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Abstract

One general method of Lyapunov functionals construction which was used earlier both for stochastic differential
equations with aftereffect and for stochastic difference equations with discrete time here is applied for stochastic
difference equations with continuous time.
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0. Introduction

Stability investigation of hereditary systerf#s-4] is connected often with construction of Lyapunov
functionals. One general method of Lyapunov functionals construction was proposed and developed in
[5-9,14]both for stochastic differential equations with aftereffect and for stochastic difference equations
with discrete time. Here it is shown that after some modification of the basic Lyapunov type theorem
this method can be used also for stochastic difference equations with continuous time, which are enough
popular with researchg$,10-13]

1. Stability theorem
Let {£2, F, P} be a probability space and;, r > 1} be a nondecreasing family of subalgebras of
F,ie. f, C f, fort; < r,. Consider a stochastic difference equation
x(t 4+ ho) = ax(t, x(0), x(t — h1), x(t — hp),...)
+ax(t, x(1), x(t — h1), x(t — h2), ... )&(t + ho), t>to—ho (1.1)
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with the initial condition
x(0) = ¢(0), fe®= [to — hg — maixhj, to] . (1.2)
]z

Herex € R", hg, hy, ... are positive constants, the functionals € R" anda, € R"*™ satisfy the
condition

Zau < 00, (1.3)

00 2
2 2
la; (2, xo, X1, X2, ... )| fzalj|xj| , A=
=0 =1 j=0

90, 0 € O, is a f,,-measurable function, the perturbatie@ < R™ is a f,-measurable stationary
stochastic process with conditions

Eé&) =0, EE0E @0 = I (1.4)

A solution of problem(1.1), (1.2) is a f;-measurable processt) = x(t; to, ¢), Which is equal to the
initial function ¢ () from (1.2)for ¢ < 1o and with probability 1 is defined biq. (1.1)for ¢ > 1.

Definition 1.1. The trivial solution ofEq. (1.1) (1.2)is calledp-stablep > 0, if foranye > Oands > 0
there exists @ = (¢, 7o) > 0 such tha€|x(; 7o, §)|? < eforall > 1o if [|@[|” = SURu El@O)|” < 6.

Definition 1.2. The trivial solution ofEg. (1.1) (1.2) is called asymptotically-stable,p > O, if it is
p-stable and for all initial functiong

lim E|x(t; tg, $)|” = 0. (1.5)
11— 00
Definition 1.3. The trivial solution ofEqg. (1.1) (1.2)is called asymptoticallp-quasistablep > 0, if it
is p-stable and for eache [1, fo + ho) and all initial functionsp
lim E|x(t + jho; to, ¢)|” = 0. (1.6)
J—> 00

Definition 1.4. The solution ofEq. (1.1)with initial condition(1.2)is calledp-integrable,p > O, if for
all initial functions¢

/oo E|x(; to, ¢)|P dt < o0. 1.7)

fo

If in Definitions 1.1-1.4p = 2 then the solution is called correspondingly mean square stable, asymp-
totically mean square stable, asymptotically mean square quasistable, mean square integrable.

Remark 1.1. Itis easy to see that conditigfh.6)follows from (1.5) but the inverse statement is not true.

Theorem 1.1. Let there exist a nonnegative functiorldl) = V(t, x(¢), x(t — h1), x(t — hy),...) and
positive numbers;,, ¢;, such that

EV(r) < c1SUPE|x(s)|%, 1 € [to, to + ho), (1.8)

S<t
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EAV(t) < —cE|x(0)|?, ¢t > 1o, (1.9)
where
AV(t) = V(t + hg) — V(o). (2.10)

Then the trivial solution oEqg. (1.1) (1.2)is asymptotically mean square quasistable

Proof. Rewrite condition(1.9)in the formEAV(t + jho) < —c2E|x(t + jho)|?, ¢t > t0, j = 0,1, ....
Summing this inequality fromi = 0 to j = i, by virtue of(1.10)we obtain

EV(t + (i + Dho) — EV(1) < —c> Z Elx(r + jho)|%.

