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Warm-up

1. (ARML 1991) Compute the smallest 3-digit multiple of 7 for which the sum of its digits is
also a multiple of 7.

Let a, b, c be the digits of the number. Then 100a + 10b + c ≡ a + b + c ≡ 0 (mod 7), so
99a+ 9b ≡ 0 (mod 7), which reduces to a+ 2b ≡ 0 (mod 7).

To be a legitimately 3-digit number, a must be at least 1. The least (and only) value of b
such that 1 + 2b ≡ 0 (mod 7) is 3, so b = 3. To have a + b + c ≡ 0 (mod 7), take c = 3 as
well, giving the answer 133.

1 The divisors of an integer

1. (AIME 1998) A divisor of 1099 is chosen uniformly at random. Find the probability that it’s
divisible by 1088.

A divisor of 1099 has the form 2x · 5y, where 0 ≤ x ≤ 99 and 0 ≤ y ≤ 99. It is divisible by
1088 if x ≥ 88 and y ≥ 88. So 12 of the 100 possibilities for x, and 12 of the 100 possibilities
for y, result in a multiple of 1088, which means that the probability is

(
12
100

)2
= 9

625 .

2. Find the number of ways to write 300 as a product of three positive integers a · b · c. (The
product is ordered, so 1 · 3 · 100 is different from 100 · 1 · 3.)

We have 300 = 22 ·3 ·52. For each prime, we must choose how to distribute its factors between
a, b, and c.

For 22, we have three ways to order 4 · 1 · 1 and three ways to reorder 2 · 2 · 1: six possibilities.
The same happens for 52. For 3, we have three possibilities: 3 · 1 · 1, 1 · 3 · 1, or 1 · 1 · 3. So
the total number of possibilities is 3 · 62 = 108.

3. Call n an everyday number if the sum of the divisors of n (including n itself) is even. For
example, 6 is an everyday number, since 1+2+3+6 = 12, but 8 is not, since 1+2+4+8 = 15.
How many of the divisors of 10100 are everyday numbers?

If n = 2x · 5y, then the sum of the divisors of n is (1 + 2 + 4 + · · ·+ 2x) · (1 + 5 + 25 + · · ·+ 5y).
The first factor is always odd, so it won’t affect the everydayness of n; the second factor adds
up y + 1 odd numbers, so it’s even whenever y + 1 is even—when y is odd.

There are 101 choices for x, if 0 ≤ x ≤ 100, and 50 choices for y, if 0 ≤ y ≤ 100 and y is odd.
Therefore 101 · 50 = 5050 divisors of 10100 are everyday numbers.



4. (Well-known) Suppose you’re in a hallway with 100 closed lockers in a row, and 100 students
walk by. The first student opens every locker. The second student closes every other locker.
The third student goes to every third locker and toggles it: opens it if it’s closed, and closes
it if it’s open. The remaining students continue this process: the n-th student goes to every
n-th locker and toggles it. When all 100 students have walked by, which lockers are open?

The trick is to reverse the description: if the n-th student toggles lockers which are a multiple
of n, then the n-th locker is toggled by students which are a divisor of n. A locker ends up
open if it’s been toggled an odd number of times, so we want to know the numbers between
1 and 100 with an odd number of divisors.

Unless n is a perfect square, each divisor d of n can be paired with another divisor n
d , making

an even number of divisors. (If n is a perfect square, then
√
n is left over.) So the perfect

squares—lockers 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100—are the only ones left open.

(Alternatively: if the prime factorization of n is pa11 · p
a2
2 · · · p

ak
k , then n has (a1 + 1)(a2 +

1)(· · · )(ak + 1) divisors, which is odd only if every ai is even: when n is a perfect square.)

5. (ARML 1984) Find all possible values of k for which 1984 · k has exactly 21 positive divisors.

A number n has 21 positive divisors if it’s of the form p2 · q6 (where p and q are primes) or
p20 (where p is prime). Since 1984 factors as 26 · 31, the only way to put 1984 · k into this
form is to make k = 31, so we get 1984 · 31 = 26 · 312.

6. Let n be of the form 2a ·3b for some a and b. Prove that the sum of the divisors of n (including
n itself) is at most 3n.

The sum of the divisors of n is given by (1 + 2 + 22 + · · · + 2a)(1 + 3 + 32 + · · · + 3b). The
inequalities {

1 + 2 + 22 + · · ·+ 2a = 2a+1 − 1 < 2a+1

1 + 3 + 32 + · · ·+ 3b = 1
2(3b+1 − 1) < 1

2 · 3
b+1

together imply that the sum of the divisors of n is less than 2a+1 · 12 · 3
b+1 = 2a · 3b+1 = 3n.

7. (PUMaC 2011) The sum of the divisors of n (including n itself) is 1815. If n = 2a · 3b for
some a and b, find (a, b).

We know that 1815, which factors as 3·5·112, is equal to (1+2+22+· · ·+2a)(1+3+32+· · ·+3b).
For the first few values of a, the first factor is 1, 3, 7, 15, 31, . . . and for the first few values of
b, the second factor is 1, 4, 13, 40, 121, 364, . . . . We spot (by looking for factors of 11, which
are rare) that 1815 = 15 · 121, so n = 23 · 34 = 8 · 81 = 648.

8. (ARML 1979) Let τ(n) denote the number of positive divisors of n. (E.g., τ(12) = 6, counting
1, 2, 3, 4, 6, and 12 itself.) For how many positive integers n ≤ 100 is τ(n) a multiple of 3?

