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Warm-up Simple methods Linear recurrences

Warm-up / Review

1 Compute

100∏
k=2

(
1− 1

k

)
=

(
1− 1

2

)
×
(

1− 1

3

)
× · · · ×

(
1− 1

100

)
.

2 Compute
100∏
k=2

(
1− 1

k2

)
.

Homework: find and solve problem Algebra #7 from the February
2009 HMMT.
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Warm-up / Review
Solutions

1 Write 1− 1
k as k−1

k . Then the product becomes

1

2
· 2

3
· 3

4
· · · · · 98

99
· 99

100
.

Except for the 1 and the 100, every number occurs once in
the numerator and once in the denominator, so the final
answer is 1

100 .

2 Write 1− 1
k2 as k2−1

k2 = k−1
k ·

k+1
k . Then the product becomes(

1

2
· 3

2

)
·
(

2

3
· 4

3

)
·
(

3

4
· 5

4

)
· · · · ·

(
99

100
· 101

100

)
.

The second factor of each term is the reciprocal of the first
factor of the next. Therefore the adjacent factors cancel,
leaving only 1

2 ·
101
100 = 101

200 .
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Three methods for solving recurrences
Method 1: Guess and check

Problem

If an = 2an−1 + 1 and a0 = 0, find a formula for an.

1 Find the first few values of an:

0, 1, 3, 7, 15, . . .

2 Guess a formula: an = 2n − 1.

3 We can prove this:{
2n − 1 = 2(2n−1 − 1) + 1,

20 − 1 = 0.
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Three methods for solving recurrences
Method 2: Convert to a sum

Problem

If an = 2an−1 + 1 and a0 = 0, find a formula for an.

1 Divide by a suitable function for step 2 to work.

an
2n

=
an−1
2n−1

+
1

2n
.

2 Make a substitution to write the recurrence as
sn = sn−1 + . . . .

sn = sn−1 +
1

2n
where sn =

an
2n
.

3 Solve for sn and reverse the substitution.

sn = 0 +
n∑

k=1

1

2k
= 1− 1

2n
⇒ an = 2nsn = 2n − 1.
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Three methods for solving recurrences
Method 3: Convert to a product

Problem

If an = 2an−1 + 1 and a0 = 0, find a formula for an.

1 Add or subtract something that makes step 2 work.

an + 1 = 2an−1 + 2 = 2(an−1 + 1).

2 Make a substitution to write the recurrence as pn = ? · pn−1.

pn = 2pn−1 where pn = an + 1.

3 Solve for pn and reverse the substitution.

pn = 2np0 = 2n ⇒ an = pn − 1 = 2n − 1.
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Exercises

1 Solve the recurrences:

xn = 2xn−1 + 2n, x0 = 0.

yn = 3yn−1 + 2n − 1, y0 = 0.

zn = 3z2
n−1, z0 = 1.

2 In preparation for the next topic, solve the recurrence
an = an−1 + 2an−2 with a0 = 2 and a1 = 1.
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Exercises
Solutions: # 1

We solve xn by the method of sums. Dividing by 2n, we get
xn
2n

=
xn−1
2n−1

+ 1. This leads to the recurrence sn = sn−1 + 1, with

s0 = 0, where sn = xn/2n. This is easy to solve: sn = n. Therefore
xn = n · 2n.

We solve yn by the method of products. Add n + 1 to both sides
and factor to get yn + n + 1 = 3(yn−1 + n). This means that for
pn = yn + n + 1 we have the recurrence p0 = 1 and pn = 3pn−1, so
pn = 3n and therefore yn = 3n − n − 1.

Finally, for zn, we take the log of both sides. The recurrence
zn = 3z2

n−1 becomes log3 zn = 2 log3 zn−1 + 1, with log3 z0 = 0.
This is the recurrence we took great pains to solve earlier, so
log3 zn = 2n − 1, and therefore zn = 32

n−1.
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Exercises
Solutions: # 2

One way to approach the two-term recurrence is to begin with the
method of products. Add an−1 to both sides; then

an + an−1 = 2an−1 + 2an−2 = 2(an−1 + an−2).

If pn = an + an−1, we have pn = 2pn−1, with p1 = 3. Therefore
pn = 3

2 · 2
n.

However, this doesn’t solve the problem fully: a formula for pn

only tells us that
an = −an−1 + 3

2 · 2
n.

We can solve this by the method of sums. Let sn = (−1)nan; then
we have the recurrence sn = sn−1 + 3

2 · (−2)n, with s0 = 2.
Therefore sn = 2 + 3

2

∑n
k=1(−2)k = (−2)n + 1.

Finally, because an = (−1)nsn, we get an = 2n + (−1)n.
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Solving linear recurrences

Recurrences such as an = an−1 + 2an−2 come up so often there is a
special method for dealing with these.

1 Find all solutions of the form an = rn. We will need to solve a
quadratic equation, since rn = rn−1 + 2rn−2 just means
r2 = r + 2. In this case, the solutions are r = 2 and r = −1.

