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Abstract

Recently Mao et al. [18] established a number of useful stability criteria in terms of M-matrices
for nonlinear stochastic differential delay equations with Markovian switching, and the criteria there
are independent of time delay. Such criteria are in general good for large delay but might not be good
enough for small delay. When the time lag is sufficiently small, it is useful to obtain delay-dependent
stability criteria and this is the aim of this paper.
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1 Introduction

Stochastic modelling has come to play an important role in many branches of science and industry. An
area of particular interest has been the automatic control of stochastic systems, with consequent emphasis
being placed on the analysis of stability in stochastic models, and the key books in this area are Arnold
[1], Elworthy [4], Khasminskii [6], Kolmanovskii & Myshkis [7], Kolmanovskii & Shaikhet [9], Ladde &
Lakshmikantham [13], Mao [14, 15, 16] and Mohammed [20]. Recently, the stability of stochastic systems
with Markovian switching has received a great deal of attention. For example, Ji & Chizeck [5] and
Mariton [19] studied the stability of a jump linear equation

ẋ(t) = A(r(t))x(t), (1)

where r(t) is a Markov chain taking values in S = {1, 2, · · · , N}. Basak et al. [2] discussed the stability
of a semi-linear stochastic differential equation with Markovian switching of the form

dx(t) = A(r(t))x(t)dt + g(x(t), r(t))dw(t), (2)

while Mao [17] investigated the stability of a nonlinear equation

dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dw(t). (3)

Shaikhet [21] took the time delay into account and considered the stability of a semi-linear stochastic
differential delay equation with Markovian switching, while Mao et al. [18] investigated the stability of a
nonlinear delay equation

dx(t) = f(x(t), x(t− τ), t, r(t))dt + g(x(t), x(t− τ), t, r(t))dw(t). (4)
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The criteria obtained by Mao et al. [18] are all independent of time delay. Such criteria are in general
good for large delay but might not be good enough for small delay. When the time lag is sufficiently
small, we may write equation (4) as

dx(t) = f(x(t), x(t), t, r(t))dt

+ [f(x(t), x(t− τ), t, r(t))− f(x(t), x(t), t, r(t))]dt

+ g(x(t), x(t− τ), t, r(t))dw(t), (5)

and regard equation (4) as the perturbed system of the nonlinear jump equation (without delay)

ẋ(t) = f(x(t), x(t), t, r(t)), (6)

where [f(x(t), x(t − τ), t, r(t)) − f(x(t), x(t), t, r(t))]dt and g(x(t), x(t − τ), t, r(t))dw(t) represent the
perturbations due to time delay and noise, respectively. If we impose that equation (6) is stable and
the stochastic perturbation g(x(t), x(t − τ), t, r(t))dw(t) is sufficiently small, we may then find the time
lag τ sufficiently small for the delay perturbation [f(x(t), x(t − τ), t, r(t)) − f(x(t), x(t), t, r(t))]dt to be
so small that the perturbed equation (4) remains stable. Such stability criteria, which are of course
delay-dependent, will be extremely useful for systems with small time delay, and the main aim of this
paper is to establish such criteria.

It should be pointed out that one may also write equation (4) as

dx(t) = f(x(t), x(t), t, r(t))dt + g(x(t), x(t), t, r(t))dw(t)
+ [f(x(t), x(t− τ), t, r(t))− f(x(t), x(t), t, r(t))]dt

+ [g(x(t), x(t− τ), t, r(t))− g(x(t), x(t), t, r(t)]dw(t), (7)

and regard equation (4) as the perturbed system of the nonlinear jump stochastic differential equation

dx(t) = f(x(t), x(t), t, r(t))dt + g(x(t), x(t), t, r(t))dw(t). (8)

Under condition that equation (8) is stable, one may show that if the time lag τ is sufficiently small, than
the perturbation

[f(x(t), x(t− τ), t, r(t))− f(x(t), x(t), t, r(t))]dt + [g(x(t), x(t− τ), t, r(t))− g(x(t), x(t), t, r(t)]dw(t)

will be sufficiently small for the perturbed equation (4) to remain stable. This different approach will
give us alternative delay-dependent stability criteria. In this paper we will concentrate on the approach
above but the techniques developed here will certainly be applicable to this different approach.