If n = pa11 · p
a2
2 · · · p

ak
k , then it has (a1 + 1)(a2 + 1)(· · · )(ak + 1) divisors, which is a multiple

of 3 whenever ai + 1 is a multiple of 3 for some i.

This happens whenever n is divisible by p2 and not p3 for some p, and also when n is divisible
by p5 and not p6, and also higher powers that are irrelevant for n ≤ 100. We count:

(a) Numbers divisible by 22 and not 23 are 4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100.



(b) Multiples divisible by 32 and not 33 are 9, 18, 36, 45, 63, 72, 90, 99 (but 36 was already
counted).

(c) Numbers divisible by 52 and not 53 are 25, 50, 75, 100 (but 100 was already counted).

(d) Numbers divisible by 72 and not 73 are 49 and 98.

(e) Numbers divisible by 25 and not 26 are 32 and 96.

Altogether, there are 27 such numbers.

9. (ARML 2014) Find the smallest positive integer n such that 214 ·n and 2014 ·n have the same
number of divisors.

We have 214 = 2 · 107 and 2014 = 2 · 19 · 53. If n = 2a · 19b · 53c · 107d, then 214 · n has
(a+ 2)(b+ 1)(c+ 1)(d+ 2) divisors and 2014 · n has (a+ 2)(b+ 2)(c+ 2)(d+ 1) divisors. So
we want (b+ 1)(c+ 1)(d+ 2) = (b+ 2)(c+ 2)(d+ 1).

After some experimentation, we realize that one way to do this is to set n = 192 ·53, in which
case b = 2, c = 1, d = 0, and (b + 1)(c + 1)(d + 2) = (b + 2)(c + 2)(d + 1) = 12. We can
check that we can’t do better by seeing that n = 193 doesn’t work and that all 7 possibilities
with b+ c+ d ≤ 2 don’t work. Note that introducing new primes can never help us, since it
changes the number of divisors of 214 · n and of 2014 · n by the same factor.

So n = 192 · 53 = 19133 is the best solution.

2 Prime factorization

1. Prove that gcd(a, b) · lcm(a, b) = a · b.

For every prime p, suppose that p divides a exactly x times, and p divides b exactly y times.
(This is denoted px‖a, py‖b.) Then pmin(x,y)‖ gcd(a, b) and pmax(x,y)‖ lcm(a, b). Therefore
the power of p dividing the right-hand side is min(x, y) + max(x, y) = x + y, same as the
right-hand side.

Since the power of p dividing both sides is the same for any prime p, the two sides must be
equal.

2. (USAMO 1972) Prove that for all positive integers a, b, c,

gcd(a, b, c)2

gcd(a, b) · gcd(a, c) · gcd(b, c)
=

lcm(a, b, c)2

lcm(a, b) · lcm(a, c) · lcm(b, c)
.

Once again, let p be a prime, and let px‖a, py‖b, pz‖c. Since the equations are symmetric
in a, b, and c, we can assume without loss of generality that x ≤ y ≤ z. Then the power
of p dividing the left-hand side is 2x − (x + x + y) = −y, and the power of p dividing the
right-hand side is (2z − (y + z + z) = −y.

Since the power of p dividing both sides is the same for any prime p, the two sides must be
equal.



3. (AIME 1991) How many reduced fractions a
b are there such that ab = 20! and 0 < a

b < 1?

The prime factorization of 20! is 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19. If the same prime number
appears in the factorization of a and b, then a

b is not reduced, which is not allowed. So each
of the eight prime powers that 20! factors into must end up entirely in a or else entirely in b.
There are 28 ways to do this.

Exactly half of these will satisfy a
b < 1, since either a

b < 1 or else b
a < 1. So there are 27 = 128

solutions.

4. Find all solutions to x2 + 3x = y2, where x and y are positive integers.

For any prime p, the power of p dividing y2 is even, so the power of p dividing x2+3x = x(x+3)
is even. If p divides both x and x+ 3, then p | (x+ 3)− x = 3. So for primes p other than 3,
the even power of p dividing y2 must entirely divide either x or x+ 3 as well.

If the powers of 3 dividing x and x + 3 also happen to be even (including 0), then x and
x+ 3 are perfect squares, which is only possible when x = 1 and x+ 3 = 4. If the powers of
3 dividing x and x+ 3 are both odd, then x/3 and (x+ 3)/3 = x/3 + 1 are perfect squares,
which is only possible when x/3 = 0 and x/3 + 1 = 1 (but this is ruled out because x > 0.
So the only solution is x = 1, which means y = 2.

5. (Putnam 2003) Show that for each positive integer n,

n! =

n∏
i=1

lcm
(
1, 2, . . . , bn/ic

)
.

For every prime p, the number of times p divides n! is given by⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · .

This can be seen as the number of points with positive integer coordinates under the graph

of the curve y = n · p−x. The first term,
⌊
n
p

⌋
, gives the number of such points with x = 1.

The second term counts points with x = 2, and so on.

We can count these points in a different way as well. If we fix the y-coordinate, the number
of points with y = i is given by the largest value of x such that n · p−x > i, or px < n

i .
Coincidentally, this happens to equal the largest power of p that divides lcm

(
1, 2, . . . , bn/ic

)
.

Since the power of p dividing both sides is the same for any prime p, the two sides must be
equal.


