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Example

We want to be able to solve the following type of problem:

Problem (VTRMC 2012/4.)

What are the last two digits of 33
3
. .

.3︸ ︷︷ ︸
2012 times

?



Review of modular arithmetic

I We say that a ≡ b (mod m) if the difference a− b is divisible
by m.

I Also, a mod m is defined to be the unique b in the set
{0, 1, 2, . . . ,m − 1} such that a ≡ b (mod m).

I We are allowed to add, subtract, multiply modular equations
just like regular equations.

I However, division does not always work:

4 ≡ 14 (mod 10) but 4/2 6≡ 14/2 (mod 10).

I Our goal is to find out how to simplify ab mod m.



Review of modular arithmetic

I We say that a ≡ b (mod m) if the difference a− b is divisible
by m.

I Also, a mod m is defined to be the unique b in the set
{0, 1, 2, . . . ,m − 1} such that a ≡ b (mod m).

I We are allowed to add, subtract, multiply modular equations
just like regular equations.

I However, division does not always work:

4 ≡ 14 (mod 10) but 4/2 6≡ 14/2 (mod 10).

I Our goal is to find out how to simplify ab mod m.



Review of modular arithmetic

I We say that a ≡ b (mod m) if the difference a− b is divisible
by m.

I Also, a mod m is defined to be the unique b in the set
{0, 1, 2, . . . ,m − 1} such that a ≡ b (mod m).

I We are allowed to add, subtract, multiply modular equations
just like regular equations.

I However, division does not always work:

4 ≡ 14 (mod 10) but 4/2 6≡ 14/2 (mod 10).

I Our goal is to find out how to simplify ab mod m.



Powers modulo a prime

Problem

What is 32012 mod 17?

Solution

The powers of 3 mod 17 go around in a circle like this:

12

2

6
139

10

13

5

15

11
16 14 8

7

4

Since 2012 = 125 · 16 + 12, 32012 ≡ 312 ≡ 4 (mod 17).
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Questions

I How could we have guessed ahead of time that there would be
16 steps around the circle?

Answer: The 16 steps are the remainders {1, . . . , 16}. Since
3k is never divisible by 17, those are all we can get.

I Is it possible that we loop around without hitting all the
remainders?

Answer: Yes. For example, the values of 2k mod 17 are
2→ 4→ 8→ 16→ 15→ 13→ 9→ 1→ 2.

I Can the loops be of any size less than 16?

Answer: No. Consider the values of 3 · 2k mod 17:
3→ 6→ 12→ 7→ 14→ 11→ 5→ 10→ 3.

This loop has the same length, but never meets the other
loop. All such loops together must add up to 16, so their
length divides 16. In particular, a16 mod 17 is always 1.
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

If p is a prime, then for any integer a not divisible by p,

ap−1 ≡ 1 (mod p).

Corollary

We can factor a power ab as some product ap−1 · ap−1 · · · ap−1 · ac ,
where c is some small number (in fact, c = b mod (p − 1)).

When we take ab mod p, all the powers of ap−1 cancel, and we
just need to compute ac mod p.



Fermat’s Little Theorem: Exercises

Problem (1972 AHSME #31)

The number 21000 is divided by 13. What is the remainder?

Solution

We know that 212 ≡ 1 (mod 13). So we first take out as many
factors of 212 as possible. We can write 1000 as 83 · 12 + 4 (which
is another way of saying that 1000 ≡ 4 (mod 12). So

21000 = 212·83+4 = (212)83 · 24 ≡ 24 = 16 ≡ 3 (mod 13).



Fermat’s Little Theorem: Exercises

Problem (1972 AHSME #31)

The number 21000 is divided by 13. What is the remainder?

Solution

We know that 212 ≡ 1 (mod 13). So we first take out as many
factors of 212 as possible. We can write 1000 as 83 · 12 + 4 (which
is another way of saying that 1000 ≡ 4 (mod 12). So

21000 = 212·83+4 = (212)83 · 24 ≡ 24 = 16 ≡ 3 (mod 13).