2 Delay Equations with Markovian Switching

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0, P ) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0 contains
all P -null sets). Let w(t) = (w1(t), · · · , wm(t))T be an m-dimensional Brownian motion defined on the
probability space. Let τ1 and τ2 be both positive numbers and set τ = τ1 ∨ τ2. Let C([−τ, 0];Rn)
denote the family of continuous functions ϕ from [−τ, 0] to Rn with the norm ||ϕ|| = sup−τ≤s≤0 |ϕ(s)|,
where | · | is the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by AT . If
A is a matrix, its trace norm is denoted by |A| =

√
trace(AT A) while its operator norm is denoted by

||A|| = sup{|Ax| : |x| = 1} (without any confusion with ||ϕ||). If A is a symmetric matrix, denote by
λmax(A) and λmin(A) its largest and smallest eigenvalue, respectively. Denote by Cb

F0
([−τ, 0];Rn) the

family of all bounded, F0-measurable, C([−τ, 0];Rn)-valued random variables. If x(t) is a continuous
Rn-valued stochastic process on t ∈ [−τ,∞), we let xt = {x(t + s) : −τ ≤ s ≤ 0} for t ≥ 0 which is
regarded as a C([−τ, 0]; Rn)-valued stochastic process.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking values in a finite
state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t + ∆) = j|r(t) = i} =
{

γij∆ + o(∆) if i 6= j,
1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while

γii = −
∑

j 6=i

γij .
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We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It is known that
almost every sample path of r(t) is a right-continuous step function with a finite number of simple jumps
in any finite subinterval of R+.

Consider a stochastic differential delay equation with Markovian switching of the form

dx(t) = f(x(t), x(t− τ1), t, r(t))dt + g(x(t), x(t− τ2), t, r(t))dw(t) (9)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0]; Rn), where

f : Rn ×Rn ×R+ × S → Rn and g : Rn ×Rn ×R+ × S → Rn×m.

Comparing (9) with (4), we note that here the time lags τ1 and τ2 in the shift coefficient f and the
diffusion coefficient g may differ. The stability criteria obtained in this paper will be independent of τ2

but require τ1 be sufficiently small. The theory developed in this paper can cope with more complicated
situation of time lags, e.g. the equation of the form

dx(t) = f(x(t), x(t− τ1), t, r(t))dt +
m∑

k=1

gk(x(t), x(t− τ1+k), t, r(t))dwk(t),

but we will concentrate on equation (9) to avoid notation becoming too complicated.
As a standing hypothesis, we assume that both f and g satisfy the local Lipschitz condition and the

linear growth condition. In the same way as in Mao et al. [18] we can show that under this hypothesis,
equation (9) has a unique continuous solution on t ≥ −τ , which is denoted by x(t; ξ) in this paper.
Moreover,

E

[
sup

−τ≤s≤t
|x(s; ξ)|2

]
< ∞ on t ≥ 0. (10)

Let C2,1(Rn×R+×S; R+) denote the family of all nonnegative functions V (x, t, i) on Rn×R+×S
which are continuously twice differentiable in x and once differentiable in t. If V ∈ C2,1(Rn×R+×S; R+),
define an operator LV from Rn ×Rn ×Rn ×R+ × S to R by

LV (x, y, z, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, y, t, i)

+
1
2
trace

[
gT (x, z, t, i)Vxx(x, t, i)g(x, z, t, i)

]
+

N∑

j=1

γijV (x, t, j), (11)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1
, · · · , ∂V (x, t, i)

∂xn

)
,

Vxx(x, t, i) =
(

∂2V (x, t, i)
∂xi∂xj

)

n×n

.

For the convenience of the reader we cite the generalized Itô formula (cf. Mao et al. [18] or Skorohod
[22]): If V ∈ C2,1(Rn ×R+ × S;R+), then for any stopping times 0 ≤ ρ1 < ρ2 < ∞,

EV (x(ρ2), ρ2, r(ρ2)) = EV (x(ρ1), ρ1, r(ρ1))

+ E

∫ ρ2

ρ1

LV (x(s), x(s− τ1), x(s− τ2), s, r(s))ds (12)

as long as the expectations of the integrals exist. Let us point out that in the sequel whenever we apply
this generalized formula the expectations of integrals involved do exist due to property (10).

3 Exponential Stability

In this section we shall discuss the exponential stability in mean square for equation (9). We impose the
following hypotheses:

3



(H1) For every i ∈ S, there are constants αi ∈ R and βi, γi ≥ 0 such that

2xT f(x, x, t, i)| ≤ αi|x|2

and
|g(x, z, t, i)|2 ≤ βi|x|2 + δi|z|2

for all x, z ∈ Rn and t ≥ 0.

(H2) There are three nonnegative constants K1,K2 and K3 such that

|f(x, x, t, i)− f(x, y, t, i)|2 ≤ K1|x− y|2

and
|f(x, y, t, i)|2 ≤ K2|x|2 + K3|y|2

for all x, y ∈ Rn, t ≥ 0 and i ∈ S.

