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Warm-up

Problems

1. (ARML 2010 T-6.) Compute the number of 4-letter “words”
(sequences of 4 letters, whether or not they appear in the
dictionary) containing at least two E's.

2. A nonstandard die has the following six faces.

I N A A O e i

If three such dice are rolled, what is the probability of getting
a total of 77



Warm-up

Solution to Problem # 1

We will solve problem # 1 in the following unusual way: consider
the polynomial

V=(A+B+C+---+Y+2)~
If we expand WV, we get the sum
VU = AAAA+ AAAB + AAAC + -+ ZZ7Y + ZZ77.

In other words, V is the sum of all 4-letter words.



Warm-up

Solution to Problem # 1

We only care about whether a given letter is E or not, so define

T=(N+N+N+N+E+N+N+---+N+N)*
= (E +25N)*
= E* + 100E3N + 3750E2N? + 62500EN3 + 390625 N*.



Warm-up

Solution to Problem # 1

We only care about whether a given letter is E or not, so define

T=(N+N+N+N+E+N+N+---+N+N)*
= (E +25N)*
= E* + 100E3N + 3750E2N? + 62500EN3 + 390625 N*.

Each word in W became a word in T, but we have forgotten some
information; for example, “MEEP"” became “NEEN" and then
N?E?. The words with at least two E's became either E* or E3N
or E2N?, so there are 1 + 100 + 3750 = 3851 such words.



Warm-up

Solution to Problem # 2

We can do the same thing in the second problem. The outcomes
of a single die are given by the polynomial

A =[]+ ]+ I+ T+ T+
and the outcomes of three dice rolls are given by
3

8= D+ E+ D+ O+ 0+ 1)



Warm-up

Solution to Problem # 2

We can do the same thing in the second problem. The outcomes
of a single die are given by the polynomial

A =[]+ ]+ I+ T+ T+
and the outcomes of three dice rolls are given by
3
A3 = <E+E+E+E+E+E> :

However, these outcomes are in a form like [+ ][+ ][~ or [ 7l ..
All we care about is the total value of the three dice. How do we
get the total out of such a product?



Warm-up

Solution to Problem # 2

We “forget some details” by making the substitutions [+ ] = x,
1= x2 and[+]= x3. Then [-][<][~] becomes x> - x - x> = x": the
power of x is the total value of the dice.

With this substitution we get the function F(x) = (2x + 3x? + x3)3
in place of A3. We can expand F(x) to get

F(x) = x® + 9x® + 33x" + 63x° + 66x° + 36x* + 8x°.



Warm-up

Solution to Problem # 2

We “forget some details” by making the substitutions [« ] =

1= x2 and [+]= x3. Then [-][<][*] becomes x3 - x - x> = 7 the

power of x is the total value of the dice.

With this substitution we get the function F(x) = (2x + 3x? + x3)3
in place of A3. We can expand F(x) to get

F(x) = x° + 9x® + 33x” 4 63x° + 66x> + 36x* + 8x°.
The number of dice outcomes with a value of 7 is the coefficient of

x", which | will write [x"]F(x) = 33.

_ 11

So the probability of getting a total of 7 is 216 25



Infinitely many options

(ARML 1995 T-3.1) Compute the number of ways in which 45
one-dollar bills can be distributed to 7 people so that no person
receives less than $5.

1| slightly changed the numbers.
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Let G(x) = (x> +x% +x" 4+ x84 ---)7. A term in the expansion of
G(x) might look like x®x5x5x19x12x7x5 We think of this as
encoding a distribution of money in which the 7 people receive $6,
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receives less than $5.

Let G(x) = (x> +x% +x" 4+ x84 ---)7. A term in the expansion of
G(x) might look like x®x5x5x19x12x7x5 We think of this as
encoding a distribution of money in which the 7 people receive $6,
$15, $5, $105, $12, $7, and $5.

But of course when simplifying G(x), we don't stop there. The
term above gets simplified to x0H15+5+105+1247+5 _ 4155~ A|| the
information we have left is that the total amount of money we've
given out is $155.

1| slightly changed the numbers.



Infinitely many options

(ARML 1995 T-3.1) Compute the number of ways in which 45
one-dollar bills can be distributed to 7 people so that no person
receives less than $5.

Let G(x) = (x> +x% +x" 4+ x84 ---)7. A term in the expansion of
G(x) might look like x®x5x5x19x12x7x5 We think of this as
encoding a distribution of money in which the 7 people receive $6,
$15, $5, $105, $12, $7, and $5.

But of course when simplifying G(x), we don't stop there. The
term above gets simplified to x0H15+5+105+1247+5 _ 4155~ A|| the
information we have left is that the total amount of money we've
given out is $155.

