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Warm-up

Warm-up

Using the quantifier notation on the reference sheet, and making
any further definitions you need to, write the following:

“You can fool all the people some of the time, and some of the
people all the time, but you cannot fool all the people all the time.’

Let P be the set of all people, T the set of all times, and F(p, t)
the statement that person p can be fooled at time t. Then

(VpeP3teT: F(p,t))
AN(EBpePVteT: F(p,t))
AN=(VpePVteT: F(p,t)).



Quantifiers and the harmonic series

Proving things: a case study

Problem

Prove that the harmonic series
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Quantifiers and the harmonic series

Key points to hit

@ It's good to be specific about the rounding: % rounds down to
2—1k chosen so that 2k~ < n < 2k,

This makes it easy to show that there are 2¥~1 terms that

round down to 2% contributing a total of %

@ One possible punchline: 1+ % + % + - - diverges, and the
harmonic series is at least as large.

o Better (fewer infinities): The first 2% terms of the harmonic
series total at least 1 + g which can be arbitrarily large.
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What is divergence, anyway?

Say we have the infinite series a; + a» + az + ---. We call
Sn =Y r_1 ak the n-th partial sum.

When all the ay are positive, the infinite series diverges if and only
if the sequence of partial sums tends to infinity. This happens iff:

@ The partial sums become arbitrarily large if we take
sufficiently many terms.

@ Which is to say, for all M there is an index n such that S,
exceeds M.

e VM dn:S,> M.



Quantifiers and the harmonic series

What is divergence, anyway?

Say we have the infinite series a; + a» + az + ---. We call
Sn =Y r_1 ak the n-th partial sum.

When all the ay are positive, the infinite series diverges if and only
if the sequence of partial sums tends to infinity. This happens iff:

@ The partial sums become arbitrarily large if we take
sufficiently many terms.

@ Which is to say, for all M there is an index n such that S,
exceeds M.

e VM dn:S,> M.

When a series contains negative numbers, things are more
complicated: e.g.,

1—1+1—-141—1+4---.
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We want to prove that VM dn: S, > M, where S, = Zzzl %
How?

Let M be any real number. Take n = 22M. Then
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Quantifiers and the harmonic series
Proving a dependence

We want to prove that VM dn: S, > M, where S, = Zzzl %
How?

Let M be any real number. Take n = 22M. Then

1 1
Sn:1—|—§+§+"'+227,\/,

(D) (2 D)y Loy ]
2 34 22M-1 11 22M

11 1
I+ +4-+==M+1>M.
>1+5 45+ +5 +1>

~
2M times

Therefore the harmonic series diverges.

[Therefore for any M, there is some n such that S, > M, so S,
tends to infinity, and therefore the harmonic series diverges.]



Quantifiers and the harmonic series

Exercises

© '"There are arbitrarily large numbers of the form 111...11
which are divisible by 7.”

o Rephrase this statement as “For all ..., there exists ... such
that ...."

e Then prove it. (Hint: 111111 = 15873 -7.)

. - . 2
@ The infinite series 1 + 2% + 5+ 4% + -+ converges to %-.
This is obviously kind of triczky to prove, so we won't.

e Prove that 1+ 2% + 3% + 4—12 + .-+ < 2. (Hint: a similar
approach works.)

e What would you need to show to prove that the sequence of
partial sums DOES NOT tend to infinity, using the formal
definition?

© A number x is even if x = 2y for some y, and odd if
x =2y + 1 for some y. Prove that all numbers are either even
or odd.



Quantifiers and the harmonic series

Various kinds of mathematical statements

@ dx: "Odd numbers exist”.
To prove this, you give an example of an odd number.
@ Vx: “All numbers are equal to themselves”.

To prove this, you say “Let n be any number”, and then prove
that n = n.
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@ Vx dy: See previous slides.
@ Jx Vy: “There is a number x such that x + y =y for all y."

To prove this, you pick an x, and then do the V proof.



Quantifiers and the harmonic series

Various kinds of mathematical statements

@ dx: "Odd numbers exist”.
To prove this, you give an example of an odd number.
@ Vx: “All numbers are equal to themselves”.