It is easy to see from these hypotheses that f(0, 0, t, i) ≡ 0 and g(0, 0, t, i) ≡ 0 so equation (9) admits a
trivial solution x(t; 0) ≡ 0. This trivial solution is said to be exponentially stable in mean square if

lim sup
t→∞

1
t

log(E|x(t; ξ)|2) < 0 (13)

for any initial data ξ ∈ Cb
F0

([−τ, 0];Rn).

Theorem 3.1 Let hypotheses (H1) and (H2) hold. Set

q̌ = max
1≤i≤N

qi, β̌ = max
1≤i≤N

βi, δ̌ = max
1≤i≤N

δi. (14)

Assume that there are positive constants q1, q2, · · · , qN and θ such that

λ1 > λ2 (15)

where

λ1 = min
1≤i≤N

(
−[αi + βi + θ]qi −

N∑

j=1

γijqj

)
, λ2 = max

1≤i≤N
δiqi. (16)

Let

τ∗ =
1

2(K2 + K3)

(√
(β̌ + δ̌)2 + 2θ(λ1 − λ2)(K2 + K3)/q̌K1 − β̌ − δ̌

)
. (17)

If the time lag τ1 < τ∗ though the time lag τ2 is arbitrary, then the trivial solution of equation (9) is
exponentially stable in mean square.

Proof. Fix any initial data ξ ∈ Cb
F0

([−τ, 0];Rn) and write x(t; ξ) = x(t). We divide the whole proof into
three steps.

Step 1. Define, for some ε > 0 sufficiently small,

V (x, t, i) = qie
εt|x|2 for (x, t, i) ∈ Rn ×R+ × S.

Clearly, V ∈ C2,1(Rn × R+ × S; R+). Moreover, the operator LV from Rn × Rn × Rn × R+ × S to R
defined by (11) becomes

LV (x, y, z, t, i) = eεt

[
εqi|x|2 + 2qix

T f(x, y, t, i) + qi|g(x, z, t, i)|2 +
N∑

j=1

γijqj |x|2
]
. (18)

Using hypotheses (H1) and (H2) we derive

2qix
T f(x, y, t, i)

= 2qix
T f(x, x, t, i) + 2qix

T [f(x, y, t, i)− f(x, x, t, i)]
≤ αiqi|x|2 + θqi|x|2 + θ−1qi|f(x, y, t, i)− f(x, x, t, i)|2
≤ (αi + θ)qi|x|2 + θ−1q̌K1|x− y|2 (19)
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and
qi|g(x, z, t, i)|2 ≤ βiqi|x|2 + δiqi|z|2 ≤ βiqi|x|2 + λ2|z|2,

where the elementary inequality 2ab ≤ θa2 + θ−1b2 has been used. Substituting these into (18) yields
that

LV (x, y, z, t, i) ≤ eεt
[−(λ1 − εq̌)|x|2 + λ2|z|2 + θ−1q̌K1|x− y|2]. (20)

Noting
EV (x(0), 0, r(0)) ≤ q̌E|x(0)|2 ≤ q̌E||ξ||2 := C1

we obtain, by the generalized Itô formula, that

eεtEV (x(t), t, r(t)) ≤ C1 − (λ1 − εq̌)
∫ t

0

eεsE|x(s)|2ds

+ λ2

∫ t

0

eεsE|x(s− τ2)|2ds

+ θ−1q̌K1

∫ t

0

eεsE|x(s)− x(s− τ1)|2ds. (21)

Step 2. In this step we shall always let t ≥ τ . Compute
∫ t

0

eεsE|x(s− τ2)|2ds =
∫ τ2

0

eεsE|x(s− τ2)|2ds + eετ2

∫ t

τ2

eε(s−τ2)E|x(s− τ2)|2ds

≤ E||ξ||2
∫ τ2

0

eεsds + eετ2

∫ t−τ2

0

eεsE|x(s)|2ds

≤ τ2e
ετ2E||ξ||2 + eετ2

∫ t

0

eεsE|x(s)|2ds. (22)

Moreover, it is easy to show from equation (9) that

E|x(t)− x(t− τ1)|2 ≤ 2τ1E

∫ t

t−τ1

|f(x(s), x(s− τ1), s, r(s))|2ds

+ 2E

∫ t

t−τ1

|g(x(s), x(s− τ2), s, r(s))|2ds.

By hypotheses (H1) and (H2), we have

E|x(t)− x(t− τ1)|2 ≤ 2(τ1K2 + β̌)
∫ t

t−τ1

E|x(s)|2ds

+ 2τ1K3

∫ t

t−τ1

E|x(s− τ1)|2ds + 2δ̌

∫ t

t−τ1

E|x(s− τ2)|2ds.

