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Abstract. Known sufficient condition for stabilization of the controlled in-
verted pendulum under stochastic perturbations is improved via V.Kolmanovskii
and L.Shaikhet general method of Lyapunov functionals construction.

1. Introduction. Statement of the problem. The problem of stabilization for
the controlled inverted pendulum during many years is very popular among the
researches (see, for instance [1], [2], [3], [4], [5], [7], [8], [13], [14], [15], [16], [17], [19],
[22], [23]). The linearized mathematical model of the controlled inverted pendulum
can be described by the linear differential equation of the second order

ẍ(t) − ax(t) = u(t), a > 0, t ≥ 0. (1)

The classical way of stabilization [8] uses the control u(t) = −b1x(t) − b2ẋ(t),
b1 > a, b2 > 0. But this type of control which represents an instantaneous feedback
is quite difficult to realize because usually we need some finite time to make mea-
surements of the coordinates and velocities, to treat the results of the measurements
and to implement them in the control action.

In [4], [5] the control u(t) was proposed that does not depend on a velocity but
depends on the previous values of the trajectory x(s), s ≤ t, and has the form

u(t) =

∫ ∞

0

dK(τ)x(t − τ). (2)

The kernel K(τ) in (2) is a function of bounded variation on [0,∞] and the integral
is understood in the Stieltjes sense. It means in particular that both distributed and
discrete delays can be used depending on the concrete choice of the kernel K(τ).

The initial condition for system (1), (2) has the form

x(s) = ϕ(s), ẋ(s) = ϕ̇(s), s ≤ 0, (3)

where ϕ(s) is a given continuously differentiable function.
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It is supposed also that system (1) is under influence of stochastic perturbations
type of

ẍ(t) − (a + σξ̇(t))x(t) = u(t), (4)

where ξ(t) is a standard Wiener process, σ is a constant.
Put x1(t) = x(t), x2(t) = ẋ(t). Then equation (2)-(4) can be represented in the

form of the system

ẋ1(t) =x2(t),

ẋ2(t) =ax1(t) +

∫ ∞

0

dK(τ)x1(t − τ) + σx1(t)ξ̇(t),
(5)

with the initial condition x1(s) = ϕ(s), x2(s) = ϕ̇(s), s ≤ 0.

Definition 1.1. The zero solution of system (5) is called mean square stable if for
any ǫ > 0 there exists a δ > 0 such that E |x1(t)|2 + E |x2(t)|2 < ǫ for any t ≥ 0
provided that sup

s≤0{E |ϕ(s)|2 + E |ϕ̇(s)|2} < δ. If, besides, limt→∞{E |x1(t)|2 +

E |x2(t)|2} = 0 for every initial function ϕ, then the zero solution of equation (5) is
called asymptotically mean square stable.

Put

ki =

∫ ∞

0

τ idK(τ), i = 0, 1, k2 =

∫ ∞

0

τ2|dK(τ)|,

a1 = −(a + k0), p =
a1 + 1

k1
.

(6)

Theorem 1.2. [5]. Let a1 > 0, k1 > 0,

σ2 <
2a1

p

(

1 − k2

4

(

1 +
√

1 + p2
)

)

. (7)

Then the zero solution of system (5) is asymptotically mean square stable.

2. Improved stability condition. The following theorem gives improved stabi-
lity condition for system (5).

Theorem 2.1. Let a1 > 0, k1 > 0,

σ2 < 2a1

(

k1 − k2

√

a1

2(2 − k2)

)

. (8)

Then the zero solution of system (5) is asymptotically mean square stable.

Proof. To prove asymptotic mean square stability of system (5) it is enough [9]
to construct Lyapunov functional V (t, xt) satisfying the condition LV (t, xt) ≤
−c|x(t)|2, where L is the generate operator of system (5). To construct correspond-
ing Lyapunov functional we will use the general method of Lyapunov functionals
construction (see [10], [11], [12], [20]). This method consists of four steps. Corre-
sponding to the first step of the method transform system (5) in the following way.
Since

∫ t

t−τ

x2(s)ds =

∫ t

t−τ

ẋ1(s)ds = x1(t) − x1(t − τ)

then using (6) we have
∫ ∞

0

dK(τ)x1(t − τ) = k0x1(t) −
∫ ∞

0

dK(τ)

