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STABILIZATION OF INVERTED
PENDULUM BY CONTROL WITH DELAY
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ABSTRACT: The problem of stabilization of the inverted pendulum is consi-
dered. Unlike of the classical way of stabilization in which the stabilized control
is a linear combination of the states and velocities of the pendulum here another
way of stabilization is proposed. It is supposed that only the trajectory of the
pendulun can be observed and stabilized control depends on whole trajectory of
the pendulum.

AMS (MOS) Subject Classification. 50A10, 50B20

1. STATEMENT OF THE PROBLEM

The problem of stabilization of the inverted pendulum is very popular among the
researches (see, for instance, Kapitza, 1965; Levi, 1988; Blackburn et al., 1992;
Acheson, 1993; Acheson & Mullin, 1993; Levi & Weckesser, 1995). The linearized
mathematical model of the controlled inverted pendulum can be described by linear
differential equation of second order

#(t) — ax(t) =u(t), a>0, t>0. (1.1)

The classical way of stabilization of the system (1.1) uses the control u(t) in the
form u.(t] = —blﬂ:(t) - bzﬂ:(t], by > a, by > 0.

But this type of control which represents an instanteneous feedback is quite
difficult to realize because usually we need some finite time to make measurements
of the coordinates and velocoties, to treat the results of the measurements and to
implement them in the control action.

Here another way of stabilization is proposed. It is supposed that only the
trajectory of the pendulum is observed, control u(t) depends on the previous values
of the trajectory =(s), s < ¢, and has the form

u(t) = /Dm dK (r)z(t — 7). (1.2)
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where kernel K (7) is a function of bounded variation on [0,00] and the integral is
understood in the Stiltjes sense.

It means in particular that both distributed and discrete delays can be used
depending on the concrete choise of the kernel K (7).

The initial condition for the system (1.1), (1.2) has the form

z(s) =p(s),  2(s) =¢(s), 820, (1.3)
where ¢(s) is a given continuously differentiable function.

Definition 1.1. The zero solution of the system (1.1)-(1.8) is called stable if
for any € > 0 there ezists § > 0 such that max{|z(t)|,|2(¢)|} < € for all t > 0 if
el = sup,<o(le(s)|+]@(s)]) < 8. If, besides, limq—co z(t) = 0 and lime, o0 2(t) = 0
for every initial function p, then the zero solution of the system (1.1)-(1.8) is called
asymptotically stable in the whole.

2. STABILIZATION BY CONTROL
DEPENDING ON TRAJECTORY

Let us show that the inverted pendulum (1.1) can be stabilized by the control (1.2).
Substituting (1.2) into (1.1) and putting z,(t) = =(t), z2(t) = #(t) we obtain the
system of differential equations

St =), st =uwi(l) +f AR =), (2.1)

0
To prove the asymptotic stability of the system (2.1) we will use the method
of Lyapunov functionals construction, which was proposed in (Kolmanovskii &

Shaikhet, 1994). This method consists of four steps. Corresponding to the first
step of the method transform the system (2.1) in the following way. Put

k;:/ Ay, i=0,L, k_,-:/ HAldE(r), =23  (22)
0 0
Since

/ & fi i e 8

="

then using (2.2) we have

Therefore from the second equation of the system (2.1) it follows

&2(t) = (a + ko)1 (t) — fom dx(f}f; 22 (s)ds. (2.3)

ek e e = fude(T)]ti (s =t +7)zala)ds.  (24)
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Using (2.2) we have

%fnmm(r)ﬁr(sh¢+T)mz(s)ds=k132(:)_/ﬂmdf{(f)f;az(s)ds. (2.5)

Subtracting (2.5) from (2.3) and using (2.4) we reduce the system (2.1) to the

equations

&1 (t) = z2(t), z(t) = —ayzy (1) — kyza(t). (2.6)

Following the second step of the method of Lyapunov functionals construction
we consider the auxiliary system of ordinary differential equations

vi(t) =y2(t),  9a(t) = —a1ys (t) — kaya(t). (2.7)

Let us assume that a; > 0, k; > 0. Remark that these inequalities represent nec-
essary and sufficient conditions for asymptotic stability of system (2.7). Therefore
there exists Lyapunov function v = v(y;,y2), for which

b= —yi -yl (2.8)