We further compute
∫ t

0

eεsE|x(s)− x(s− τ1)|2ds

=
∫ τ1

0

eεsE|x(s)− x(s− τ1)|2ds +
∫ t

τ1

eεsE|x(s)− x(s− τ1)|2ds

≤ 2τ1e
ετ1(E||ξ||2 + E||xτ ||2) + 2(τ1K2 + β̌)

∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u)|2du

)
ds

+ 2τ1K3

∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u− τ1)|2du

)
ds

+ 2δ̌

∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u− τ2)|2du

)
ds. (23)

But, by changing the order of integrations, we can show that
∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u)|2du

)
ds ≤

∫ t

0

E|x(u)|2
(∫ u+τ1

u

eεsds

)
du
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≤ τ1e
ετ1

∫ t

0

eεuE|x(u)|2du,

and ∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u− τ1)|2du

)
ds ≤

∫ t

0

E|x(u− τ1)|2
(∫ u+τ1

u

eεsds

)
du

≤ τ1e
ετ1

∫ t

0

eεuE|x(u− τ1)|2du ≤ τ2
1 e2ετ1E||ξ||2 + τ1e

2ετ1

∫ t

0

eεuE|x(u)|2du,

and ∫ t

τ1

eεs

(∫ s

s−τ1

E|x(u− τ2)|2du

)
ds ≤

∫ t

0

E|x(u− τ2)|2
(∫ u+τ1

u

eεsds

)
du

≤ τ1e
ετ1

∫ t

0

eεuE|x(u− τ2)|2du ≤ τ1τ2e
ε(τ1+τ2)E||ξ||2 + τ1e

ε(τ1+τ2)

∫ t

0

eεuE|x(u)|2du.

Substituting these into (23) gives

∫ t

0

eεsE|x(s)− x(s− τ)|2ds

≤ C2 + 2τ1e
ετ1

[
τ1K2 + β̌ + τ1K3e

ετ1 + δ̌eετ2

] ∫ t

0

eεuE|x(u)|2du, (24)

where
C2 := 2τ1e

ετ1(E||ξ||2 + E||xτ ||2) + 2τ1e
ετ1E||ξ||2

[
K3τ

2
1 eετ1 + δ̌τ2e

ετ2

]
.

Step 3. Substituting (22) and (24) into (21) yields

eεtEV (x(t), t, r(t)) ≤ C3 − λ(ε, τ1)
∫ t

0

eεsE|x(s)|2ds (25)

for all t ≥ τ , where
C3 = C1 + λ2τ2e

ετ2E||ξ||2 + θ−1q̌K1C2

and
λ(ε, τ1) = λ1 − εq̌ − λ2e

ετ2 − 2τ1θ
−1q̌K1e

ετ1

[
τ1K2 + β̌ + τ1K3e

ετ1 + δ̌eετ2

]
. (26)

Note that
λ(0, τ1) = λ1 − λ2 − 2τ1θ

−1q̌K1

[
τ1(K2 + K3) + β̌ + δ̌

]

whence, by (17),
λ(0, τ∗) = 0.

By condition τ1 < τ∗, we see easily that λ(0, τ1) > 0. We can therefore find an ε > 0 sufficiently small
for

λ(ε, τ1) ≥ 0.

It then follows from (25) that
eεtEV (x(t), t, r(t)) ≤ C3, t ≥ τ.

Noting
EV (x(t), t, r(t)) ≥ q̂E|x(t)|2,

where q̂ = min1≤i≤N qi > 0, we obtain

E|x(t)|2 ≤ C3

q̂
e−εt, t ≥ τ.

Consequently

lim sup
t→∞

1
t

log(E|x(t)|2) ≤ −ε < 0.

In other words, the trivial solution of equation (9) is exponentially stable in mean square. The proof is
therefore complete.
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4 Criteria in Terms of M-matrices

The use of Theorem 3.1 is very much dependent of the existence of the N+1 positive numbers q1, q2, · · · , qN

and θ. In this section we shall establish some criteria, which can be verified easily, for the existence of
such N + 1 numbers and hence for the exponential stability in mean square.

These criteria will be described in terms of M-matrices. For the convenience of the reader, let us
cite some useful results on M-matrices. For more detailed information please see Berman & Plemmons
[3]. We will need a few more notations. Let B be a vector or matrix. By B ≥ 0 we mean each element
of B is nonnegative. By B > 0 we mean B ≥ 0 and at least one element of B is positive. By B À 0 we
mean all elements of B are positive. Let B1 and B2 be two vectors or matrices with same dimensions.
We write B1 ≥ B2, B1 > B2 and B1 À B2 if and only if B1 − B2 ≥ 0, B1 − B2 > 0 and B1 − B2 À 0,
respectively. Moreover, we also adopt here the traditional notation by letting

ZN×N = {A = (aij)N×N : aij ≤ 0, i 6= j}.