To prove this, you say “Let n be any number”, and then prove
that n = n.

@ Vx dy: See previous slides.
@ Jx Vy: “There is a number x such that x + y =y for all y."
To prove this, you pick an x, and then do the V proof.

e Vx Jy Vz “For all x, there is a y such that (x +y)+z=1z
for all z."
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This is an exercise in unpacking notation. (You should have a
reference sheet for all the notation | will use.) For example:
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First of all, AN B C A means “forallx e AnNB, xe A."

Suppose x € ANB. Then x € A and x € B.
Therefore x € A.




Sets
Proving things about sets

This is an exercise in unpacking notation. (You should have a
reference sheet for all the notation | will use.) For example:

ANBCA.

Proof.
First of all, AN B C A means “forallx e AnNB, xe A."

Suppose x € ANB. Then x € A and x € B.
Therefore x € A.

Therefore Vx € AN B : x € A, which means AN B C A. ]




Sets
Exercises in sets

Prove the following:
O ACAUB.
Q@ 0NCA
Q@ AUD=A
QO AC(A-B)uUB.
Q@ (A—-B)n(B-A)=0.
@ Let AA B denote (A— B) U (B — A). Prove that

(AAB)A(BAC)A(AAC) = 0.
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Second warmup

Second warmup

@ Prove that if v/2 is an integer, then it is odd.

Since 1 <2 < 4, we have V1 <2 < V4,501 <2 <2,
and therefore v/2 is not an integer. Therefore it is true that if
V2 is an integer, it is odd.

@ Prove that if /2 is rational, then it is an integer.
It suffices to prove that \/2 is irrational.

Suppose V2 = g, where p and g are integers. Then
p? = 2g%. But the highest power of 2 dividing p? is even,
while the highest power of 2 dividing 2¢2 is odd. This is a

contradiction, so v/2 cannot be rational.



Induction
A simple induction proof
Forn> 4, nl > 2",

Proof.
Let n = 4; then nl =24 > 16 = 2".

If n> 4 and (n—1)! > 271 then

nl=n-(n—1)>n-2""1>2.20"1 ="

By induction, we have n! > 2" for all n > 4. O




The AM-GM inequality

Theorem (AM-GM)

For real numbers a1, ...,a, > 0, if AM = Lﬂ“"”” and
GM = (a1 - @+ - a,)*/", then AM > GM.

Proof outline.

We prove three things:

@ That AM > GM for n = 2.

© That the n case implies the 2n case.

© That the n case implies the n — 1 case.
These implications give us a path to any value of n from the base
case of 2 (though this claim needs proof). For example, to prove
n =17, we go

2=4=3=6=>5=10=9=18=17.

By induction, AM > GM for all n. O




The AM-GM inequality

@ Check that AM > GM for n = 2.

Start with (\/a; — \/5)2 > 0. This means
ay+a»—2y/aiax >0, or ‘“er—‘” > /ajas.

@ Go from n to 2n.

@ Go from nton—1.



The AM-GM inequality

@ Check that AM > GM for n = 2.
@ Go from n to 2n.

Split the 2n inequality into two halves:

n any1t-taon
ap+ o tap, (AEEEm oy Zalods
2n 2
1/n

(a1 an)"" + (ant1 -+~ a20)"/
2

> ((31 e an)l/n ’ (3n+1 e 32n)1/n)

= (al ... 32,1)1/2” .

Y

1/2

@ Go from nto n—1.



The AM-GM inequality

© Check that AM > GM for n = 2.
@ Go from n to 2n.
@ Go from nto n—1.
Let AM = 2531 50 set a, = AM. Then:

n—1
AM = at---tan > (ap---ap_1- AM)l/”
n
Z (a]_'-‘a,,_]_) -AM
AM" > (al cee a,,_l)
Z (al ...anil)l/n.



Induction

Induction exercises

@ Provethat1+2+---+n= w by induction on n.