Choosing the function v in the form v = piy? + 2p12yiy2 + p22v2, and using
equations (2.7), (2.8) we get the system of equations for p1;, p1z, paz:

P11 — kip1z — a1 p22 = 0, 2a:1p12 = 1, 2(k1p2z — p12) = 1. (2.9)
The solution of the system (2.9) has the form

ap -+ kl 1 P a) + 1
—_— ———— = —_— e = . 2-10
P11 m BESeemy . BREESE - B (2.10)

2@1

Following the third step of the method of Lyapunov functionals construction we
will construct Lyapunov functional for the system (2.6) in the form V = V; + V5,
where

Vl = P11-‘Bf{t] + 2p12m1(t)z(t) +- pgzzz{t}, {211]
P11, P12, P22 and z(t) are described by (2.10) and (2.4).
Calculating V; by virtue of (2.6), (2.4) we have
Vi = = 2p12a123(t) — 2(kipaz — pr2)od(t) + 2(p1y — kaprz — arpaz)zy (t)2a(t)+

-+ szgal /ﬂm dK(T] l— (3 — &+ T)n:1(t]::g(s)ds+

+ 2(k1p2z — Pu]f dK(7) (8 —t+ 1) (t)z2(8)ds.
0 t—r
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By virtue of (2.9), (2.10) it is easy to get that for arbitrary v > 0 we have
. o0 t
Vi = —zi(t) —2i(t) +pf dK[T‘)f (8 —t+ 7)e1(t)za(s)ds+
0 t—r
oo 4
+f dK(r}f e e
0 t—r
< 2 2 p [~ : ; 2 1,
<—a2t)-adO+ 2 [ [ (o= t+m)(r82(t) + Lod(e))dot
2 0 t—7 i 4
1 ==} t
=t 5/ ldK['r)]f (s —t +7)(z2(t) + 22(s))ds =
0 t—r
t

=—(1- 7’:‘”)@(11 - (1- %)zgm +a/ﬂm K()| [ (o=t 7)22(s)ds,
(2.12)

where 1
P
a= 2—-(1 + w). (2.13)

Following the fourth step of the method of Lyapunov functionals construction
we choose the functional V3 in the form

oo i
Vo = %f |dK(T)|[ (s —t + 7)22%(s)ds. (2.14)
0 t—7
Then
g Olkz 2 %2 : 2
V= Tmz(t) - a |[dK (7)) (¢ —t+ 7)z3(s)ds. (2.15)
0 t—T1
Therefore for the functional V = Vi + V, we have
o _(1_TPk2\ 2 (1 ka_ ake) ,
V< (1 . JEGRE 2 -2 )=3(8)- (2.16)

Using representation (2.13) for a and equating the coefficients before z%(t) and
z3(t) in (2.16) we get the equation 22 =1+ 7 for v with positive root

/ 7
L i (2.17)
p
Using (2.17) we have

. k
V< ~(1= Z(1+vV1+9)(ad(8) + 23 (0))-
From here and (Kolmanovskii & Nosov, 1986) we get the following
Theorem 2.1. Let
4

W=y

ko < —a, ki >0, ks <

(2.18)
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Then the system (2.1) is asymptotically stable in the whole.

Remark 2.1. Since the functional V is not positive definite and

de(T) t (8 —t+ 7)aa(s)ds| < ks sup |z2(s)|
0 t—r 2

a<t
the condition ky < 2 must be fulfilled [8]. It is so since it follows from (2.18).

Example 2.1. Let dK(7) = b§(r — h)dr, h > 0, and §(7) is a delta-function. In
this case kg = b, k; = bh, k; = |b|h%. The first and second conditions (2.18) give
us inequalities b < —a < 0, bh > 0. Thus, we have a contradiction. It means that
the conditions (2.18) are not valid.

Let us show that the system

E(t) — ax(t) = ba(t — h) (2.19)

cannot be asymptotically stable not for any b and h. It means that the inverted
pendulum cannot be stabilizated by the control of the form u(t) = bz(t — h).
The corresponding to the system (2.19) characteristic equiation has the form

22 —a—be M =0, (2.20)

Substituting z = a + i3, where i = \/—1, a and /3 are real numbers, into (2.20) we
get a® + 2a8i — 8% — a — be " (cos(hfB) — isin(hB)) = 0. Thus for a and B we have
the system of the equations

a -3 —a—be cos(hf3) = 0, 2a3 + be ™ sin(h8) = 0. (2.21)

Let us show that system (2.21) for every b and h has at least one solution with
a > 0.