Definition 4.1 A square matrix A = (aij)N×N is called a nonsingular M-matrix if A can be expressed
in the form A = sI − B with some B ≥ 0 and s > ρ(B), where I is the identity matrix and ρ(B) the
spectral radius of B.

It is easy to see that a nonsingular M-matrix A has nonpositive off-diagonal and positive diagonal
entries, that is

aii > 0 while aij ≤ 0, i 6= j.

In particular, A ∈ ZN×N . There are many conditions which are equivalent to the statement that A is a
nonsingular M-matrix and we now cite some of them for the use of this paper.

Lemma 4.2 If A ∈ ZN×N , then the following statements are equivalent:

(1) A is a nonsingular M-matrix.

(2) A is semipositive; that is, there exists a column vector x À 0 in RN such that Ax À 0.

(3) A is inverse-positive; that is, A−1 exists and A−1 ≥ 0.

(4) All the leading principal minors of A are positive; that is

∣∣∣∣∣∣

a11 · · · a1k
...

...
ak1 · · · akk

∣∣∣∣∣∣
> 0 for every k = 1, 2, · · · , N.

For any parameter θ ≥ 0, let us define a matrix

Aθ = diag(−(α1 + β1 + θ), · · · ,−(αN + βN + θ))− Γ. (27)

Clearly, Aθ ∈ ZN×N . Let us introduce ~q = (q1, q2, · · · , qN )T and set

(b1, b2, · · · , bN ) := Aθ~q.

Then λ1 defined by (16) becomes λ1 = min1≤i≤N bi. By condition (15), we know λ1 > 0 so

Aθ~q À 0.

By Lemma 4.2, we observe that Aθ is a nonsingular M-matrix. Furthermore,

0 ¿ Aθ~q = A0~q − θ~q ¿ A0~q,

whence A0 is a nonsingular M-matrix. In other words, the existence of positive numbers q1, q2, · · · , qN

and θ such that λ1 > 0 implies that A0 is a nonsingular M-matrix. We shall now show that the converse
holds too.

Lemma 4.3 There are positive numbers q1, q2, · · · , qN and θ such that λ1 defined by (16) is positive if
and only if

A0 = diag(−(α1 + β1), · · · ,−(αN + βN ))− Γ
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is a nonsingular M-matrix.

Proof. The necessity has been shown above so we need only to show the sufficiency. If A0 is a nonsingular
M-matrix, then, by lemma 4.2, there is a vector ~q À 0 such that A0~q À 0. One can then find a number
θ > 0 sufficiently small for

(b1, b2, · · · , bN ) := Aθ~q = A0~q − θ~q À 0.

Thus λ1 = min1≤i≤N bi > 0. This completes the proof.
The following is a sufficient stability criterion in terms of M-matrix.

Theorem 4.4 Let hypotheses (H1) and (H2) hold. Assume that A0 is a nonsingular M-matrix and

A−1
0

~1 ¿ (δ−1
1 , δ−1

2 , · · · , δ−1
N )T , (28)

where ~1 = (1, 1, · · · , 1)T and we, as usual, set δ−1
i = ∞ if δi = 0. Then there is a positive constant τ∗

such that the trivial solution of equation (9) is exponentially stable in mean square provided τ1 < τ∗.
(The proof below provides a way to compute τ∗.)

Proof. By Lemma 4.2, there is a column vector x = (x1, x2, · · · , xN )T À 0 such that

(b1, b2, · · · , bN )T := A0x À 0.

Note
Aθ = A0 − θI,

where I is the N ×N identity matrix. Hence, for any 0 < θ < min1≤i≤N (bi/xi),

Aθx = A0x− θx = (b1 − θx1, b2 − θx2, · · · , bN − θxN )T À 0,

which implies, by Lemma 4.2, that Aθ is a nonsingular M-matrix. Note that for all θ > 0 sufficiently
small,

A−1
θ = (A0 − θI)−1 = A−1

0

∞∑

k=0

(θA−1
0 )k.

Thus A−1
θ → A−1

0 as θ → 0. By (28), we can then find an θ > 0 sufficiently small such that Aθ is a
nonsingular M-matrix and

A−1
θ

~1 ¿ (δ−1
1 , δ−1

2 , · · · , δ−1
N )T . (29)

Let
~q = (q1, q2, · · · , qN )T = A−1

θ
~1.

