Sequences and Series Misha Lavrov

Summing Series: Solutions
Western PA ARML Practice December 4, 2016

2 Switching the order of summation
1. Prove useful identity (9).
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2. Riemann’s zeta function (k) is defined to be the infinite sum
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3. We define the n'™ harmonic number H,, to be the value of the sum 1 +3 + 4+ f, which
has no closed form.
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4. (Concrete Mathematics) Find (again, in terms of Hy,) Z Mk
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Applying problem #1 from the next section, we get
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Applying problem #1 from the next section yet again, the first sum in this result becomes
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k
. Prove useful identity (6) by writing k? as Z/{: (Hint: some things will go wrong, but you
j=1
can still save the day.)
Let O, = > 7_, k?. We have
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Unfortunately, we don’t know how to evaluate the very last sum here yet, but we do know
how to evaluate the other two, and so we get

n+n? n?+n O,

O, = _-n
n 5 + 1 5
Solving for [J,,, we get the formula [, = w.

n
. Find Zk - Fy., where F,, is the n'" Fibonacci number: Fy = Fo =1 and F, = Fy_1 + F_o.
k=1
(Hint: solve problem #2 in the next section first.)
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)
. (ARML 1978) Find the sum of the infinite series Z 3%
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8. (Putnam 2003) Show that for each positive integer n,

n! = chm{1,2, o n/7]}
j=1

We show that both sides are equal by showing that for any prime p, p divides both sides an
equal number of times.

Recall that the number of times p divides n! is BJ + L%J + [ "BJ + ---. We can rewrite this
as

PR

and then reverse the summation to get

Z Z I—Zmax{k: p* <n/j}.

J=1k:pk<n/j

But max{k : p¥ < n/j} is precisely the number of times p divides lem{1,2, ..., |n/j]|}, so the
sum we’ve ended up with is the number of times p divides the product on the left-hand side
of the original equation. Therefore we’re done.

3 The method of differences

1. Find the sum % + 2—13 + 3%1 + ﬁ + -+ —98%99 + 799,1100.

% — k%rl, which means that this sum simplifies to
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2. Find ZF’“ where F, is the n' Fibonacci number: Fy = Fy =1 and F,, = F,_1 + F,_o.
k=1

. 1
We can write FRET) 2

We can write Fy as Fyyo — Fj11, so this sum simplifies to
(F3 = Fy) 4+ (Fy —F3) + -+ (Fpy1 — F) + (Fag2 — Fuq1) = Fpo — Fy = Floyo — 1.

3. (Wikipedia) A well-known (but hard) result is that Z = T Find an approximation for

6
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this sum by using the upper bound
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D.

and evaluating the sum on the right-hand side. (Bonus: what approzimation for m do you get
in this way?)

1 1 _ 1
We have P = 1) () — iR k+1/2 So this sum also telescopes to
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This is actually very close to the truth: %2 ~ 1.645 and g ~ 1.667. Relatedly, /10 is a pretty
good approximation for 7.
(ARML 1991) Let (1 — 3%) (1- 4%) (1- 5—12) (1= ﬁ) = 1991~ Compute the integer x.

This is not a telescoping sum but a telescoping product. We can write 1 — k% as ’“151 =

% kzl so the product simplifies to

g é § § 1989 1991 1990 1992\ g 1992 1328
3 3 4 4 1990 1990 1991 1991/ 3 1991 1991’
and x = 1328.

(a) Prove useful identity (8).

Pascal’s identity states that (7’?) + (r-lf-l) = (fj_i), or (ﬁ) = (lﬁj_%) — (T_]f_l). So we have
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(b) We have k* = 2(’;) + (lf) Use this, and useful identity (8), to derive useful identity (6).

We have
=22 (a) 2 (1) =()+ (")

k=1

which simplifies to w.

(c) Find a similar expression for k3, and use it with useful identity (8) to derive useful
identity (7). (Note: this method applies more generally to find the sum of any polynomial
expression in k.

