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Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a2 + b2 = ab(a + b)?

1 Let p be a prime. Let px be the highest power of p dividing a,
and py be the highest power of p dividing b.

2 Suppose x < y . Then p2x is the highest power dividing
a2 + b2, px+y is the highest power dividing ab, and px is the
highest power dividing a + b.

3 So p2x = p2x+y , which means y = 0. But x < y , so this is
impossible. So we can’t have x < y ; we can’t have x > y for
the same reason, so x = y .

4 This is true for all p, so a = b. Then 2a2 = a2(a + a) = 2a3,
so a = b = 1.
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Competition-level problems

AIME, 1991. How many fractions a
b are there, for which ab = 20!

(when written in simplest terms)? How many of these satisfy
0 < a

b < 1?

Ukrainian MO, 2002. Solve

n2002 = m(m + n)(m + 2n) · · · (m + 2001n)

for integers m, n.

British MO, 2002. Find all solutions in positive integers a, b, c to
the equation a! · b! = a! + b! + c!.

Putnam, 2000. Prove that the expression gcd(n,k)
n

(n
k

)
is an integer

for all pairs of integers n ≤ k ≤ 1.
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Competition-level problems
Solutions

AIME, 1991. We can factor

20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

(What’s important here is that there are 8 primes that appear in
the factorization of 20!, which are the 8 primes ≤ 20.)

If ab = 20! and a
b is in simplest terms (that is, gcd(a, b) = 1) then

each prime number must go entirely in a or entirely in b. There are
2 possibilities for each prime, and eight primes, so that’s 28 = 256
choices.

How many are between 0 and 1?

We always have a
b > 0, and either a

b < 1 or b
a < 1. Therefore the

answer is 128: half of the total number of fractions.
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Competition-level problems
Solutions

Ukrainian MO, 2002. Let p be a prime. Then:

If p divides m, then p divides the RHS, so p divides the LHS,
which is n2002. Therefore p divides n.

If p divides n, then p divides the LHS, so p divides the RHS,
which means p divides m + kn for some k . Since p also
divides kn, p must divide m.

Normally, we’d refine this approach to show that the same power
of p divides m and n. Here, there is a shortcut: If m and n are
solutions, so are m

p and n
p . Unless m = n = 0, we can keep dividing

by p until one is no longer divisible by p; but then the other can’t
be divisible by p either.

In any case, we prove m = n; but the only solution of this kind is
m = n = 0.
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Competition-level problems
Solutions

British MO, 2002. Ruling out 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2, a! · b! is
much larger than a! or b!, so c is the largest of the three integers.

Next, we show that a! = b!. Suppose a! < b!: then b! is divisible
by (a + 1)!, and if we write

a! · b!− b!− c! = a!

then everything on the left is divisible by (a + 1)!, while a! is not.
This is impossible.

Now we have a!2 = a! + a! + c!, or a!(a!− 2) = c!. Since a!− 2 is
not divisible by 3, a! and c! must have the same number of factors
of 3, so c = a + 1 or c = a + 2. Checking both, we get a single
solution:

3! · 3! = 3! + 3! + 4!
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Competition-level problems
Solutions

Putnam, 2000. Our goal is to show that gcd(n, k)
(n
k

)
is divisible by

n.

For all primes p, suppose px divides n and py divides k. If x ≤ y
then all is good, because at gcd(n, k)

(n
k

)
is divisible by px .

If x > y , we can use the following trick:
(n
k

)
= n

k

(n−1
k−1

)
, and so we

can rewrite

gcd(n, k)

n

(
n

k

)
=

gcd(n, k)

k

(
n − 1

k − 1

)
.

Now we have only a power py in the denominator, and at least py

in the numerator, so no power of p is left in the denominator, and
we are done.
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The totient function

The “totient”, or Euler’s φ, is defined to be:

φ(n) = The number of k , 1 ≤ k ≤ n, so that gcd(n, k) = 1.

Exercise. Find φ(10000).

Easy answer: gcd(10000, k) = 1 if k ends in 1, 3, 7, or 9.
There are 4000 such numbers between 1 and 10000.