By Lemma 4.2, A−1
θ > 0 so each row of A−1

θ has all nonnegative elements and has at least one positive
element, that is, each row > 0. Therefore, ~q À 0. Now, Aθ~q = ~1 so, by (16), λ1 = 1. Moreover, by (29),

qi < δ−1
i , 1 ≤ i ≤ N.

Hence, by (16), λ2 < 1. In other words, condition (15) of Theorem 3.1 is satisfied. We can therefore
compute the positive number τ∗ by (17) and conclude by Theorem 3.1 that the trivial solution of equation
(9) is exponentially stable in mean square provided τ1 < τ∗. The proof is complete.

5 Linear Delay Equations

In this section we shall consider the n-dimensional linear stochastic differential delay equation with
Markovian switching of the form

dx(t) = [A(r(t))x(t) + B(r(t))x(t− τ1)]dt

+
m∑

k=1

[Ck(r(t))x(t) + Dk(r(t))x(t− τ2)]dwk(t) (30)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0]; Rn). We shall simply write

A(i) = Ai, B(i) = Bi, Ck(i) = Cki, Dk(i) = Dki,
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which are all n× n matrices. If we define

f(x, y, t, i) = Aix + Biy and g(x, z, t, i) = (C1ix + D1iz, · · · , Ckix + Dkiz),

then equation (30) can be written as equation (9). Moreover, hypotheses (H1) and (H2) hold and the
parameters there are specified as follows

αi = λmin(Ai + Bi + AT
i + BT

i ), βi = 2
m∑

k=1

||Cki||2, δi = 2
m∑

k=1

||Dki||2, (31)

and
K1 = max

1≤i≤N
||Bi||2, K2 = 2 max

1≤i≤N
||Ai||2, K3 = 2K1. (32)

Corollary 5.1 Assume that

A0 = diag(−(α1 + β1), · · · ,−(αN + βN ))− Γ

is a nonsingular M-matrix and
A−1

0
~1 ¿ (δ−1

1 , δ−1
2 , · · · , δ−1

N )T ,

where αi, βi and δi are defined by (31). Then there is a positive constant τ∗ such that the trivial solution
of equation (30) is exponentially stable in mean square provided τ1 < τ∗. This corollary follows from

Theorem 4.4 directly.

6 Asymptotic Mean Square Stability

Consider the equation

dx(t) = [A(r(t))x(t) + Bx(t− h)]dt + g(t, xt, r(t))dw(t), (33)

In this section we will suppose that xt = x(t + s), s ≤ 0, and for every positive definite matrix Pi there
exists matrix Gi(s) such that

Tr[gT (t, ϕ, i)Pig(t, ϕ, i)] ≤
∫ ∞

0

ϕT (−s)dGi(s)ϕ(−s), (34)

dGi(s) ≥ 0, dG(s) = max
i∈S

dGi(s), G =
∫ ∞

0

dG(s).

Integral here is understood as a Stieltjes integral, the notations dGi(s) ≥ 0 and dG(s) = maxi∈S dGi(s)
are understood as xT dGi(s)x ≥ 0, xT dG(s)x = maxi∈S xT dGi(s)x for arbitrary x ∈ Rn.

Theorem 6.1 Let ‖B‖h < 1 and maxi∈S Ri < 0, where

Ri = (A(i) + B)T Pi + Pi(A(i) + B) + Λi + G + τ(ρi + β)I, (35)

Λi =
∑

j 6=i

γij(Pj − Pi), ρi = ‖(A(i) + B)T PiB + ΛiB‖, β = max
i∈S

(τ‖BT ΛiB‖+ ρi). (36)

Then the zero solution of equation (33) is asymptotically mean square stable.
Proof. Reduce equation (33) to the form of a stochastic differential neutral type equation

d

dt

(
x(t) +

∫ t

t−h

Bx(s)ds
)

= (A(r(t)) + B)x(t) + g(t, xt, r(t))ξ̇(t).

Using the general method of Lyapunov functionals construction (Kolmanovskii & Shaikhet [10, 11, 12]),
let us construct Lyapunov functional for equation (33) in the form V = V1 + V2, where

V1(t, xt, i) =
(
x(t) +

∫ t

t−h

Bx(s)ds
)T

Pi

(
x(t) +

∫ t

t−h

Bx(s)ds
)
.
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Calculating LV1 we obtain

LV1(t, xt, i) = 2xT (t)(Ai + B)T Pi

(
x(t) +

∫ t

t−h

Bx(s)ds
)

+ Tr[gT (t, xt, i)Pig(t, xt, i)]+

+
(
x(t) +

∫ t

t−h

Bx(s)ds
)T

Λi

(
x(t) +

∫ t

t−h

Bx(s)ds
)