@ (Recall that the Fibonacci numbers are defined by Fy =0,
Fi=1,and F, = Fh_1 + Fph_2 for n > 2.) Prove that F3, is
even for all n.

© Prove that for all natural numbers n and for all real x,
(1+x)" > 1+ nx. (This also holds for all real n > 0 when
x > —1, a fact known as Bernoulli's inequality.)

Q@ Prove that for n > 6, n! > nd.



Bijections

Proving things with bijections

(1) counts subsets of {1,2,...,n} with k elements. (,",) counts
subsets with n — k elements. We can pair these up, by pairing the
subset A, where |A| = k, with the subset {1,2,...,n} — A.
Therefore the number of each type of subset is the same. O

v

The general technique is to prove | X| = |Y| for two sets X, Y by
finding a bijection f : X — Y.



Bijections

What is a bijection?

A bijection must satisfy two constraints:

© It hits everything: Vy € Y 3x € X : f(x) = y.
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Bijections
What is a bijection?

A bijection must satisfy two constraints:
© It hits everything: Vy € Y 3x € X : f(x) = y.

Let B be a subset of {1,2,...,n} of size n — k. Then
A={1,2,...,n} — B is a subset of size k such that
f(A) = B.

@ It hits nothing twice: Vx1,x2 € X : f(x1) = f(x2) = x1 = x2.
Let A, Ay be two subsets of size k. If
{1,...,n} — A1 ={1,...,n} — Ay, then A; = A,. (Exercise!)

A shortcut is to exhibit an inverse: a function f~1: Y — X such
that Vx € X : f~1(f(x)) = x. This is also easy here.



Bijections
Euler’s identity on partitions

Theorem (Euler)

The number of ways to write n as a sum of odd numbers is equal to
the number of ways to write n as a sum of distinct numbers. E.g.,
7T=7 7T=7
=5+1+1 =542
=3+3+1 =6+1
=3+1+1+1+1 =443
=1+1+1+1+1+1+1 =4+2+1

(Note: these are also known as partitions of n, and the summands
are called parts.)



Bijections

Euler’s identity on partitions
Proof

We construct a bijection f from the first kind of partition to the
second kind.

Let A be a partition of n into odd parts. For each odd k, let ry be
the number of times k occurs in .



Bijections

Euler’s identity on partitions
Proof

We construct a bijection f from the first kind of partition to the
second kind.

Let A be a partition of n into odd parts. For each odd k, let ry be
the number of times k occurs in .

Write ry as a sum of distinct powers of 2:

rg =21 4 272 4. DTl



Bijections

Euler’s identity on partitions
Proof

We construct a bijection f from the first kind of partition to the
second kind.

Let A be a partition of n into odd parts. For each odd k, let ry be
the number of times k occurs in .

Write ry as a sum of distinct powers of 2:
re = 291 4 2%k2 ... 4 23Kk

Then we obtain f(\) by making the following replacement, for
each k:

k+k+-+ k~ k2% 4 k.2%2 4o . 29k4(K)
N—_—————

ri times



Bijections

Euler’s identity on partitions
Proof

We construct a bijection f from the first kind of partition to the
second kind.

Let A be a partition of n into odd parts. For each odd k, let ry be
the number of times k occurs in .

Write ry as a sum of distinct powers of 2:
re = 291 4 2%k2 ... 4 23Kk

Then we obtain f(\) by making the following replacement, for
each k:

k+k+-+ k~ k2% 4 k.2%2 4o . 29k4(K)
N—_—————

ri times

Exercise: describe the inverse of f.



Bijections

Exercises with bijections

Q Prove that (}) = (";1) + (Z:}) using a bijection.

@ The Catalan numbers count the number of ways to
parenthesize a; + a + - -+ + a,: e.g., for n = 3, we can write
((a1 + a2) + a3) or (a1 + (a2 + a3)); for n = 4, one of the
possibilities is ((a1 + (a2 + a3)) + a4).

Prove that the Catalan numbers also count the number of
paths from (1,1) to (n, n) which go up or to the right at each
step and also stay within region where x > y. For n = 3, we
have the paths

o
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