General answer: Out of 10000 integers, 1
2 are divisible by 2,

and 1
5 are divisible by 5, so there are 10000

(
1− 1

2

) (
1− 1

5

)
= 4000 left.

PUMaC, 2010. Find the largest positive integer n such that nφ(n)
is a perfect square.

Using the “general answer” above, it’s easy to see nφ(n) can’t be
a perfect square for n > 1.
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Rule for raising something to a power mod m

Theorem (Euler’s theorem)

For all positive integers a, n with gcd(a, n) = 1,

aφ(n) ≡ 1 (mod n)

and therefore
am ≡ am mod φ(n) (mod n).

Intuition: If gcd(a, 10) = 1, then there are φ(10) = 4 digits a can
end in: 1, 3, 7, and 9. The powers of a will cycle through these
digits: for example, when a = 3, we have

30 = 1, 31 = 3, 32 = 9, 33 = 27 ≡ 7, 34 = 81 ≡ 1, . . .

If gcd(a, n) 6= 1, then powers of a eventually repeat every φ(n)
steps, but this is trickier to use.
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Competition problems

(Note: this theorem is also useful for small things, like knowing
that 14 ≡ 24 ≡ 34 ≡ 44 ≡ 1 (mod 5) last week. These are
problems where Euler’s theorem is the main focus.)

Exercise. Compute 100100 mod 13.

Texas A&M, 2008. Find the last three digits of 20072008.

VTRMC, 2012. Find the last two digits of 33
. .

.3︸ ︷︷ ︸
2012

.

HMMT, 2011. Determine the remainder when

2
1·2
2 + 2

2·3
2 + · · ·+ 2

2011·2012
2

is divided by 7.
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Competition problems
Solutions

Exercise. 100100 ≡ (−4)100 ≡ (−4)4 ≡ 9 (mod 13).

Texas A&M, 2008. 20072008 ≡ 72008 ≡ 78 (mod 1000). A
shortcut for this: 72 = 49 = 50− 1, so

78 = (50− 1)4 = 504 − 4 · 503 + 6 · 502 − 4 · 50 + 1.

But here, the first three terms are all divisible by 1000, so all we
need to worry about is −4 · 50 + 1 ≡ 801 (mod 1000).
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Competition problems
Solutions

VTRMC, 2012. Write 3 ↑↑ n for 33
. .

.3

with n 3’s. We use Euler’s
theorem recursively: for 100 we need φ(100) = 40, for which we
need φ(40) = 16, for which we need φ(16) = 8, for which we need
φ(8) = 4, for which we need φ(4) = 2.

Since 3 is odd, 3 ↑↑ 2007 ≡ 1 (mod 2).

So 3 ↑↑ 2008 ≡ 31 ≡ 3 (mod 4).

So 3 ↑↑ 2009 ≡ 33 ≡ 27 ≡ 3 (mod 8).

So 3 ↑↑ 2010 ≡ 33 ≡ 27 ≡ 11 (mod 16).

So 3 ↑↑ 2011 ≡ 311 ≡ 27 (mod 40).

So 3 ↑↑ 2012 ≡ 327 ≡ 87 (mod 100).
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Competition problems
Solutions

HMMT, 2011. We know 2n mod 7 is determined by n mod 6. But
actually, more is true: 23 ≡ 1 (mod 7), so n mod 3 is enough.

When looking at n(n+1)
2 mod 3, we know either n− 1, n, or n + 1 is

divisible by 3. Unless it’s the first, n(n+1)
2 is also divisible by 3, in

which case 2
n(n+1)

2 ≡ 1 (mod 7). However, when n − 1 is divisible

by 3, n(n+1)
2 ≡ 1 (mod 3), and 2

n(n+1)
2 ≡ 2 (mod 7).

Therefore 2
1·2
2 + 2

2·3
2 + · · ·+ 2

2011·2012
2 mod 7 simplifies to

2 + 1 + 1 + 2 + 1 + 1 + · · ·+ 2︸ ︷︷ ︸
2011

mod7

which is 2010
3 (2 + 1 + 1) + 2 ≡ 1 (mod 7).
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