=

= 2xT (t)(Ai + B)T Pix(t) + 2xT (t)(Ai + B)T Pi

∫ t

t−h

Bx(s)ds + Tr[gT (t, xt, i)Pig(t, xt, i)]+

+xT (t)Λix(t) + 2
( ∫ t

t−h

Bx(s)ds
)T

Λix(t) +
( ∫ t

t−h

Bx(s)ds
)T

Λi

( ∫ t

t−h

Bx(s)ds
)

=

= xT (t)[(Ai + B)T Pi + Pi(Ai + B) + Λi]x(t) + Tr[gT (t, xt, i)Pig(t, xt, i)]+

+2xT (t)[(Ai + B)T PiB + ΛiB]
∫ t

t−h

x(s)ds +
∫ t

t−h

xT (s)dsBT ΛiB

∫ t

t−h

x(τ)dτ.

Using (34), (35) we have

LV1(t, xt, i) ≤ xT (t)[(Ai + B)T Pi + Pi(Ai + B) + Λi]x(t)+

+
∫ ∞

0

xT (t− s)dGi(s)x(t− s) + ‖BT ΛiB‖
( ∫ t

t−h

|x(s)|ds
)2

+ ρi

∫ t

t−h

(|x(t)|2 + |x(s)|2)ds ≤

≤ xT (t)[(A(i) + B)T Pi + Pi(A(i) + B) + Λi + hρiI]x(t)+

+
∫ ∞

0

xT (t− s)dGi(s)x(t− s) + β

∫ t

t−h

|x(s)|2ds,

Putting

V2(t, xt) =
∫ ∞

0

∫ t

t−s

xT (τ)dG(s)x(τ) + β

∫ t

t−h

(s− t + h)|x(s)|2ds,

we obtain

LV2(t, xt) = xT (t)Gx(t) + βh|x(t)|2 −
∫ ∞

0

xT (t− s)dG(s)x(t− s)− β

∫ t

t−h

|x(s)|2ds,

Therefore, using (35) and that matrices Ri are uniformly with respect to i ∈ S negative definite, for the
functional V = V1 + V2 we have

LV (t, xt, i) ≤ xT (t)Rix(t) ≤ −c|x(t)|2. (37)

As it is shown in [8] for asymptotic stability of differential equations of neutral type from conditions
(37) and ‖B‖h < 1 it follows that the zero solution of equation (33) is asymptotically mean square stable.
Theorem is proved.

7 Example

Consider the 1-dimensional linear stochastic differential delay equation with Markovian switching of the
form

dx(t) = [a(r(t))x(t) + b(r(t))x(t− τ1)]dt + σ(r(t))x(t− τ2)dw(t) (38)

on t ≥ 0 with initial data x0 = ξ ∈ Cb
F0

([−τ, 0]; R), where w(t) is a 1-dimensional Brownian motion and

a(i) = ai, b(i) = bi, σ(i) = σi,

are all real numbers. If we define

f(x, y, t, i) = aix + biy and g(x, z, t, i) = σiz,
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then equation (38) can be written as equation (9). Moreover, hypotheses (H1) and (H2) hold and the
parameters there are given by

αi = 2(αi + bi), βi = 0, δi = σ2
i , (39)

and
K1 = max

1≤i≤N
b2
i , K2 = 2 max

1≤i≤N
a2

i , K3 = 2K1. (40)

If
A0 = diag(−2(a1 + b1), · · · ,−2(aN + bN ))− Γ (41)

is a nonsingular M-matrix and
A−1

0
~1 ¿ (σ−2

1 , σ−2
2 , · · · , σ−2

N )T , (42)

then, by Theorem 4.4, there is a positive constant τ∗ such that the trivial solution of equation (38) is
exponentially stable in mean square provided τ1 < τ∗.

Let us now consider an even simpler case of N = 2 i.e. S = {1, 2}. In this case,

Γ =
[−γ12 γ12

γ21 −γ21

]

and

A0 =
[−2(a1 + b1) + γ12 −γ12

−γ21 −2(a2 + b2) + γ21

]
.

By Lemma 4.2, this A0 is a nonsingular M-matrix if and only if

−2(a1 + b1) + γ12 > 0 (43)

and
∆ := [−2(a1 + b1) + γ12][−2(a2 + b2) + γ21]− γ12γ21 > 0. (44)

Note

A−1
0 =

1
∆

[−2(a2 + b2) + γ21 γ12

γ21 −2(a1 + b1) + γ12

]
.

