Number Theory

Everything else

Misha Lavrov

ARML Practice 10/06/2013



Solving integer equations using divisors

Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a> + b = ab(a+ b)?



Solving integer equations using divisors

Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a> + b = ab(a+ b)?

@ Let p be a prime. Let p* be the highest power of p dividing a,
and p” be the highest power of p dividing b.



Solving integer equations using divisors

Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a> + b = ab(a+ b)?
@ Let p be a prime. Let p* be the highest power of p dividing a,
and p” be the highest power of p dividing b.

@ Suppose x < y. Then p> is the highest power dividing
a’ + b?, p*t¥ is the highest power dividing ab, and p* is the
highest power dividing a + b.



Solving integer equations using divisors

Solving integer equations using divisors

PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a> + b = ab(a+ b)?

@ Let p be a prime. Let p* be the highest power of p dividing a,
and p” be the highest power of p dividing b.

@ Suppose x < y. Then p> is the highest power dividing
a’ + b?, p*t¥ is the highest power dividing ab, and p* is the
highest power dividing a + b.

© So p?* = p>*tY, which means y = 0. But x < y, so this is
impossible. So we can’t have x < y; we can't have x > y for
the same reason, so x = y.
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PUMaC, 2009. How many positive integer pairs (a, b) satisfy
a> + b = ab(a+ b)?

@ Let p be a prime. Let p* be the highest power of p dividing a,
and p” be the highest power of p dividing b.

@ Suppose x < y. Then p> is the highest power dividing
a’ + b?, p*t¥ is the highest power dividing ab, and p* is the
highest power dividing a + b.

© So p?* = p>*tY, which means y = 0. But x < y, so this is
impossible. So we can’t have x < y; we can't have x > y for
the same reason, so x = y.

@ This is true for all p, so a = b. Then 2a? = a?(a + a) = 2a°,
soa=b=1



Solving integer equations using divisors

Competition-level problems

AIME, 1991. How many fractions g are there, for which ab = 20!
(when written in simplest terms)? How many of these satisfy
0<§<1?

Ukrainian MO, 2002. Solve
n?°2 = m(m + n)(m + 2n) - - (m + 2001n)

for integers m, n.

British MO, 2002. Find all solutions in positive integers a, b, ¢ to
the equation a! - bl = al + b! + c!.

Putnam, 2000. Prove that the expression M(ﬂ) is an integer
for all pairs of integers n < k < 1.
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Competition-level problems

Solutions

AIME, 1991. We can factor

201 =218.38.5%.72.11.13.17-19.
(What's important here is that there are 8 primes that appear in
the factorization of 20!, which are the 8 primes < 20.)

If ab = 20! and £ is in simplest terms (that is, gcd(a, b) = 1) then
each prime number must go entirely in a or entirely in b. There are
2 possibilities for each prime, and eight primes, so that's 28 = 256
choices.

How many are between 0 and 17
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Solutions

AIME, 1991. We can factor

201 =218.38.5%.72.11.13.17-19.
(What's important here is that there are 8 primes that appear in
the factorization of 20!, which are the 8 primes < 20.)

If ab = 20! and £ is in simplest terms (that is, gcd(a, b) = 1) then
each prime number must go entirely in a or entirely in b. There are
2 possibilities for each prime, and eight primes, so that's 28 = 256
choices.

How many are between 0 and 17

We always have £ > 0, and either £ <1 or g < 1. Therefore the
answer is 128: half of the total number of fractions.
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Ukrainian MO, 2002. Let p be a prime. Then:

e If p divides m, then p divides the RHS, so p divides the LHS,
which is n?%92. Therefore p divides n.

@ If p divides n, then p divides the LHS, so p divides the RHS,
which means p divides m + kn for some k. Since p also
divides kn, p must divide m.
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Competition-level problems

Solutions

Ukrainian MO, 2002. Let p be a prime. Then:

e If p divides m, then p divides the RHS, so p divides the LHS,
which is n?%92. Therefore p divides n.

@ If p divides n, then p divides the LHS, so p divides the RHS,
which means p divides m + kn for some k. Since p also
divides kn, p must divide m.

Normally, we'd refine this approach to show that the same power
of p divides m and n. Here, there is a shortcut: If m and n are
solutions, so are % and 2. Unless m = n =0, we can keep dividing
by p until one is no longer divisible by p; but then the other can’t
be divisible by p either.

In any case, we prove m = n; but the only solution of this kind is
m=n=0.
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Competition-level problems

Solutions

British MO, 2002. Rulingout 0 <a<2and 0< b <2, al-blis
much larger than a! or b!, so c is the largest of the three integers.

Next, we show that al = b!. Suppose a! < b!: then b! is divisible
by (a+ 1)!, and if we write

al- bl — bl — cl = al

then everything on the left is divisible by (a + 1)!, while al is not.
This is impossible.

Now we have a!2 = al + al + ¢!, or al(a! —2) = c!. Since al — 2 is
not divisible by 3, a! and ¢! must have the same number of factors
of 3,s0 c =a+1or c =a+ 2. Checking both, we get a single
solution:

3.3 =31+ 31 + 4!
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Competition-level problems

Solutions

Putnam, 2000. Our goal is to show that ged(n, k)(}) is divisible by
n.