j=0
Therefore,
c2 Y _Elx(t+jho)l> < EV(), t>1o. (1.11)
j=0
From here it follows also that
cElx()|? < EV(p), r> to. (1.12)
Using(1.9)and(1.10) we have
EV(t) < EV(t — hg) < EV(t — 2hg) < --- <EV(s), > 1o, (1.13)
wheres =t — [(t — to)/ holho € [fo, to + ho), [t] is the integer part of a numberFrom(1.8)it follows
sup EV(s) <c1 sup Elx(0)|> (1.14)
s€[to,t0+ho) t<to+ho

Using(1.1)—(1.4) for ¢t < to + ho we obtain

2
Elx(]? =) Ela(t — ho, x(t — ho), x(t — ho — h1), x(t — ho — h2), ...)[?

=1
2 o)
<> | aElpt —ho) >+ Y ajElpt — ho — hp* | < Allgl”. (1.15)
=1 j=1
From(1.11)—(1.15we have
c2 Y Elx(t +jho)l*> < c14lll® 1= 1o, (1.16)
j=0
and also
Elx@) < c1Al9l®, 1> 1o (1.17)

From(1.17)we get that the trivial solution dqg. (1.1) (1.2)is mean square stable. Fr@in16)it follows
that for eachy > folim;_ « E|x(r + jho)|> = 0. Therefore, the trivial solution oEq. (1.1) (1.2) is
asymptotically mean square quasistable. Theorem is proven. O
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Remark 1.2. If the conditions ofTheorem 1.lhold andA < 1 (A is defined by(1.3)) then the trivial
solution ofEq. (1.1) (1.2) is asymptotically mean square stable. Really, similafltd5) one can get
E|x(r)|? < Ale—0/hl+1) 612 ¢ > 1o. Therefore, lim., « E|x(¢)|? = O for all initial functionse.

Remark 1.3. If the conditions ofTheorem 1.hold then the solution dg. (1.1)for each initial function
(1.2)is mean square integrable. Really, integratib@)from: = tgtor = T, by virtue of(1.10)we have

T+ho to+ho T
/ EV() dt—/ EV()dr < —cz/ E|x(r)|? dr.
T

Io to

From here andl.14)and(1.15)it follows

T to+ho
e f Elx()2dr < f EV() dr < crAllp]12ho < oo,

fo fo

and byT — oo we obtain(1.7).

Corollary 1.1. Letthere existafunctiondi(r) = V(z, x(¢), x(t—h1), x(t—h>3), . ..) and positive numbers
c1, ¢2, p, such that conditiongl.8)and(1.12)andEA V(¢) < 0hold. Then the trivial solution d&q. (1.1)
is mean square stahle

FromTheorem 1.1Remarks 1.2 and 1ahdCorollary 1.1it follows that an investigation of stability of
the trivial solution ofEq. (1.1)can be reduced to construction of appropriate Lyapunov functionals. Below
some formal procedure of Lyapunov functionals construction for equation of typs described.

2. Formal procedure of Lyapunov functionals construction

The proposed procedure of Lyapunov functionals construction consists of four steps.

o Stepl. Represent the functionals anda; at the right-hand side dq. (1.1)in the form

ay(t, x(@), x(t — hy), x(t — hp), ...) = F1(t) + F2(t) + AF3(0),
as(t, x(), x(t — h1), x(t — ho),...) = G1(t) + G2(0), (2.1)

whereFy(f) = Fi(t, x(t), x(t — hy), ..., x(t — hy)), G1(t) = G1(t, x(1), x(t — h1), ..., x(t — hy)),
k > Oisagiveninteger’;(t) = F;(t, x(1), x(t—hy), x(t—=h2), ...), j = 2,3,G2(t) = Ga(t, x(1), x(t—
hi),x(t — hy),...), F1(t,0,...,0) = F»(0,0,...) = F3(0,0,...) = G1(+,0,...,0) =
Go(t,0,0,...) =0, AFs(t) = F3(t + hg) — F3(1).

e Step2. Suppose that for the auxiliary equation

y(t + hO) = Fl(ts X(t), .X(t - hl)s e X(f - hk))
+ Ga(t, x(@®), x(t — h1), ..., x(t — hp)&@X + hg), t> to— ho, (22)

there exists a Lyapunov functionalr) = v(¢, y(#), y(t — h1), ..., y(t — hy)), which satisfies the
conditions ofTheorem 1.1
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e Step3. Consider Lyapunov functiond(r) for Eq. (1.1)in the formV(¢) = Vi(r) + Va(¢), where the
main component i¥1(¢) = v(t, x(t) — F3(t), x(t — h1), ... ,x(t — hy)). CalculateEAV;1(r) and in a
reasonable way estimate it.

e Step4. In order to satisfy the conditions @heorem 1.1he additional component(¢) is chosen by
some standard way.