So (42) becomes

−2(a2 + b2) + γ12 + γ21 <
∆
σ2

1

and − 2(a1 + b1) + γ12 + γ21 <
∆
σ2

2

. (45)

It is not difficult to see that (43)-(45) are equivalent to that

0 < −2(a2 + b2) + γ21 <
∆
σ2

1

− γ12 and 0 < −2(a1 + b1) + γ12 <
∆
σ2

2

− γ21. (46)

In other words, we have shown that conditions (41) and (42) hold if and only if (46) holds. We can
therefore conclude that in the case of N = 2, if (46) holds, then there is a positive constant τ∗ such that
the trivial solution of equation (38) is exponentially stable in mean square provided τ1 < τ∗.

To show how to compute τ∗, let us furthermore specify the system parameters

a1 = −1, a2 = 1, b1 = b2 = −1, σ1 = σ2 = 0.1, γ12 = 1, γ21 = 5. (47)

It is easy to verify (46). Note that

Aθ = A0 − θI =
[

5− θ −1
−5 5− θ

]

is a nonsingular M-matrix as long as 0 < θ < 5−√5. In view of the proof of Theorem 4.4 we shall look
for an θ such that A−1

θ
~1 ¿ (σ−2

1 , σ−2
2 )T , namely

1
(5− θ)2 − 5

[
6− θ
10− θ

]
¿

[
100
100

]
.
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This holds as long as θ < 2.7477. From the proof of Theorem 4.4, we let ~q = (q1, q2)T = A−1
θ

~1, that is

q1 =
6− θ

(5− θ)2 − 5
and q2 =

10− θ

(5− θ)2 − 5
.

By (16), λ1 = 1 while

λ2 = max{q1σ
2
1 , q2σ

2
2} =

0.01(10− θ)
(5− θ)2 − 5

.

Consequently, by (14),

q̌ =
10− θ

(5− θ)2 − 5
, β̌ = 0, δ̌ = 0.01

while, by (40),
K1 = 1, K2 = 2, K3 = 2.

In view of formula (17), to make τ∗ as large as possible we should chose θ ∈ (0, 2.7477) to let

θ(λ1 − λ2)
q̌

=
θ[(5− θ)2 − 5− 0.01(10− θ)]

10− θ

as big as possible. It is not difficult to show that the best choice is θ = 1.32 and the corresponding

θ(λ1 − λ2)
q̌

= 1.2858.

By (17),

τ∗ =
1
8

(√
0.012 + 8× 1.2858− 0.01

)
= 0.3996.

We can therefore conclude that given (47) and N = 2, the trivial solution of equation (38) is exponentially
stable in mean square provided τ1 < 0.3996.

It is interesting to point out that there is a much simpler way to chose θ which gives a reasonably
good result for τ∗. Note that θ(λ1 − λ2)/q̌ = 0 at both θ = 0 and 2.7477. It is therefore reasonable to
chose θ = 2.7477/2 = 1.37385. This leads θ(λ1 − λ2)/q̌ = 1.2841 and hence

τ∗ =
1
8

(√
0.012 + 8× 1.2841− 0.01

)
= 0.3994,

which is very closed to 0.3996 above.
Let us obtain maximum value of τ1 using conditions of asymptotic mean square stability (35), (36).

Consider equation (33) and suppose that Markov chain r(t) has two states, S = {1, 2}, a(1) = a1,
a(2) = a2, b(r(t)) = b, σ(r(t)) = σ. In this case the stability conditions (35), (36) have the form

2(ai + b)pi + λi + p2σ
2 + τ1(ρi + β) < 0, i = 1, 2, (48)

where p2 > p1,
λi = γij(pj − pi), j 6= i, ρi = |(ai + b)pi + λi||b|, (49)

βi = τ1b
2|λi|+ ρi, β = max

i∈S
βi. (50)

In corresponding with (47) put

a1 = −1, a2 = 1, b = −1, σ = 0.1, γ12 = 1, γ21 = 5. (51)

Choose also p2 = αp1, 1.5 < α < 3. From here and (49), (50) it follows

ρ1 = (3− α)p1, ρ2 = 5(α− 1)p1,

β = β2 = 5(α− 1)(τ1 + 1)p1 > β1 = [τ1(α− 1) + 3− α]p1.

Therefore condition (48) takes the form

5(α− 1)τ1(τ1 + 1) + τ1(3− α) + 1.01α < 5,

5(α− 1)τ1(τ1 + 1) + 5τ1(α− 1) + 0.01α < 5(α− 1).

Choosing α = 1.89 it is easy to get that both of inequalities hold if τ1 < 0.4127. It means that if
τ1 < 0.4127 then by conditions (51) the zero solution of equation (33) is asymptotic mean square stable.
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