∫

t

t−τ

x2(s)ds.
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Therefore from the second equation of system (5) via (6) it follows

ẋ2(t) = −a1x1(t) −
∫ ∞

0

dK(τ)

∫

t

t−τ

x2(s)ds + σx1(t)ξ̇(t). (9)

Using (6) we obtain

d

dt

∫ ∞

0

dK(τ)

∫ t

t−τ

(s − t + τ)x2(s)ds = k1x2(t) −
∫ ∞

0

dK(τ)

∫ t

t−τ

x2(s)ds. (10)

Subtracting (10) from (9) we transform system (5) to the form

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t) + σx1(t)ξ̇(t),
(11)

where

z(t) = x2(t) −
∫ ∞

0

dK(τ)

∫

t

t−τ

(s − t + τ)x2(s)ds. (12)

Following the second step of the general method of Lyapunov functionals con-
struction we consider the auxiliary system of ordinary differential equations

ẏ1(t) = y2(t), ẏ2(t) = −a1y1(t) − k1y2(t). (13)

The inequalities a1 > 0, k1 > 0 are the necessary and sufficient conditions for
asymptotic stability of system (13). It means that for square form w(y1, y2) =
d1y

2
1 +d2y

2
2 with positive coefficients d1, d2 there exists a positive definite Lyapunov

function v = p11y
2
1 + 2p12y1y2 + p22y

2
2 such that v̇ = −w. The system of equations

for p11, p12, p22

2a1p12 = d1, 2(k1p22 − p12) = d2, p11 − k1p12 − a1p22 = 0, (14)

has the solution:

p11 =

(

k1

2a1
+

1

2k1

)

d1 +
a1d2

2k1
, p12 =

d1

2a1
, p22 =

d1 + a1d2

2a1k1
. (15)

Following the third step of the general method of Lyapunov functionals construc-
tion we will construct Lyapunov functional for system (11) in the form V = V1 +V2,
where

V1 = p11x
2
1(t) + 2p12x1(t)z(t) + p22z

2(t), (16)

z(t) and p11, p12, p22 are defined by (12), (15).
Let L be the generate operator of system (11). Calculating LV1 via (11), (14),

(16) we have

LV1 =2(p11x1(t) + p12z(t))x2(t) + σ2p22x
2
1(t)

+ 2(p12x1(t) + p22z(t))(−a1x1(t) − k1x2(t))

=(−d1 + σ2p22)x
2
1(t) − d2x

2
2(t)

+ 2a1p22

∫ ∞

0

dK(τ)

∫

t

t−τ

(s − t + τ)x1(t)x2(s)ds

+ d2

∫ ∞

0

dK(τ)

∫

t

t−τ

(s − t + τ)x2(t)x2(s)ds.
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For arbitrary γ > 0 we obtain

LV1 ≤(−d1 + σ2p22)x
2
1(t) − d2x

2
2(t)

+ a1p22

∫ ∞

0

|dK(τ)|
∫

t

t−τ

(s − t + τ)
(

γx2
1(t) +

1

γ
x2

2(s)
)

ds

+
d2

2

∫ ∞

0

|dK(τ)|
∫

t

t−τ

(s − t + τ)(x2
2(t) + x2

2(s))ds

=

(

−d1 + σ2p22 +
k2

2
γa1p22

)

x2
1(t) +

(

−d2 +
d2k2

4

)

x2
2(t)

+ α

∫ ∞

0

|dK(τ)|
∫ t

t−τ

(s − t + τ)x2
2(s)ds,

(17)

where

α =
a1p22

γ
+

d2

2
. (18)

Following the fourth step of the general method of Lyapunov functionals con-
struction we choose the functional V2 in the form

V2 =
α

2

∫ ∞

0

|dK(τ)|
∫

t

t−τ

(s − t + τ)2x2
2(s)ds.