3. Linear Volterra equationswith constant coefficients

Let us demonstrate the formal procedure of Lyapunov functionals construction described above for
stability investigation of the scalar equation

[+ [+
X+ =) apxt— )+ Y opxt— PEc+D, t> -1, (3.1)
j=0 j=0

x(s) = ¢(s), s €[-(r+1),0],

wherer > 0 is a given integeg; ando; are known constants.

3.1. The first way of Lyapunov functional construction

Following Step 1 of the procedure represent (3.1)in form (2.1) with F3(r) = 0, G1(r) = 0,k > 0,

k [1]+r [1]+r
P =) axt—j, FO=) axt—j,  G)=) oxt—)), (3.2)
j=0 j=k+1 j=0

and consider (Step 2) the auxiliary equation
k
Ye+D) =) apyt—j), t>-1 k=0, (3.3)
j=0

_J#@), sel[-(r+1),0]
y(s)_{o, s < —(r+1).

Introduce into consideration the vectdir) = (y(r — k), ... , y(t — 1), y(¥))’ and represent the auxiliary
equation (3.3)n the form

0 1 0 0 O
0 0 1 .. 0 O

Y+ =AY®H, A=]|--- A (34)
0 0 o --- 0 1

ar  Qk—1 Q-2 -+ A1 Ao
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Consider the matrix equation

o ... 0 0
ADA-D=-U U=|, 5 o | (3.5)
o ... 0 1

and suppose that the soluti@énof this equation is a positive semidefinite symmetric matrix of dimension
k + 1 with di+14+1 > 0. In this case the function(r) = Y'(r)DY(?) is Lyapunov function foEq. (3.4)
i.e. it satisfies the conditions @heorem 1.1in particular, conditior{1.9). Really, using3.4) and(3.5),
we haveAv(r) = —y2(1).
Following Step 3 of the procedure, we will construct Lyapunov functidfiglfor Eq. (3.1)in the form
V(t) = V1(0) + Vo(r), where

Vi(t) = X'(O)DX(®), X@®) = (x(t —k),...,x(t—1),x()". (3.6)
Using representatiof8.2) rewrite nowEq. (3.1)as follows

X(t+1) = AX(@®) + B(t), B() = (0,...,0,b(), bt) = F2(t) + G2(H)&(t + 1), (3.7)
where the matrix is defined by(3.4). CalculatingA V(¢), by virtue ofEq. (3.7)we have

AVi(1) = (AX(1) + B(1)) D(AX(1) + B(f)) — X' (t)DX(1) = —x?(t) + B'(1)DB(f) + 2B’ (1)DAX(?).

(3.8)
Put
w=> lajl, &=) lojl, 1=01,.... (3.9)
j=l Jj=l
Using(3.7), (3.2)and(3.9), we obtain
EB ()DB(1) = di14+1[EF2() + EG3()]
[1]+r [e]+r
<diirir | g Y g lEXP(— )+ 80 Y loj|Ex?(t — j) |, (3.10)
j=k+1 j=0
and
k k
EB'(nDAX(r) = Eb(7) [Z dpjy1x(t —k + 1) + dry1041 Z apmx(t — m):|
=1 m=0
k—1
=Eb() |:Z(amdk+l,k+l + di—mk+1)X(t —m) + ardyq1 g1 x( — k)}
m=0
k
= diy101EF2(0) Y Quanx(t — m), (3.11)