Let a + b > 0. In this case for 8 = 0 we have a® — a = be "*. Consider
f(a) = a® —a — be ™. Since f(0) = —(a +b) < 0 and lim,— 0 f(a) = +o0 then
there exists a > 0 such that f(a) = 0.

Let a + b = 0. In this case @« = 8 = 0 is the solution of the system (2.21).

Let a+b < 0. If 8 = 0 and a < 0 we have a contradiction. Really 0 <
a’ =a+be™" < a+b < 0. It means that by 3 = 0 all roots of the equation
a? = a + be™ " must be positive. If 8 # 0 then from the second equation of the
system (2.21) we have

1. _u.sin(hpB) £
o= zhbe W - 0.

Thus, for every b and h the system (2.21) has at least one solution with a > 0,
i.e. equation (2.19) cannot be asymptotically stable.

Example 2.2. Let dK(7) = (by§(7 — hy) + b (7 — hz))d7, hy1,hy > 0. In this case
the conditions (2.18) have the form

ku=bl+bz<—ﬂ., ky =blh]+bzhz>ﬂ,

4
kz = |b1|h? + |ba|h2 < = = k. (2.22)

1=i=by=b
Low \/1 + (Tu:'“‘“‘ﬁb:na )
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Let us show that for any a > 0 there exist by, by, i1, k2, such that the conditions
(2.22) hold and therefore the system

&(t) — az(t) = biz(t — h1) + baz(t — ha) (2.23)

is asymptotically stable.

Put b; = b, by = —ab, hy = h, hy = Bh. Here 5 is arbitrary positive number,
positive numbers «, # and h must be chosen.

Using the first condition (2.22) we have kg = b— ab = —(a —1)b < —a. It holds
if @ > 1 +ab~!. The second condition k; = bh — afbh = bh(1 — af) > 0 holds if
B <al.

Let us show that the third condition, which in this case has the form

4
2’
1—a+(a—1)b
1+\/I+(_FFI|1‘-——O:1H)L)

hold for all sufficiently small k. Really, let us transform (2.24) in the following way

bh?(1 + ap?) < (2.24)

4bh(1 — af)
bh(l — af) + /B?h2(1 —aB)? + (1 + (a — 1)b—a)?’

bh?(1 + af?) <

*h*(1 —aB)? + (1 + (a—1)b—a)’ < (hi(gll::g?)) — bh(1 — aﬁ])

2
'

8b(1 — aB)*  16(1 — af)?

(14 (a—-1)p—a)* + 1+ afB? = R?(1+ af?)?’

From here it follows

4(1- op) |
\/(1 +apf)[(1 +af?)(1 + (a —1)b—-a)? + 8b(1 — af)?]

h <

Thus, we have shown that parameters by, b, hy and h; can be choose such that
the system (2.23) would become asymptotically stable.

3. NONLINEAR CASE

Consider the problem of stabilization of the nonlinzar model of the inverted pen-
dulum

E(t) — asinz(t) = u(t), a>0, (3.1)

using control (1.2). In Theorem 2.1 it is proved that by conditions (2.18) on the
kernel K (7) in (1.2) corresponding linearized system (2.1) is asymptotically stable
in the whole. From here it follows (Kolmanovskii & Nosov, 1986) that by conditions
(2.18) the zero solution of nonlinear system (3.1), (1.2) is asymptotically stable too
if an initial condition (1.3) belongs to some neighborhood of origin, which is called
a region of attraction. Let us construct some estimate of the region of attraction
for the zero solution of the system (3.1), (1.2).
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Similarly (2.6) let us represent (3.1), (1.2) in the form
g1(t) = 22(t),  (t) = —arzi(t) — ka@a(t) + af (21 (2)), (3.2)

where f(z) = sinz — z, k1, a; and z(t) are defined by (2.2), (2.4).