What happens when the modulus isn’t prime?

I What does the loop for 3k mod 10 (last digit of 3k) look like?

3→ 9→ 7→ 1→ 3.

This takes 4 steps to loop. In particular, after 10− 1 = 9
steps we will not be back at 3.

I Why does this happen?

Powers of 3 can never be divisible by 2 and 5. So in addition
to excluding the remainder 0, we also exclude 2, 4, 5, 6, and
8. The four remainders above are the only ones left.
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Euler’s Theorem

Theorem

If a and n have no common divisors, then

aφ(n) ≡ 1 (mod n)

where φ(n) is the number of integers in {1, 2, . . . , n} that have no
common divisors with n.

So to compute ab mod n, first find φ(n), then calculate
c = b mod φ(n). Then all you need to do is compute ac mod n.



Wait, but how do we find φ(n)?

I Find φ(17): the number of integers in {1, . . . , 17} that have
no common divisors with 17.

I Find φ(81).

I Find φ(100).

I Make a guess for what φ(n) looks like for as many different
kinds of n as you can.



Answers

I φ(17) = 16 because none of the integers in {1, . . . , 17} except
17 itself have any common divisors with 17.

I φ(17) = 54: from the integers {1, . . . , 81} we exclude the
ones divisible by 3, of which there are 27.

I φ(100) = 40. There are two ways to do this:

I There are 50 numbers in {1, . . . , 100} divisible by 2, which we
discard. There are also 20 numbers divisible by 5, which we
discard. But 10 numbers were divisible by 10, so we counted
them twice. So φ(100) = 100− 50− 20 + 10 = 40.

I Of the numbers in {1, . . . , 100}, 1/2 are not divisible by 2, and
4/5 are not divisible by 5. So the number that aren’t divisible
by both is 1/2 · 4/5 · 100 = 40.
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General formula for φ(n)

I First we find a prime factorization of n:

n = pa1
1 · p

a2
2 · · · p

ak
k .

I For small n, it’s easier to do it this way:

φ(n) =

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
n.

I Since
(

1− 1
p1

)
pa1
1 = pa1−1

1 (p1 − 1), we can write this as

φ(n) = pa1−1
1 (p1 − 1) · pa2−1

2 (p2 − 1) · · · pak−1
k · (pk − 1).
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Euler’s Theorem: Exercises

Problem

I Find the last digit of 72013.

I Find the last two digits of 22013. Note that 2 and 100 do have
a common factor!

Solution

I Since φ(10) = 4, to find 72013 mod 10 we find
2013 mod 4 = 1. So 72013 ≡ 71 = 7 (mod 10).

I We can find 22013 mod 25: since φ(25) = 20, this is 213 ≡ 17.
This gives us 4 possibilities for 22012 mod 100: 17, 42, 67, 92.
Of these, only 92 is possible – the other three aren’t divisible
by 4.
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The really hard problem

Now let’s try to compute 33
3
. .

.3︸ ︷︷ ︸
2012 times

mod 100.

I We’ve seen φ(100) = 40. So we need to compute

33
3
. .

.3︸ ︷︷ ︸
2011 times

mod 40, and raise 3 to that power.

I We recurse to get φ(40) = 16, φ(16) = 8, φ(8) = 4,
φ(4) = 2. In particular, 3k ≡ 3 (mod 4) for any k.

I Working backwards, we get that 33
. .

.3

is 33 ≡ 3 mod 8, so it’s
33 ≡ 11 mod 16, so it’s 311 ≡ 27 mod 40, so it’s 327 mod 100.

I Handy trick: 327 = 3 · 326 = 3 · (313)2 = · · · = 3 · (3 · (272)2)2.
So we only need to do five multiplications mod 100, and we
will end up getting 87.
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