m=0
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where
d—m
Oun = Gy + kL 0, k=1, Ok = ay. (3.12)
drt1h41
Putting
k k—1 d L
k—m,k+
= ) 1Oml = lax| + am + : 3.13
=3 10wl =l + 3 fan (313)
and using3.11) (3.2), (3.9)and(3.13) we have
k [f]+r
2EB'(0DAX(H) = 2dis1x41 ) D Qe Ex(t —m)x(t — )
m=0 j=k+1
k [t]+r
<divir | @sr Y QumlEX(t —m) + i D lajIEx*(t — j) | - (3.14)
m=0 Jj=k+1
Put now
+1| Qkml + Solom|, 0<m<k,
Rkm = 3.15
m { @1 + Bolan| + dolowl, m = k. (3.15)
Then from(3.8), (3.10)and(3.14)it follows
[£]+r
EAVL(1) < —Ex®()) + diyrir ), RaExX?(t — m). (3.16)
m=0
Choosing (Step 4) the function&(z) in the form
[e]+r 00
Vo) = diprass Y ymX>(t —=m), Y=Y _ Ry, (3.17)
m=1 j=m
we obtain
[1]+r
AVa(1) = diy1pi (ylxzw — ) Run’(t — m)) : (3.18)
m=1

Put V(1) = Vi(t) + Va(r). From (3.16) and (3.18) we haveEAV(H) < —(1 — yodis1.4:1)EX2(0). If
vodi+1.x+1 < 1 then the functionaV(r) satisfies conditiorf1.9) of Theorem 1.1lt is easy to check that
condition(1.8) holds too. Usind3.17), (3.15)and(3.13), one can show thai = a,fH + 2011k + 83,
Thus, if

Qg1 < \/,31% + d]:jl)k+1 — 85— B (3.19)

then the trivial solution oEq. (3.1)is asymptotically mean square quasistable.
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Remark 3.1. If a; = 0 for j > k and matrixequation (3.5has a positive semidefinite soluti@ghwith
conditions3 < d,;_ll,kﬂ then the trivial solution oEg. (3.1)is asymptotically mean square quasistable.

Remark 3.2. Suppose that ifEq. (3.1)a; = 0 for j > k ando; = 0 if j # m for somem > 0. In
this casew;1 = 0, 83 = o2 and from(3.8), (3.10)and (3.14)it follows that EAVy(f) = —Ex?(r) +

di 1144105 EX?(t —m). PUttingVa(t) = diy 144107 31—y ¥°(1— j), for the functionaV(s) = V1(1) + V(1)
we ObtainEAV(t) = (diy1.4+102 — DEX?(1). S0, ifdy 4141102 > 1thenEV(r) > EV(0) > 0. But from
the other hand it is easy to see that if Jim, Ex?(r) = 0 then lim_ o EV(r) = 0 too. From this
contradiction it follows that the conditios 1,102 < 1 is[14] the necessary and sufficient condition
for asymptotic mean square quasistability.

Remark 3.3. Inthe casé = 0 condition(3.19)takes the forna3+ 63 < 1. Note that under this condition
the trivial solution ofEq. (3.1)is not asymptotically mean square quasistable only but asymptotically
mean square stable too. UsiRgmark 1.4t is enough to show that fd£q. (3.1)the constanti defined

by (1.3)is A = @3+ 83 < 1. Inthe casé = 1 condition(3.19)is a condition of asymptotic mean square
guasistability only and can be written in the form

2ao|

1- al

Itis easy to see that this condition is not worse than previous one. One can show that foeedch . ..
an obtained condition is not worse than the condition obtained for prekious

af+ 85 <1+ (las) — aoar), laz| < 1.

3.2. The second way of Lyapunov functional construction

Let us get another stability conditioBq. (3.1)can be represented (Step 1) in fofnl) with Fi(f) =
Bx(1), F2(t) = G1(t) = 0,k =0,

00 [£]+r 00 [e]+r
B=> aj Fat)y=—)Y x(t—m)) aj Ga() = Y ojx(t — j), (3.20)
j=0 m=1 j=m j=0
i.e.
x(r + 1) = Bx(t) + AF3() + G2(DE(r + 1). (3.21)