2 Find a combination of these solutions that satisfies the initial
conditions. Here, if an = x · 2n + y · (−1)n, we have{

x · 20 + y · (−1)0 = a0 = 2,

x · 21 + y · (−1)1 = a1 = 1.

So an = 2n + (−1)n.

In general, if an is a linear combination of an−1, . . . , an−k , we’d
have to solve a degree-k polynomial to get what we want.
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Example of solving linear recurrences

The Fibonacci numbers are defined by F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2. Find a formula for Fn.

1 To find the exponential solutions, we solve r2 = r + 1 to get

r =
1±
√

5

2
. Call these two solutions φ1 and φ2.

2 Now we know Fn = xφn1 + yφn2. To find x and y , we solve:{
F0 = xφ01 + yφ02,

F1 = xφ11 + yφ12.
⇔

{
x + y = 0,(
1
2 +

√
5
2

)
x +

(
1
2 −

√
5
2

)
y = 1.

3 So x = 1√
5

, y = − 1√
5

, and

Fn =

(
1+
√
5

2

)n
−
(
1−
√
5

2

)n
√

5
.
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One thing that can go wrong

Consider the recurrence an = 4an−1 − 4an−2, with a0 = 0 and
a1 = 2. What goes wrong? Try to solve this using our previous
methods.

The problem is that r2 = 4r − 4 only has one solution: r = 2. But
multiples of 2n aren’t enough to fit the initial conditions.

Writing an − 2an−1 = 2(an−1 − 2an−2) yields the one-term
recurrence an = 2an−1 + 2n. We have already solved this today;
the solution is an = n · 2n.

In general, when a root r is repeated k times, it yields the
solutions an = rn, an = n · rn, . . . , an = nk−1 · rn, and we solve for
their combination as usual. (Here, all solutions to the recurrence
are a combination of 2n and n · 2n.)
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Exercises

1 Solve the recurrence xn = 2xn−1 + xn−2 with x0 = x1 = 1.

2 Solve the recurrence yn = yn−1 + 2yn−2 + 2 with y0 = 0 and
y1 = 1.

3 Solve the recurrence zn = zn−1 + zn−2 − zn−3 with z0 = 1,
z1 = 0, and z2 = 3.
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Exercises
Solutions

1 The characteristic equation is r2 = 2r + 1, which yields
r = 1±

√
2. Determining the constants, we see that

xn =
(1 +

√
2)n + (1−

√
2)n

2
.

2 By a trick analogous to the “method of products”, we write
yn + 1 = (yn−1 + 1) + 2(yn−2 + 1). Then yn + 1 is some
combination of 2n and (−1)n; from y0 + 1 = 1 and
y1 + 1 = 2, we can deduce yn + 1 = 2n, so yn = 2n − 1.

3 Here we must first solve the cubic r3 = r2 + r − 1, whose
three roots are 1, 1,−1. This means zn is a combination of 1,
n, and (−1)n. From the initial conditions, we see that
zn = n + (−1)n.
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More math problems

Inspired by 1990 VTRMC, #6. The sequence (yn) obeys the
recurrence yn = yn−1(2− yn−1). Solve for yn in terms of y0.

2005 AIME II, #11. For a positive integer m, let a0, a1, . . . , am be
a sequence such that a0 = 37, a1 = 72, ak+1 = ak−1 − 3

ak
for

k = 1, . . . ,m − 1, and finally, am = 0. Find m.

2007 PUMαC, Algebra A #7. Two sequences xn and yn are
defined by x0 = y0 = 7 and{

xn = 4xn−1 + 3yn−1

yn = 3yn−1 + 2xn−1.

Find limn→∞
xn
yn

. [Or just solve for xn and yn.]

2011 VTRMC, #2. The sequence (an) is defined by a0 = −1,
a1 = 0, and an = a2n−1 − n2an−2 − 1. Find a100.
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More math problems
Solutions

1990 VTRMC, #6. Rewrite the recurrence as 1− yn = (1− yn−1)2.
It follows that 1− yn = (1− y0)2

n
, so yn = 1− (1− y0)2

n
.

2005 AIME II, #11. Let bk = akak+1. From the recurrence, we
have bk = bk−1 − 3, with b0 = 37 · 72. So bk = 37 · 72− 3k . We
have b888 = a888a889 = 0; but a888 6= 0 because b887 =
a887a888 = 3. Therefore m = 889.

2007 PUMαC, Algebra A #7. Note that xn − yn = 2xn−1, so we
can write xn as 7xn−1 − 6xn−2. Solving this, we get

xn = 42
5 · 6

n − 7
5 , so yn = 28

5 · 6
n + 7

5 . In the limit, xn
yn
→ 42/5

28/5 = 3
2 .

2011 VTRMC, #2. From computing the first few terms, we guess
that an = n2 − 1, which is confirmed by induction:

n2 − 1 = ((n − 1)2 − 1)2 − n2((n − 2)2 − 1)− 1.
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