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Warm-up

1. Find 1 + 2 + 3 + · · ·+ 100. (The story goes that Gauss was
given this problem by his teacher in elementary school to keep
him busy so he’d quit asking hard questions. But he figured it
out in his head in about ten seconds.)

2. (2003 AIME I.) One hundred concentric circles with radii
1, 2, 3, . . . , 100 are drawn in a plane. The smallest circle is
colored red, the strip around it green, and from there the
colors alternate. What fraction of the total area of the largest
circle is colored green?



Warm-up
Solutions

1. The classic argument goes like this:

1 + 2 + 3 + · · · + 100
+ 100 + 99 + 98 + · · · + 1

101 + 101 + 101 + · · · + 101

If S is the sum, 2S = 100 · 101 = 10100, so S = 5050.

2. The area of a strip between the circle of radius r and the
circle of radius r + 1 is π(r + 1)2 − πr2 = (2r + 1)π, which we
can rewrite as (r + 1)π + rπ. Then

x =
1002π − 992π + 982π − 972π + · · ·+ 22π − 12π

10000π

=
100π + 99π + 98π + 97π + · · ·+ 2π + π

10000π

=
5050π

10000π
= 0.505.



Basic summations

1. Arithmetic series:

n∑
k=1

k = 1 + 2 + · · ·+ n =
n(n + 1)

2
=

(
n + 1

2

)
.

In general, given an arithmetic progression that starts at a,
ends at z , and has n terms, its sum is n · a+z

2 .

2. Geometric series: for r 6= 1,

n−1∑
k=0

rk = 1 + r + r2 + · · ·+ rn−1 =
rn − 1

r − 1
.

As a special case,
∑n−1

k=0 2k = 2n − 1.



Exchanging double sums

Consider the sum S =
∑n−1

k=0 k2k . We will evaluate this sum as
follows:

n−1∑
k=0

k2k =
n−1∑
k=0

k−1∑
`=0

2k =
n−1∑
`=0

n−1∑
k=`+1

2k .

Having reordered the two sums, we first evaluate the inner one:

n−1∑
k=`+1

2k =
n−1∑
k=0

2k −
∑̀
k=0

2k = (2n − 1)− (2`+1 − 1) = 2n − 2`+1.

Now the outer sum is also easy:

n−1∑
`=0

(2n − 2`+1) = n2n − 2
n−1∑
`=0

2` = (n − 2)2n + 2.
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Practice with exchanging double sums

1. We define the n-th harmonic number Hn by

Hn =
n∑

k=1

1

k
=

1

1
+

1

2
+ · · ·+ 1

n
.

Express the sum
∑n

k=1 Hk in terms of Hn.

2. Things will get trickier when you do this to
∑n

k=1 k2.

(Recall that
∑n

k=1 k = n(n+1)
2 .)



Exchanging double sums
Solutions

1.
n∑

k=1

Hk = (n + 1)Hn − n.

2. Let �n =
∑n

k=0 k2. When we expand this out into two sums,
switch the sums, and simplify, we get back

�n =
n∑

`=1

((
n + 1

2

)
−
(
`

2

))
=

2n3 + 3n2 + n

4
− 1

2

n∑
`=1

`2.

We don’t yet know how to simplify the last sum, but since it
is just 1

2�n, we can solve the equation for �n to get

�n =
n(n + 1)(2n + 1)

6
.



Review of binomial coefficients

Recall that
(n
r

)
= n!

r !(n−r)! = n(n−1)(··· )(n−r+1)
r ! . These show up in

Pascal’s triangle:
K 0

0
O1

K 1

0
O1 K 1

1
O1

K 2

0
O1 K 2

1
O2 K 2

2
O1

K 3

0
O1 K 3

1
O3 K 3

2
O3 K 3

3
O1

K 4

0
O1 K 4

1
O4 K 4

2
O6 K 4

3
O4 K 4

4
O1

The key point today is the identity
(n
r

)
=
(n−1

r

)
+
(n−1
r−1

)
, or(n

r

)
=
(n+1
r+1

)
−
( n
r+1

)
. This lets us make many sums telescope: e.g.,

n−1∑
k=0

k =
n−1∑
k=0

(
k

1

)
=

n−1∑
k=0

((
k + 1

2

)
−
(

k

2

))
=

(
n

2

)
.