Then

LV2 =
αk2

2
x2

2(t) − α

∫ ∞

0

|dK(τ)|
∫

t

t−τ

(s − t + τ)x2
2(s)ds. (19)

Via (17), (19) for the functional V = V1 + V2 we have

LV ≤
(

−d1 + σ2p22 +
k2

2
γa1p22

)

x2
1(t) +

(

−d2 +
d2k2

4
+

αk2

2

)

x2
2(t). (20)

If the expressions in the brackets in (20) are negative, i.e.,

+ σ2p22 +
k2

2
γa1p22 < d1,

d2k2

4
+

αk2

2
< d2, (21)

then the zero solution of equation (5) is asymptotically mean square stable.
Via (18), (21) we have

a1k2p22

d2(2 − k2)
< γ <

2(d1 − σ2p22)

a1k2p22
, k2 < 2. (22)

So, if the inequality

a1k2p22

d2(2 − k2)
<

2(d1 − σ2p22)

a1k2p22
(23)

holds then there exists γ > 0 such that (22) (and therefore (21)) holds too.
From (23) it follows

σ2 <
1

p22

(

d1 −
(a1k2p22)

2

2d2(2 − k2)

)

.

Putting d1 = qd2 and using representation (15) for p22 we have

σ2 < 2a1k1

(

q

q + a1
− A(q + a1)

)

, A =
k2
2

8k2
1(2 − k2)

. (24)
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The right hand part of inequality (24) reaches its maximum by q =
√

a1A−1 − a1.
Substituting this q into (24) we obtain (8). The proof is completed.

To show that condition (8) is better than (7) it is enough to note that via (6)

p

(

k1 − k2

√

a1

2(2 − k2)

)

−
(

1 − k2

4

(

1 +
√

1 + p2
)

)

= a1 − pk2

√

a1

2(2 − k2)
+

k2

4

(

1 +
√

1 + p2
)

=

(

√
a1 −

pk2

2
√

2(2 − k2)

)2

+
k2

4

(

1 +
√

1 + p2 − p2k2

2(2 − k2)

)

> 0.

(25)

A positivity of the second summand in (25) easy follows from the condition (that

is evidently supposed in (7)) k2

(

1 +
√

1 + p2
)

< 4.

Example 1. Consider control (2) with dK(τ) = (b1δ(τ − h1) + b2δ(τ − h2))dτ ,
where δ(τ) is Dirac’s function. In this case equation (4), (2) takes the form

ẍ(t) − ax(t) = b1x(t − h1) + b2x(t − h2) + σx(t)ξ̇(t). (26)

Put here a = 1, b1 = 1, b2 = −3, σ = 0.3. In Figure 1 one can see that stability
region in the space of the parameters (h1, h2) given by condition (8) (number 1) is
appreciably more than stability region given by condition (7) (number 2).

To investigate how far the bound of stability region given by condition (8) is
situated from the bound of the exact stability region numerical simulation of the
solution of equation (26) was made. Similar to [22] the difference analogue of
equation (26) was used in the form

xi+1 = xi + τyi, yi+1 = yi + τ
(

axi +

2
∑

l=1

blxi−ml

)

+ σxi∆ξi+1, i ≥ 0,

where τ > 0 is the step of discretization, xi = x(ti), yi = ẋ(ti), ti = iτ , h1 = m1τ ,
h2 = m2τ , ∆ξi+1 = ξ(ti+1) − ξ(ti). For numerical simulation of Wiener process
trajectories was used a special algorithm from [18]. Earlier this algorithm was
realized also in [6].

Numerical simulation of system (26) solution with τ = 0.01 gives (see Figure
1) the points A(0.07, 0.01), B(0.2, 0.06), C(0.4, 0.12), D(0.6, 0.17), E(0.8, 0.22),
F (1.0, 0.24), G(1.2, 0.23), H(1.4, 0.15), I(1.6, 0.07), J(1.75, 0.01), with the following
property: the curve passing through these points approximately shows the bound of
the exact stability region. In all these points the solution of equation (26) is unsta-
ble. But inside of this region the solution of equation (26) is stable. For example, in
Figure 2 fifty trajectories of the solution of equation (26) are shown that were ob-
tained in the point I(1.6, 0.07) by the initial condition x(s) = 1, s ∈ [−1.6, 0]. One
can see that these trajectories fill whole space. In Figure 3 fifty trajectories of the
solution of equation (26) are shown that were obtained in the point I0(1.58, 0.07)
(that is situated enough close to the point I(1.6, 0.07) but inside of the stability
region) by the initial condition x(s) = 7, s ∈ [−1.6, 0]. One can see that all these
trajectories go to zero. The same situation is observed in all other considered points.