This means that we can answer the ARML question by computing

[x*16(x).

!| slightly changed the numbers.



Some fancy algebra

Using the formula for the sum of a geometric series, we can write

)= <1X—5x>7 -7

The coefficient of x* in G(x) is the coefficient of x1¥ in




Some fancy algebra

Using the formula for the sum of a geometric series, we can write

6k = <1X—5x>7 - (1)131)7'

The coefficient of x* in G(x) is the coefficient of x10 in T

7, we get

wey =t () () ()

-7
10

Using the binomial theorem to expand (1 — x)~

So the solution is (7). How do we compute it?



Some fancy algebra

Using the formula for the sum of a geometric series, we can write

6k = <1X—5x>7 - (1)131)7'

The coefficient of x* in G(x) is the coefficient of x10 in T

7, we get

ter <_17>” <_27)X2 - <_37>X3+”' |

-7
10

-7\ _ -7--8--9..-.—-16 16! _ (16
10/ 10! 6100 \6 /)

Using the binomial theorem to expand (1 — x)~

So the solution is (7). How do we compute it?




Exercises

1.2

1.3

2.2

Compute (_1), (_62), and (_3).
Show that T=xp )2 =14+2x+3x2+4x3 +5x* +-

Simplify the expression (7}1/2).

Write an expression for G(x) such that the coefficient of x”,
[x"]G(x), is the number of ways to give n one-dollar bills to 7
people, if each person can receive at most $3.

Write an expression for G(x) such that [x"]G(x) is the number
of ways to give n one-dollar bills to 7 people, if the number 4
is unlucky, and therefore nobody may be given exactly $4.



Solutions

1. 1.1 Ingeneral, (") = (—l)k("+t_1), so (_51) = —(g) =1,

() =@ =7and (73) =—(5) = -36.

1.2 The coefficient of x" in T is

1
1—x)

(—1)”<_n2> = (nziz 1) —n+1.
L3 (7 =(0" )
2. 21 G(x)=(L+x+x2+x3)".

22 G(x) = (—X—x4)7.



Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard

die:
I3 N B I I O I

If we keep rolling the die until the total is at least 21, what is the
probability that we hit 21 exactly?
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probability that we hit 21 exactly?
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3. For any number of rolls, take DY+ D1 + D2 + D3+ ... This
is a geometric series, which sums to
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Playing blackjack with dice

Suppose we acquire the following (slightly simpler) non-standard

die:
I3 N B I I O I

If we keep rolling the die until the total is at least 21, what is the
probability that we hit 21 exactly?

1. The outcomes of one roll are given by D = 2 -[<]+ £ -[]

2. Two rolls are described by D? = 9 |Z| + E”:H' D

3. For any number of rolls, take DY+ D1 + D2 + D3+ ... This
is a geometric series, which sums to
& %D—* L

4. To find the total of each roll, let [<]= x and [ ] = x*:

1

P(x) = ———.
() 1—2x — 3x2



What can we do with this thing?

Approach #0: Extract the first few terms

Given the expression P(x) = ﬁ what can we do? We
3773

1-2
would like to know the coefficient of x2! for this particular problem;
in general, we want to know a formula for the coefficient of x".
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Think of P(x) as po + p1x + pax® + p3x> + - -- . We can obtain py
easily: pp = P(0) = 1.
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Approach #0: Extract the first few terms

Given the expression P(x) = m what can we do? We
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would like to know the coefficient of x2! for this particular problem;
in general, we want to know a formula for the coefficient of x".

Think of P(x) as po + p1x + pax® + p3x> + - -- . We can obtain py
easily: pp = P(0) = 1.

Now that we know P(x) = 1 + p1x + pax? 4+ p3x> + - -+, we can
manipulate this to bring p; to the front. We have

P(x) -1 2
= Pp1+ p2X + p3x” + - -

P(x)—1
but we can also work out (XX) =

gives us p; = %

;2. Evaluating this at 0



What can we do with this thing?

Approach #0: Extract the first few terms

Given the expression P(x) = m what can we do? We
3 3

would like to know the coefficient of x2! for this particular problem;
in general, we want to know a formula for the coefficient of x".

Think of P(x) as po + p1x + pax® + p3x> + - -- . We can obtain py
easily: pp = P(0) = 1.

Now that we know P(x) = 1 + p1x + pax? 4+ p3x> + - -+, we can
manipulate this to bring p; to the front. We have

P(x) -1 2
= Pp1+ p2X + p3x” + - -

P(x)-1 _ +3
X - _

X

2
but we can also work out 1_32 )ix2. Evaluating this at 0
3X—3

gives us p; = % We could keep going, but 21 is a long way away.