The expression is k% = 6(5) + 6(’2“) + (’f), which can be found by repeatedly choosing the
right binomial coefficient to subtract that will reduce the degree of the polynomial by 1.
From here,
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(a) Write the differences sin(n 4+ 1) — sinn and cos(n + 1) — cosn in terms of sinn, cosn,
and constants.



We have:
sin(n+ 1) —sinn =sinncosl+ cosnsinl —sinn

= (=14 cos1)sinn + sin1cosn.
cos(n+1) —cosn =cosncosl —sinnsinl —cosn

= (—sinl)sinn + (=14 cos 1) cosn.

(b) Find a function f(n) such that f(n+1) — f(n) =sinn.
Begin by taking f(n) = SB2 4 _coSn_ By the above identities, we’ll get

sin 1 l—cos1”

—1+4cosl —sinl

fn+1)— f(n) = (Smlsinn+cosn> + (

sinn — cosn
1—cosl

which simplifies to

—1 4+ cos1 —sinl 2
1) — = i - _ inn.
fnt1) = f(n) ( sinl +lcos1>smn sinlsmn

Sigl, getting the new function

So we can adjust our f(n) by multiplying it by —

1 in 1
f(n) = ~3 sinn — %cosn.

_1
In fact, f(n) further simplifies to —%, though we don’t need that.

(¢) Find a formula for Zsin k.

k=1
Since sink = f(k+1) — f(k), this sum telescopes to f(n+ 1) — f(1), which simplifies to
o oo n4l
sin 5 sin 5
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s 3

k2 —2k—4

k=2
Note that k* +4k%+16 = (k*+8k2+16) —4k? = (k2 +4)2 — (2k)? = (K?+2k+4)- (k®> — 2k +4).
Furthermore, the summand can be split into the partial fractions

k2 —2k—4 k—2 k
k4 +4k2 +16  2(k2 — 2k +4)  2(k? + 2k +4)

= Q(k) —Q(k +2),

where Q(ﬂj) = 2(302‘{7723:%

. So the sum telescopes as

(Q(2) —Q(4)) +(QB) —Q(5)) + (Q4) — Q6)) +--- = Q(2) + Q(3),

since as * — oo, Q(z) — 0. To find the value of the sum, all we have to do is evaluate
Q(2) +Q(3) =0+ 3557z = 14



8. (USAMO 1991) For any set S, let o(S) and w(S) denote the sum and product, respectively,
of the elements of S, with o(0) =0 and w(0) = 1. Prove that
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where the sum ranges over all subsets S of [n] = {1,2,3,...,n}.

We can split the sum into two parts: sets S not including n, and sets S including n. The first
part is subsets of [n — 1], and sets in the second part can be written as T'U {n}, where T' is a
subset of [n — 1]. So we have

o(S) a(9) o(Tu{n}) a(S) o(T)+n
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We can simplify the second sum and rearrange to get

a(S) ( 1> o(S) 1
o SE =1 ) Y ST —
sci ™) " sy ™) ety ™)

The last summation can be solved directly: it is the product (14+1)(141)--- (14 -15), since
when we expand this product, each term ﬁ appears exactly once. This product telescopes
to exactly n, so we get the recurrence

1
Sp = <1+n) “Sp—1+ N,

where s, is the sum we are trying to evaluate. From here, the statement we want can be
shown by induction.

9. (a) Find _
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and in particular by T gk T gty So this sum telescopes as

2! 22 22 23 23 24
21 27_1) \eFo )T\ e )T

and in the end, only the first term 22%171 = % remains.

k k

all k>1 odd k>1




By similar logic, we have

P 272F 41 20 —1°

So each term in the right-hand sum corresponds to infinitely many terms of the left-
hand sum: term 1 is the sum of terms 1,2,4,8,... on the left-hand side, while term
3 is the sum of terms 3,6,12,24,... on the left-hand side, term 5 is the sum of terms
5,10, 20,40, ... on the left-hand side, and so on.

Since each positive integer can be uniquely factored as an odd number times a power of
2, this means that each term of the left-hand sum is covered exactly once in this way,
and the two sums are equal.