In Figure 4 one can see the picture that is similar to Figure 1 but for σ = 0.5
with the points A(0.13, 0.01), B(0.27, 0.06), C(0.4, 0.1), D(0.59, 0.15), E(0.78, 0.20),
F (0.98, 0.22), G(1.21, 0.21), H(1.36, 0.16), I(1.52, 0.09), I0(1.5, 0.09), J(1.66, 0.03).
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Figure.1. The bounds of stability regions given by condition (8) (number 1), condition (7) 

(number 2), exact stability region (A, B, C, D, E, F, G, H, I, J), 3.0 .

Figure 2. Fifty trajectories of the unstable solution of equation (26) in the point

)07.0,60.1(I by the initial condition 1)(sx , ]0,6.1[s .

Note that here (as well as in [6]) it is shown that numerical simulation allows to
construct (approximately) the exact bound of stability region of considered model.
The numerical simulation shows also (in Figures 1 and 4) that improved condition
(8) is not only better, than old condition (7), but for enough small values of the
delays h1 and h2 (the points A and B) it gives the bound that is enough close to
the bound of the exact stability region. On the other hand for big values of delay
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Figure 3. Fifty trajectories of the stable solution of equation (26) in the point 

)07.0,58.1(0I by the initial condition 7)(sx , ]0,6.1[s .

Figure 4. The bounds of stability regions given by condition (8) (number 1), condition (7) 

(number 2), exact stability region (A, B, C, D, E, F, G, H, I, J), 5.0 .

h1 (for example, from 0.7 to 1.1) the improved condition (8) gives the bound that is
enough far from the bound of the exact stability region. Moreover, for larger values
of h1 (greater than 1.2) condition (8) does not give improvement at all.

The enough big distance between the bound of stability region given by condition
(8) and the bound of the exact stability region shows in particular (in Figures 1
and 4) that there is a good stimulus for the further researches to improve present
analytical methods of construction of stability conditions.
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3. Nonlinear model. Consider the problem of stabilization for the nonlinear
model of the inverted pendulum

ẍ(t) − (a + σξ̇(t)) sin x(t) = u(t), t ≥ 0, (27)

with control (2) and the initial condition (3). Similarly to (11) equation (27), (2)
can be transformed to the system of nonlinear stochastic differential equations of
neutral type

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t) + af(x1(t)) + σ(x1(t) + f(x1(t)))ξ̇(t),
(28)

where f(x) = sin x − x, a1, k1 and z(t) are defined by (6), (12).

Definition 3.1. The zero solution of system (28) is called stable in probability if
for any ǫ1 > 0 and ǫ2 > 0 there exists δ > 0 such that the solution (x1(t), x2(t)) =
(x1(t, ϕ), x2(t, ϕ)) of system (28) satisfies the condition P{|x1(t, ϕ)| + |x2(t, ϕ)| >

ǫ1} < ǫ2 for any initial function ϕ(s) such that P{sups≤0(|ϕ(s)| + |ϕ̇(s)|) ≤ δ} = 1.

Note that system (11) is the linear part of system (28) and since |f(x)| ≤ 1
6 |x|3

then the order of nonlinearity of system (28) equals 3. As it follows from [21] if
the order of nonlinearity of the system under consideration is more than one then
the condition which is a sufficient for asymptotic mean square stability of the linear
part of this system is also a sufficient condition for stability in probability of the
initial nonlinear system. So, if the conditions of Theorem 2.1 hold then the zero
solution of system (28) is stable in probability.

REFERENCES

[1] D. J. Acheson, A pendulum theorem, Proc. Roy. Soc. Lond., A443 (1993), 239–245.
[2] D. J. Acheson and T. Mullin, Upside-down pendulums, Nature, 366 (1993), 215–216.
[3] J. A. Blackburn, H. J. T. Smith and N. Gronbech-Jensen, Stability and Hopf bifurcations in

an inverted pendulum, Amer. J. Physics, 60 (1992), 903–908.
[4] P. Borne, V. Kolmanovskii and L. Shaikhet, Steady-state solutions of nonlinear model of

inverted pendulum, Theory of Stochastic Processes, 5 (1999), 203–209.
[5] P. Borne, V. Kolmanovskii and L. Shaikhet, Stabilization of inverted pendulum by control

with delay, Dynamic Systems and Applications, 9 (2000), 501–515.
[6] N. Bradul and L. Shaikhet, Stability of the positive point of equilibrium of Nicholson’s blowflies

equation with stochastic perturbations: Numerical analysis, Discrete Dyn. Nat. Soc., 2007

(2007), Article ID 92959, 25 pages.
[7] P. Imkeller and Ch. Lederer, Some formulas for Lyapunov exponents and rotation numbers

in two dimensions and the stability of the harmonic oscillator and the inverted pendulum,
Dynamic Systems, 16 (2001), 29–61.