What can we do with this thing?

Approach #1: Find a recursive formula

We can also rewrite P(x) = 1_2)3_1)(2 as
3 3
2 1
(1 33X~ 3X2) P(x)=1 < P(x)



What can we do with this thing?

Approach #1: Find a recursive formula

We can also rewrite P(x) = ﬁ as
—5x—3x

(1 - %x - ;X2> P(x)=1 < P(x)= 1+§x P(X)+%X2 P(x).

If we take the coefficient of x”, for n > 1, we get

[x"]P(x) = [x"] (1 + %X P(x) + %X2 P(X)>

v (ix P(x)) -] <;x2 P(x)>

2. .- 1. .-
= S"IPG) + 5K IP(x).



What can we do with this thing?

Approach #1: Find a recursive formula

We can also rewrite P(x) = ﬁ as
—5x—3x

(1 - %x - ;X2> P(x)=1 < P(x)= 1+§x P(x)+%x2 P(x).

If we take the coefficient of x”, for n > 1, we get

[x"]P(x) = [x"] (1 + %X P(x) + %X2 P(X)>

v (2}( P(x)) -] <;x2 P(x)>

2. .- 1. .-
= S"IPG) + 5K IP(x).

This gives us a recursive formula: p, = %pn_l + %p,,_z.



What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — %X — %x2 factors as (1 — x)(1 + %x) we can write

Plx) — 1 _ A B

1-2x—1x2 1-x 14X




What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — $x — x2 factors as (1 — x)(1 + £x), we can write

1 A B
P(x) = = + .
(x) 1—%x—%x2 1—x 1+%x

To find A and B, just set x to some trial values:

1=A+B (x=0)
F=1A+3B (x=1)



What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — %X — %x2 factors as (1 — x)(1 + %x) we can write

Plx) — 1 _ A B

1-2x—1x2 1-x 14X

To find A and B, just set x to some trial values:

1= _IA41B (x=3)

{1:A+B (x =0)
4= 2



What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — %X — %x2 factors as (1 — x)(1 + %x) we can write
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1= _IA41B (x=3)
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What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — $x — x2 factors as (1 — x)(1 + £x), we can write

1 A B
P(x) = = + .
(x) 1—%x—%x2 1—x 1+%x

To find A and B, just set x to some trial values:

—i=—3A+3B (x=3)

{1:A+B (x =0)

which we can solve to get

P(X)_13£4x 1+ I HZX T4 Z<_>




What can we do with this thing?
Approach #2: Use partial fractions

Since 1 — %X — %x2 factors as (1 — x)(1 + %x) we can write

Plx) — 1 _ A B

1-2x—1x2 1-x 14X

To find A and B, just set x to some trial values:

1= _IA41B (x=3)

{1:A+B (x =0)
4= 2

which we can solve to get

3/4 1/4 3 In/ 1\
P = = — n — _— n
(X) 1—X+1—|—%X 4ZX+4Z 3 X
n=0 n=0
which means p, = % + % . (—%)”, and po; = % — 3—11



Exercises
1. Let J(x) = 7(1+X))(‘1_2X).
1.1 Find a recursive formula for J, = [x"]J(x).

1.2 Write J(x) as a sum of partial fractions and find the closed
form of J,.

2. Suppose you are flipping a fair coin over and over again.

2.1 Write a formula for G(x) such that [x"]G(x) is the probability
it will take n flips to see an outcome of tails.

2.2 What meaning does G(x)? have?
3. Let F(x) = . Confirm that [x"]F(x) is the n-th

Fibonacci number by:

3.1 Checking that the first few terms Fg, F1, F2,... are correct,
and

3.2 Checking that the right recursive formula holds.



Solutions

1.

1.1
1.2
2.1

2.2
31

3.2

Jn = Jn—l + 2Jn—2-
_1/3 1/3 _2"—(=1)"
J(x) = — 1 and J, = ——-.

1—2x 1+4+x"'
6= br+ 4 bt b= 5
[x"] G(x)? is the probability it will take n flips to see tails twice.

We get Fp = F(0) = 0. Shifting F(x) over gives
FI-0 — 1 which tells us F; = 1. Shifting F(x) over

X 1—x—x2"

again gives F020x — _1bxyhich tells us F, = 1.

We can rewrite F(x) = —X— as F(x) = 1+ xF(x) + x>F(x).

1—x—x2
Taking the coefficient of x”, for n > 1, gives us

[x"1F (x) = IX"](xF (x)) + [X"](x* F (x))
= X" F(x) + [x"?)F (x)

so the recursive formula F, = F,_1 + F,_> holds.
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