Following the method of Lyapunov functionals ccnstruction note that the auxil-
iary ordinary differential equations for the system (&.2) must be chosen in the form
(2.7). Therefore Lyapunov functional for the systern (3.2) we will construct again
in the form V = Vj + V3, where the functional V; is defined by (2.11), (2.10), (2.4).
Calculating V; for the system (3.2) similarly to (2.12) we have

i< - (1= 0)st0 - (1- 3)eon
1

+ a /m |[dK ()] (s —t +7)z2(s)ds+

+ 2apiz e (t) f(21(t)) + 2apaaza(t) f(21 (t))—

— 2ap;; fm dK(7) / (s —t + 7)xa(s) f(z1(t))ds,

where v, p and « are defined by (2.17), (2.10) and (2.13).

Suppose that for all ¢ > 0 and some positive p
[z1(t)] < p. (3.3)

Using the inequality |f(z)| = |sinz — 2| < L%J—J—, we zet

zi(t) . 2
o1 (8)f (@1 (1))] <~ < T-al(t),

i(t_) 2 2 < ﬂ 2 2
2lea(t)f( ()] < (22 (0) + 23(0) <T@ 00) + 3(0):
For arbitrary ; > 0 we have

f

2ﬂmuﬁvn (0 =t + 7Yfea(eFlaa(E))ids <

l=mr

L ] o0 i 1
s&/|ﬂvn (s = t 4 7)(m2dit) + —a3(s))ds <
6 Jo =T T
2ty k T I s -
< p_[Y1%2 z§(t] + — f |dK ()| (8 — ¢+ T}xg-[a)ds] ;
6 2 Y1 Jo t—T

As a result for V) we have

: ypk2  ap? T1kzp22\] 2
& - - _— — _ ==
Wi € [1 4 6 (2}312 + p22 + ) )]ﬂl(f-]

- (1 i % i “Fﬁ%)zgu) T fo |dK[r)|f;(s — t+ 7)z2(s)ds,
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where a1 = a + 5‘;—:;&. Choosing V; in the form

t

V, = % o°° |dK (7)) (s =t + 7)%z2(s)ds, (3.4)

t—v

and using representations (2.13), (2.17) for a and y we have

Vg [1——(1+\/ = —(2P12 +P22+m)]3§{ﬂ‘—

6 2

- [1- B vIER) - R (14 22 ]ado

Equating the coefficients before z3(t), 23(t) we get the equation for v;. Using a
positive root of this equation we have

V< =[1- B0 VTR - % (ot a4 oo + ) 6200 + o210

Using representation (2.10) for p we get that if

[ (1 +4/1 +4alpu)]
a(,‘plz P2z <+ P, + '—"';33)

then V be negative definite, i.e. the functional V(t) as a function of t is decreasing.

Let us take and fix some positive p satisfying inequality (3.5). Denote by Ay > 0
and A\; > 0 minimal and maximal eigen values of the positive definite matrix P
with entries p;; given by (2.10). Then

Pt < (3.5)

agk;

Mozd(t) < V(1) < V(0) < Mi(23(0) +23(0)) + 2122 sup a2(s).

<0

Hence the domain of attraction of the zero solution of system (3.2), (1.2) contains
the set of initial functions satisfying inequality

1

A : a k '
Z(#2(0) + ¢%(0)) + ——" supp3(s) < p?
Ao 6)"0 <0

4. PENDULUM WITH STOCHASTIC PERTURBATIONS

Let us suppose that the parameter a in equation (1.1) is influenced by perturbations
of a white noise type (Kolmanovskii & Shaikhet, 1994; Kolmanovskii & Nosov, 1986;
Shaikhet, 1995)

#(t) — (a+ of(t))z(t) =u(t), e>0, t>0. (4.1)

Here {(t) is a standard Wiener process, o is a constant.
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In this case similarly to (2.6) and (3.2) the system (4.1) with control (1.2) and
initial condition (1.3) can be rewritten in the form

&1 (t) = wa(t), &(t) = —ayzy (t) — kaza(t) + o1 (t)E(2), (4.2)

where ki, a; and z(t) are defined by (2.2), (2.4).
The system (4.2), (2.4) with initial condition

z1(s) = p(s), xa2(s) =p(s), s<0, (4.3)

is a system of stochastic differential equations of neutral type. Stability theory of
systems of such type was considered in (Kolmanovskii & Nosov, 1986).