Sums of binomial coefficients

In general, we have:

n−1∑
k=0

(
k

r

)
=

n−1∑
k=0

((
k + 1

r + 1

)
−
(

k

r + 1

))
=

(
n

r + 1

)
−
�

�
�

��
(

0

r + 1

)
.

We can use this to evaluate sums of arbitrary polynomials.

1. Write your degree-d polynomial in k as a sum of(k
0

)
,
(k
1

)
, . . . ,

(k
d

)
. For example, k2 = 2

(k
2

)
+
(k
1

)
.

2. Now we can evaluate the sum:

n∑
k=1

k2 = 2
n∑

k=1

(
k

2

)
+

n∑
k=1

(
k

1

)
= 2

(
n + 1

3

)
+

(
n + 1

2

)
.

3. Then simplify: 2
(n+1

3

)
+
(n+1

2

)
= 1

6(2n3 + 3n2 + n).



Practice with binomial coefficients

1. Use this technique to find a formula for
∑n

k=1 k3.

2. Here is a systematic method of writing a polynomial P(x) as
a0
(x
0

)
+ a1

(x
1

)
+ · · ·+ ad

(x
d

)
:

2.1 If the polynomial is P(x) and has degree d , write
P(0),P(1), . . . ,P(d) in a row.

2.2 On the next line, write down the differences: between and
below two numbers a and b write b − a.

2.3 Repeat step 2 to the row of differences, and keep going until a
row with only one number is left.

2.4 The coefficients of
(
x
0

)
, . . . ,

(
x
d

)
are the first entries in each row.

Use this method to find
∑n

k=1 k4.

3. Why does the method above work?



Practice with binomial coefficients
Solutions

1. Writing k3 as 6
(k
3

)
+ 6
(k
2

)
+
(k
1

)
, we get

n∑
k=1

k3 = 6

(
n + 1

4

)
+ 6

(
n + 1

3

)
+

(
n + 1

2

)
=

n2(n + 1)2

4
.

2. The rows of differences we get are:

0 1 16 81 256
1 15 65 175

14 50 110
36 60

24

So k4 = 24
(k
4

)
+ 36

(k
3

)
+ 14

(k
2

)
+
(k
1

)
, and

n∑
k=1

k4 = 24

(
n + 1

5

)
+ 36

(
n + 1

4

)
+ 14

(
n + 1

3

)
+

(
n + 1

2

)
.



The difference operator

Given any function f , ∆f is another function defined by
∆f (x) = f (x + 1)− f (x).

(A thing that turns functions into other functions is called an
operator. ∆ is called the difference operator.)

The basic identity we rely on is this:

b−1∑
k=a

∆f (k) = f (b)− f (a).

To simplify any finite sum whatsoever, all we need to do is find a
function f such that ∆f is the function we’re summing.

This is what we did in the previous section: we discovered that
∆x

(x
r

)
=
( x
r−1

)
, which let us solve any sum with binomial

coefficients in it.



Difference operator problems

1. Compute ∆(2x), ∆(x2x), and ∆(x22x).

2. Use #1, and the basic rule that ∆(f + g) = ∆f + ∆g , to find

n−1∑
k=0

2k ,
n−1∑
k=0

k2k , and
n−1∑
k=0

k22k .

3. Let Fn denote the n-th Fibonacci number, defined by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Find a formula for

n−1∑
k=0

Fk .

4. Prove that for any function f ,

n−1∑
k=0

k∆f (k) = nf (n)−
n∑

k=1

f (k).



Difference operator problems
Solutions

1. ∆(2x) = 2x , ∆(x2x) = (x + 2)2x , and
∆(x22x) = (x2 + 4x + 2)2x .

2. From #1, we can deduce that ∆((x2 − 4x + 6)2x) = x22x .
Therefore

n−1∑
k=0

k22k = (k2 − 4k + 6)2k − 6.

The other two sums are similar, but easier.

3. We have ∆Fn = Fn+1 − Fn = Fn−1, so Fn = ∆Fn+1, and
therefore

n−1∑
k=0

Fn = Fn+1 − F1 = Fn+1 − 1.

4. Sum both sides of ∆(kf (k)) = f (k + 1)− k∆f (k).
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