For all primes p, suppose p* divides n and p¥ divides k. If x <y
then all is good, because at ged(n, k) (Z) is divisible by p*.

If x >y, we can use the following trick: (}) = %(Zj) and so we

can rewrite
ged(n, k) (n\  gcd(n, k) (n—1
n k) k k—1)°

Now we have only a power p¥ in the denominator, and at least p¥
in the numerator, so no power of p is left in the denominator, and
we are done.
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The totient function

The “totient”, or Euler's ¢, is defined to be:
¢(n) = The number of k, 1 < k < n, so that gcd(n, k) = 1.

Exercise. Find ¢(10000).

PUMaC, 2010. Find the largest positive integer n such that n¢(n)
is a perfect square.



The totient function and Euler's theorem
The totient function

The “totient”, or Euler's ¢, is defined to be:
¢(n) = The number of k, 1 < k < n, so that gcd(n, k) = 1.

Exercise. Find ¢(10000).

e Easy answer: gcd(10000,k) =1 if k endsin 1, 3,7, or 9.
There are 4000 such numbers between 1 and 10000.

@ General answer: Out of 10000 integers, % are divisible by 2,
and £ are divisible by 5, so there are 10000 (1 — 3) (1 — 1)
= 4000 left.

PUMaC, 2010. Find the largest positive integer n such that n¢(n)
is a perfect square.

Using the “general answer” above, it's easy to see n¢p(n) can't be
a perfect square for n > 1.



The totient function and Euler's theorem
Rule for raising something to a power mod m

Theorem (Euler’s theorem)

For all positive integers a, n with gcd(a, n) = 1,
a?M =1 (mod n)

and therefore
am = ammd ") (mod n).

Intuition: If ged(a, 10) = 1, then there are ¢(10) = 4 digits a can
end in: 1, 3, 7, and 9. The powers of a will cycle through these
digits: for example, when a = 3, we have

30=1, 31=3, 32=9 3BF=21=7, 3*=81=1,...



The totient function and Euler's theorem

Rule for raising something to a power mod m

Theorem (Euler’s theorem)

For all positive integers a, n with gcd(a, n) = 1,
a?M =1 (mod n)

and therefore

am = ammd ") (mod n).

Intuition: If ged(a, 10) = 1, then there are ¢(10) = 4 digits a can
end in: 1, 3, 7, and 9. The powers of a will cycle through these
digits: for example, when a = 3, we have

If gcd(a, n) # 1, then powers of a eventually repeat every ¢(n)
steps, but this is trickier to use.



The totient function and Euler's theorem

Competition problems

(Note: this theorem is also useful for small things, like knowing
that 1* =2* = 3% = 4% =1 (mod 5) last week. These are
problems where Euler's theorem is the main focus.)

Exercise. Compute 100*%° mod 13.

Texas A&M, 2008. Find the last three digits of 20072008,

3

VTRMC, 2012. Find the last two digits of 33 .
2012

HMMT, 2011. Determine the remainder when

2011-2012
2

1.2 23
27 427 442

is divided by 7.
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Competition problems

Solutions

Exercise. 100100 = (—4)190 = (—4)* =9 (mod 13).

Texas A&M, 2008. 20072908 = 72008 = 78 (mod 1000). A
shortcut for this: 72 =49 =50 — 1, so

78 = (50 — 1)* = 50* —4-50% 4+ 6-50° — 4-50 + 1.

But here, the first three terms are all divisible by 1000, so all we
need to worry about is —4 - 50 + 1 = 801 (mod 1000).
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Competition problems

Solutions

3
VTRMC, 2012. Write 311 n for 33 with n 3’s. We use Euler’s
theorem recursively: for 100 we need ¢(100) = 40, for which we
need ¢(40) = 16, for which we need ¢(16) = 8, for which we need
¢(8) = 4, for which we need ¢(4) = 2.

Since 3 is odd, 3 112007 =1 (mod 2).
So 3112008 = 3! =3 (mod 4).

So 3112009 = 33 =27 =3 (mod 8).
So 3112010 = 33 =27 = 11 (mod 16).
So 3112011 = 3 =27 (mod 40).

So 3172012 = 3%7 = 87 (mod 100).



The totient function and Euler's theorem

Competition problems

Solutions

HMMT, 2011. We know 2" mod 7 is determined by n mod 6. But
actually, more is true: 2 =1 (mod 7), so n mod 3 is enough.

When looking at w mod 3, we know either n—1, n,orn+1is

divisible by 3. Unless it's the first, w is also divisible by 3, in
which case 2”5 = 1 (mod 7). However, when n — 1 is divisible

by 3, n(n2+1) =1 (mod 3), and 2" — o (mod 7).

2011-2012

Therefore 22 +2% + -+ 272~ mod 7 simplifies to

24+1+1+2+1+1+---4+2mod7
2011

which is 2292+ 1+1)+2=1 (mod 7).
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