Definition 4.1. The zero solution of equation (4.2), (2.4) is called mean square
stable if for any € > 0 there exists a § > 0 such that E|z,(t)|*> + E|za(t)* < €
for any t > 0 provided that ||¢||? = sup,<o{E|le(s)* + Elp(s)|?} < 8. If, besides,
lim¢—oo{E|21(t)|2 + El|22(t)|*} = 0 for every initial function @, then the zero so-
lution of equation (4.2), (2.4) is called asymptotically mean square stable in the
whole.

From (Kolmanovskii & Nosov, 1986) it follows that in order to obtain conditions
of asymptotic mean square stability of the zero solution of system (4.2), (2.4) it is
enough to construct Lyapunov functional V, satisfying the condition

LV < —e(lea (t)? + [2(8)]?), (4.4)

where L is a generating operator of system (4.2), (2.4).

We will construct the Lyapunov functional for system (4.2), (2.4) in the form
V = Vi + Va, where V] is defined by (2.11), (2.10). Calculating LV; and using (2.9)
analogously to (2.12) we obtain

LV, < — (1 < "”;kz o azpn):c}(t) a (1 - %) z2(t)+

v [T 1K) | ( — 4 7)ok (s)ds,

where a, p and ~ are defined by (2.13), (2.10) and (2.17).
Choosing the functional V; in the form (2.14) for the functional V = V; 4+ V)
similarly to (2.16) we have

i (- 2 b oL e

Using (2.17), (2.10) we obtain that if the inequality

o? < 2%(1—%(1+\/1+(9‘£1)2)) (4.5)

holds then the functional V satisfies condition (4.4).
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Thus, if the conditions (2.18) and (4.5) hold then the zero solution of system
(4.2), (2.4) is asymptotically mean square stable.
Consider the nonlinear pendulum under stochastic perturbations

#(t) — (a+ of(t))sinz(t) =u(t), a>0, t>0, (4.6)

with control (1.2). Similarly to (3.2) and (4.2) rewrite the system (4.6), (1.2) in
the form of the system of nonlinear stochastic differential equations of neutral type

d’l(“') — zz(t)a
§8) = —aves(t)— hiaslty+ af(on () + (ol (b FmE@,

with initial condition (4.3), where f(z) = sinz — =, ki1, a; and z(t) are defined by
(2.2), (2.4).

Definition 4.2. The zero solution of equation (4.7), (2.4) is called stable in
probability if for any ¢ > 0 and €, > 0 there ezists § > 0 such that the solu-
tion (z1(t),z2(t)) = (z1(t,),z2(t,¢)) of equation (4.7), (2.4) satisfies the con-
dition P{|z1(t, )| + |x2(t, )| > €1} < €2 for any initial function w(s) such that
P{sup,.o(|le(s)] + |¢(s)]) < 8} = 1. Here P{-} is the probability of the event
enclosed in braces.

Note that system (4.2) is the linear part of the system (4.7) and since |f(z)| < 5;"
then the order of nonlinearity of the system (4.7) is 3. From (Shaikhet, 1995) it
follows that if the order of nonlinearity of the system under consideration is more
than one then the condition which is sufficient for asymptotic mean square stability
of the linear part of this system is sufficient for stability in probability of the whole
system. Thus if the conditions (2.18) and (4.5) hold then the zero solution of
system (4.7), (2.4) is stable in probability. It means that the inverted pendulum
under stochastic perturbations can be stabilized by control depending only on the
trajectories.

5. ABOUT STABILIZATION BY
CONTROL DEPENDING ON VELOCITY

Consider equation (1.1) with control

sl = f Al VElE =), (5.1)
0
The characteristic equation of system (1.1), (5.1) has the form
2 —a—3z dK{(r)e™*" =0, z =a+ pi. (5.2)

0
Let us show that this equation has at least one root z with positive real part a.
Really, let 8 =0, f(a) =a® —a - afnm dK(7)e~®". The equation (5.2) takes the
form f(a) = 0. Note that f(0) = —a < 0 and

lim f(a)= lim (cm:2 —a—« de(T)e_“f - o:dK{O)) =

aH—+ 0o a—+oo +0
= l.i_bm (o — a — adK(0)) = co.
Therefore there exists at least one @ = ap > 0 which is a root of the equation
f(a) = 0. Thus, the inverted pendulum cannot be stabilized by control type of
(5.1) depending only on velocity.