In this case the auxiliary equation (Step 2yis + 1) = By(¢). The functionv(r) = y?(¢) is Lyapunov
function for this equationifg| < 1. We will construct (Step 3) Lyapunov functiorigk) for Eq. (3.1)inthe
form V() = Vi(t)+ Va(1), whereVi () = (x(f) — F3(1))2. Calculatinge A V4 (¢), by virtue of representation
(3.21)we obtainEA V1 (1) = (82 — DEx2(r) + Q(t), where Q(t) = —2(8 — 1)Ex(1) F3(t) + EG3(¢).
Putting

a=>"|>aj. Bw=18—1|>_a;| + 80om, (3.22)
m=1|j=m J=m
and using(3.20)and(3.9), one can showQ (1| < («|f — 1| + 8000)Ex2(1) + YU B, Ex2(t — m). As
aresult we havEA V1 (1) < (8% — 1+ a|B — 1] + 8000)Ex2(t) + YV B Ex2(t — m).

m=1
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Put now (Step 4y, (f) = ZL’}:{ YmX2(t—m), ym = >, B;. Then similar tq(3.18)for the functional

j=m
V(1) = Vi(t) + Va(t) we haveEA V() < (B2 — 1+ 2a|B— 1|+ 83)Ex?(t). Thus, if 8%+ 20| — 1| +85 < 1
or

83 < (1— B+ B—2a), 18| < 1. (3.23)

then the trivial solution oEq. (3.1)is asymptotically mean square quasistable.

4. Example

Consider the difference equation

[+
X+l =ax®)+ Y bxt—j+oxt—nEt+1, t>-1, (4.1)
j=1

x©0) =¢©®), 0e[-(+1),0], r=0.
From (3.9) and (3.22) it follows that by virtue of conditiong3.19) and (3.23) stability regions for
Eq. (4.1)can be obtained folp| < 1 only. To obtain another type of condition for asymptotic mean

square quasistability of the trivial solution Bfy. (4.1)let us transform the sum from the right hand side
of Eq. (4.1)for ¢ > 0 by the following way

[]]+r _ []—1+r ‘
Y obixt—jy=b|xt-D+ Y bxit-1-)

j=1 Jj=1
=b[(1—a)x(t — 1) + x(t) — ox(t — 1 — r)&(0)]. (4.2)
Substituting(4.2)into (4.1) we obtainEg. (4.1)in the form

r—1
x(t+1) =ax®)+ Y bxt— j)+oxt—n&t+1), te(=10]
j=1

xt+1D) =@+bx@®)+b(A—a)x(t—1) —box(t —1—r&({) +ox(t —ré(t+1), t>0.
(4.3)

Consider now the functionaf, (r) in form (3.6)wherek = 1 and the matrixD is the solution oEg. (3.5)
with the elements

aopda 1—611
di1 = a’dypy, dip = do3, doy = ,
11 = aydy? 12 1-—a 22 22 (1+a1)[(1—a1)2—a%]
ao=a+b, ap=b(1-—a). (4.4)

Note that the matriXD with the element$4.4)is a positive semidefinite one if and only if

|b(1—a)| < 1, la+b] <1—b(1l—a). (4.5)
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HereAV,(¢) is defined by(3.8)with A andX (r) defined by(3.4) and (3.6Jor k = 1 with B(¢) = (0, b(?))’,
b(t) = ox(t — )& + 1) — box(t — 1 — r)&(r). CalculatingE A V1 (¢) similar to(3.8) and (3.10)—(3.16)
one can geEA Vi (1) = —Ex?(1) 4+ 02doo[Ex?(t — r) + yEx?(t — 1 —r)], where

a+b

—pop 4T
Y 1—b(1l—a)

Note that by conditiorf4.5)y > —1. Really,y + 1 > b?> — 2|b| + 1 = (|b| — 1)2 > 0.
Put nowyy = max(y, 0) and

Va(t) = 0%day [(1 +y0) Y%t —m) + yox’(t — 1 - r):| :

m=1

It is easy to show thah Vo (r) = o2dao[ (1 + yo)x?(f) — x2(t — r) — yox?(t — 1 —r)]. So, for the functional
V(t) = V1(t) + V() we have