[8] P. L. Kapitza, Dynamical stability of a pendulum when its point of suspension vibrates, and
Pendulum with a vibrating suspension, in “Collected Papers of P. L.Kapitza,” D.ter Haar.
ed., Pergamon Press Ltd. London, 2 (1965), 714–737.

[9] V. B. Kolmanovskii and A. D. Myshkis, “Introduction to the Theory and Applications of
Functional Differential Equations,” Kluwer Academic Publishers, Dordrecht, 1999.

[10] V. B. Kolmanovskii and L. E. Shaikhet, New results in stability theory for stochastic functional
differential equations (SFDEs) and their applications, in “Proceedings of Dynamic Systems
and Applications,” Dynamic Publishers Inc., 1 (1994), 167–171.

[11] V. B. Kolmanovskii and L. E. Shaikhet, A method for constructing Lyapunov functionals for
stochastic differential equations of neutral type, (In Russian: Differentialniye uravneniya, 31

(1995), 1851–1857), Differential Equations, 31 (1995), 1819–1825.
[12] V. B. Kolmanovskii and L. E. Shaikhet, Construction of Lyapunov functionals for stochastic

hereditary systems: a survey of some recent results, Lyapunov’s methods in stability and
control, Math. Comput. Modelling, 36 (2002), 691–716.

http://www.ams.org/mathscinet-getitem?mr=1181951&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2021376&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1843695&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2346516&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1835906&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1680144&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1308293&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1434886&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1940617&return=pdf


STABILIZATION OF INVERTED PENDULUM 1343

[13] M. Levi, Stability of the inverted pendulum - a topological explanation, SIAM Review, 30

(1988), 639–644.
[14] M. Levi and W. Weckesser, Stabilization of the inverted linearized pendulum by high frequency

vibrations, SIAM Review, 37 (1995), 219–223.
[15] G. J. Mata and E. Pestana, Effective Hamiltonian and dynamic stability of the inverted

pendulum, Eur. J. Phys. 25 (2004), 717–721.
[16] R. Mitchell, Stability of the inverted pendulum subjected to almost periodic and stochastic

base motion - an application of the method of averaging, Int. J. Nonlinear Mech., 7 (1972)
101–123.

[17] A. I. Ovseyevich, The stability of an inverted pendulum when there are rapid random oscil-
lations of the suspension point, J. Appl. Math. Mech., 70 (2006), 762–768.

[18] S. I. Resnick, “Adventures in Stochastic Processes,” Birkhauser, Boston, Mass, USA, 1992.
[19] J. M. Sanz-Serna, Stabilizing with a hammer, Stochastics and Dynamics, World Scientific

Publishing Company, 8 (2008), 47–57.
[20] L. E. Shaikhet, Modern state and development perspectives of Lyapunov functionals method

in the stability theory of stochastic hereditary systems, Theory of Stochastic Processes, 2

(1996), 248–259.
[21] L. E. Shaikhet, Stability in probability of nonlinear stochastic hereditary systems, Dynam.

Systems Appl., 4 (1995), 199–204.
[22] L. E. Shaikhet, Stability of difference analogue of linear mathematical inverted pendulum,

Discrete Dyn. Nat. Soc., 2005 (2005), 215–226.
[23] R. Sharp, Y.-H. Tsai and B. Engquist, Multiple time scale numerical methods for the inverted

pendulum problem, Multiscale Methods in Science and Engineering, Lecture Notes Comput.
Sci. Eng. 44. Berlin: Springer, (2005), 241–261.

Received September 2008; revised December 2008.

E-mail address: leonid.shaikhet@usa.net

http://www.ams.org/mathscinet-getitem?mr=0967966&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1343212&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1181423&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2399925&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1338942&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2207709&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2161717&return=pdf

	1. Introduction. Statement of the problem.
	2. Improved stability condition
	3. Nonlinear model
	REFERENCES