Stabilization of Inverted Pendulum 511

Stabilization of Inverted Pendulum

6. NUMERICAL ANALYSIS OF THE INVERTED PENDULUM

Consider the linearized equation of the inverted pendulum in the form (2.23). Suf-
ficient conditions of asymptotic stability of system (2.23) are (2.22). Remark that
two first inequalities of conditions (2.22) are also necessary conditions for asymp-
totic stability but third inequality is only sufficient condition.

1) Let ©(0) =6, 2(0) =0,a=1,b; =1, b = —4, h; = 0.25, hy = 0.04. In this
case kg = —3, ky = 0.09, k, = 0.07, k,, = 0.12. Hence the conditions (2.22) are
valid and the system (2.23) is asymptotically stable. The trajectories of the system
(2.23) in the spaces (x1,z;) and (t,z(t)) are shown on Fig.6.1.

2) Let z(0) = 8, 2(0) = 0,a =3, b, = 1, b = —4.5, h; = 0.6, h; = 0.1,
Then ky = —3.5, ky = 0.15, k; = 0.41, k,, = 0.36. Hence third inequality of
condition (2.22) is not valid. But the linear systemn (2.23) is stable (see Fig.6.2)
and corresponding nonlinear system

.‘f(f) — asin E(f) = bl:l;'(ﬁ =i h,l) -+ bgm(t = hg) (61)

is stable also (see Fig.6.3).
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3) Let us investigate the influence of the delay h; on the behaviour of the pen-
dulum. All other parameters have the same values as in the case 2). If h; = 0.59
then the linear system (2.23) is stable, but nonlinear system (6.1) has an attractor
(Fig.6.4). The same phenomena take place for all values of delay h; from h; = 0.59
to h; = 0.54 (see Fig.6.5 illustrating nonlinear system (6.1)). If Ay = 0.53 then the
nonlinear system (1.6) is unstable (Fig.6.6) but the linear system (2.23) is stable
(Fig.6.7).

g
mooavasslew
BFfEGSSE5EE

Py

.
1o}
"
I
]
i
]
L
!
L
'

4
‘.'f':".i":l“.t"l'* B



513

Stabilization of Inverted Pendulum

Stabilization of Inverted Pendulum

TR x N!n.. - 5 — L i
P ——— o e e R e o e =
Ear T e e I T
= : v 6
o o
=" &)
= - = 2 Py
L [aEzsasmam . F =
s s ol At e RS BER-SRERSE

inseddRdSos

jUygusunay

f o W kB A
REEREEIZEG

“3gIsessEyl

Vil

i“‘-‘l‘j‘#‘“t"i"#“i"t"i“"i'

e

T e

Fig.6.7



514 Borne, Kolmanovskii, and Shaikhet

Borne, Kolmanovskii and Shaikhet

REFERENCES

1. Kapitza, P.L. (1965). Dynamical stability of a pendulum when its point of sus-
pension vibrates, and Pendulum with a vibrating suspension. In Collected Papers
of P.L.Kapitza. D.ter Haar. ed., Pergamon Press Lid. London, v.2, pp. 714-737.

2. Levi, M. (1988). Stability of the inverted pendulum - a topological explanation.
SIAM Review, v.30, pp. 639-644.

3. Blackburn, J.A., Smith, H.J.T., & Gronbech-Jensen, N. (1992). Stability and
Hopf bifurcations in an inverted pendulum. Amer. J. Physics, v.60, pp. 903-908.

4. Acheson, D.J. (1993). A pendulum theorem. Proc. Roy. Soc. Lond., v.A443,
Pp. 239-245.

5. Acheson, D.J., & Mullin, T. (1993). Upside-down pendulums. Nature, v.366,
pp. 215-216.

6. Levi, M., & Weckesser, W. (1995). Stabilization of the inverted linearized
pendulum by high frequency vibrations. SIAM Review, v.37, No.2, pp. 219-223.

7. Kolmanovskii, V.B., & Shaikhet, L.E. (1994). New results in stability theory for
stochastic functional differential equations (SFDEs) and their applications. Pro-

ceedings of Dynamic Systems and Applications. Dynamic Publishers Inc., v.1, pp.
167-171.

8. Kolmanovskii, V.B., & Nosov, V.R. (1986). Stability of Functional Differential
Equations. New York: Academic Press.

9. Shaikhet, L.E. (1995). Stability in probability of nonlinear stochastic hereditary
'systems. Dynamic Systems and Applications, v.4, N.2, pp. 199-204.