EAV(H) = —(1 — 02doa(1 4 10))Ex2(1) + 02doa(y — vo)Ex?(t — 1 — r). (4.6)
If y > 0thenyy = y andEAV(f) = —(1— o?doo(1+ ¥))Ex?(f). So, similar toRemark 3.2he inequality
02d22(1 +py <1 (4.7)

is [14] the necessary and sufficient condition for asymptotic mean square quasistability of the trivial
solution ofEqg. (4.3)(or (4.1)).
If y<0,ie.y e (—1,0),thenyy; = 0 and from(4.6)it follows

EAV(1) = —(1 — 02da)Ex?(1) + 02dooyEx?(t — 1 — 1). (4.8)

Sincey < 0 thenEAV(f) < —(1 — 0°dx»)Ex?(¢) and fromTheorem 1.1it follows that the inequality
o?dy, < 1 is a sufficient condition for asymptotic mean square quasistability of the trivial solution of
Eq. (4.3)(or (4.1)).

Let us suppose thafd,» > 1 but conditior(4.7)holds. In this case each mean square bounded solution
of Eq. (4.3) i.e.Ex?(r) < C, is asymptotically mean square quasitrivial, i.e. lim, Ex?( + j) = O.
Really, putting in(4.8) + j instead o and summing fromy = 0 to j = i we obtain

EV(t+i+1) —EV()=—(1—0%dap) ) _EX’(t + j)

j=0
i—1-r -1
+oldy | Y EXP(t+ )+ Y Ex(t+))].
j=0 j=—1-r

From here, using/(r +i + 1) > 0 andy < 0, we have

i i—1-r
(1—0%de) Y Ex(t+ j) — 0%daay Y Ex*(t+ j) < EV(),
j=0 j=0
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or

(1= 0%daa(1+ ) Y Ex’(t + j) < EV(D) + 0%daaly| Y EX*(t + ).

j=0 j=i—r

If the solution ofEq. (4.3)is mean square bounded, iEx?(r) < C, then

(1= 0?dao(1+ 7)) Y Ex?(t + j) < EV() + 6%daaly|(r + DC,
j=0

and therefore lim., . Ex?(t+ j) = 0. So, by conditioig4.7)in the regiongy > 0} and{y < 0, 0d2, < 1}
the trivial solution oEq. (4.1)is asymptotically mean square quasistable. In the rggien 0, 02d,y > 1}
we can conclude only that each mean square bounded solutian ¢f.1)is asymptotically mean square
quasitrivial.

In reality in the region(y < 0, °d2» > 1} the trivial solution ofEq. (4.1)can be asymptotically mean
square quasistable too. Really,Fig. 1 the region given by conditiot4.7) for 2 = 0.2 and also the
following different parts of this region: () > 0}, (2) {y < 0, 6%do> < 1}, (3) {y < 0, 6°d2 > 1}, are
shown. Solving matriequation (3.5Jor k = 0,k = 1, k = 2 and by virtue of program “Mathematica”
for k = 3 andk = 4 stability regions for asymptotic mean square quasistability of the trivial solution
of Eq. (4.1)given by condition(3.19) were obtained. IfFig. 2 the regions of asymptotic mean square
quasistability of the trivial solution dEq. (4.1)for o2 = 0.2 obtained by conditio(3.19)for k = 0 (the
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Fig. 1. Different parts of the stability region.



520 L. E. Shaikhet/Mathematics and Computers in Simulation 66 (2004) 509-521

h#
|

0.4+

-1.9 -0.5 IJ!
|

—

-1.27

R

|
1
|
T
|
|
|
|
|
|
|
|
'
|
T
|
1
|
1
1

Fig. 2. Stability regions given by different stability conditions.

curve number 1), fok = 1 (the curve number 2), fér = 2 (the curve number 3), fdr = 3 (the curve
number 4), fork = 4 (the curve number 5), by conditiqB.23) (the curve humber 6) and the region
given by condition(4.7) (the curve number 7) are shown. It is easy to see that some part of the region
{y < 0, 0°d» > 1} belongs to the regions given by conditit®119)and therefore the trivial solution of
Eqg. (4.1)is there asymptotically mean square quasistable.

According to Remark 3.3 ifrig. 2 one can see also that the region of asymptotic mean square qua-
sistability O, of the trivial solution ofEq. (4.1) obtained by conditiofi3.19) expands ik increases, i.e.

QoC Q1 C Q2C Q3C Qu.
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