write kxk as

k∑
j=1

xk.)

2. (Concrete Mathematics1) Riemann’s zeta function ζ(k) is defined to be the infinite sum

ζ(k) = 1 +
1

2k
+

1

3k
+ · · · =

∞∑
j=1

1

jk
.

Find

∞∑
k=2

(ζ(k)− 1).

3. We define the nth harmonic number Hn to be the value of the sum 1 + 1
2 + 1

3 + · · ·+ 1
n , which

has no closed form.

Express
n∑

k=1

Hk in terms of Hn.

4. (Concrete Mathematics) Find (again, in terms of Hn)

n∑
k=1

Hk

(k + 1)(k + 2)
.

5. Prove useful identity (6) by writing k2 as

k∑
j=1

k. (Hint: some things will go wrong, but you

can still save the day.)

6. Find

n∑
k=1

k · Fk, where Fn is the nth Fibonacci number: F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

(Hint: solve problem #2 in the next section first.)

7. (ARML 1978) Find the sum of the infinite series

∞∑
k=1

k2

3k
.

8. (Putnam 2003) Show that for each positive integer n,

n! =

n∏
j=1

lcm{1, 2, . . . , bn/jc}.

1Graham, Ronald L., Donald E. Knuth, and Oren Patashnik. “Concrete Mathematics: A Foundation for Computer
Science.” (1994). Chapter 2: Sums.
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3 The method of differences

1. Find the sum 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 + · · ·+ 1
98·99 + 1

99·100 .

2. Find

n∑
k=1

Fk, where Fn is the nth Fibonacci number: F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

3. (Wikipedia) A well-known (but hard) result is that
∞∑
k=1

1

k2
=
π2

6
. Find an approximation for

this sum by using the upper bound
∞∑
k=1

1

k2
≤ 1 +

∞∑
k=2

1

k2 − 1/4

and evaluating the sum on the right-hand side. (Bonus: what approximation for π do you
get in this way?)

4. (ARML 1991) Let
(
1− 1

32

) (
1− 1

42

) (
1− 1

52

)
· · ·
(
1− 1

19912

)
= x

1991 . Compute the integer x.

5. (a) Prove useful identity (8).

(b) We have k2 = 2
(
k
2

)
+
(
k
1

)
. Use this, and useful identity (8), to derive useful identity (6).

(c) Find a similar expression for k3, and use it with useful identity (8) to derive useful
identity (7). (Note: this method applies more generally to find the sum of any polynomial
expression in k.

6. (a) Write the differences sin(n + 1) − sinn and cos(n + 1) − cosn in terms of sinn, cosn,
and constants.

(b) Find a function f(n) such that f(n+ 1)− f(n) = sinn.

(c) Find a formula for
n∑

k=1

sin k.

7. (VTRMC 2014) Find

∞∑
k=2

k2 − 2k − 4

k4 + 4k2 + 16
.

8. (USAMO 1991) For any set S, let σ(S) and π(S) denote the sum and product, respectively,
of the elements of S, with σ(∅) = 0 and π(∅) = 1. Prove that∑

S⊆[n]

σ(S)

π(S)
= (n2 + 2n)−

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
(n+ 1),

where the sum ranges over all subsets S of [n] = {1, 2, 3, . . . , n}.

9. (a) Find

∞∑
k=1

2k

22k + 1
.

(b) Show that
∑

all k≥1

k

2k + 1
=

∑
odd k≥1

k

2k − 1
.
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