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Abstract

A nonlinear integro-diffegrtial equation of convolution type with order of nonlinearity more than one and a stable trivial
solution is considered. The integral in this equation has an exponential kernel and polynomial integrand. The difference analogu
of the equation considered is constructed in the form of a difference equation with continuous time and it is shown that this
difference analogue presres the properties of stability of his original.
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1. Introduction

To usenumerical invesigation of functional differential equations it is very important to know whether the
considered difference analogue of thegmal differential equation has the reliability to preserve some general
propeties of this equation, in particular, the property of stability. This problem is considered here by investigation
of a difference analogue of the nonlinear integro-differential equation of convolution type.

Similar problems were considered already 1hfpr deterninistic nonlinear integro-differential equations and in
[2] for linear stochastic integro-diffential equations. In contrast td][ here the difference analogue is constructed in
the form of a difference equation with continuous time which is popular among resear8h&s Besides that, here
a more genal form of nonlinearity is considered.

Stability conditions for asymptotic stdity of the difference analogue arebtained via the general method of
Lyapunov functional constructio8f11.

Below, the following definition and notation are usdtl} is the integer pa of an arbitrary real numbet,

AV (t) = V(t 4+ 1) — V(1) for an arbitraryt > 0 and the fixegositive numbet .

Lemma 1.1. Arbitrary positive numbersa, b, «, 8, y satisfy the inequality

aabﬁ < o aa+/3yﬂ+ '3 botJr,Byfa_
o+ B a+p
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To proveLemma 1.1it is enough to show that the function

gxX) = —~_xetByb 4 Lb‘”ﬁy‘“ —x%p?, x>0,
o

+ B oa+p

reaches its minimum at the poixg = by ~1 andg(xo) = 0.
2. Nonlinear integro-differential equation of convolution type

The nonlinear integro-differential equations of convolution type

t
X(t) = f Kt —s) f(x(s))ds
0

arise usually in problems related to evolutionary procegsecology, in nuclear reactsyin control theory etc.12,
13]. Here an equation of convolution type with exponential keké) = —ae™, i.e.,

t
X(t) = —a / e =9 £ (x(s))ds, (2.1)

0

is considered and it is supposed that 0, > 0,
k
! 2pi+1

f(x) = ixm mi = , i >0 >0, 2.2
() ;al i 2G 1 1 Pi =G = (2.2)

aj > 0, pi andq; are integers.
It is easy to check that #htrivial sdution of Eq.(2.1)is stable. Indeed, putting (t) = Xx(t), X2(t) = X(t), one can
transbrm Eq.(2.1)to the system of equations
X1(t) = x2(1),
Xo(t) = —af (xa(t)) — Axa(t).
The function

k
Qi mi+1 2

V() =2a X)) 4+ x5(t

® i§:1mi+11 (1) + x5(t)

is a Lyapunov function for this system since
2pi+1 2(pi+G +1

m+1= +1l=———"" 2.3

! 2g +1 20 + 1 (2:3)

i.e., V() > 0forx2(t) + x3(t) > 0, andV (t) = —2ax3(t) < 0 unlessxa(t) = 0.

3. Difference analogue of the nonlinear integro-differential equation

Difference analogues arise, in particular, as the result of attempts to solve differential equations by numerical
methods. To construct the difference analogue of(Ed.) rewiite this equation in the equivalent form

t
X(t) = —a f e S f(x(t — s))ds. (3.1)
0

Letr be a small enough positive number. Using representéidnfort € [0, r) and(3.1)fort > ¢, wecan construct
a dfference analogue in the form of the following difference equation with continuous time:

X(t) = x(0) — at?e " f(x(0)), te]0,1),
X(t + 1) = X(t) —ar’F(), t>0,
(]

Fiy=> e fxt—jr)).

j=0

(3.2)
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If t € [0, 7), thenF (t) = f(x(t)). Fort > t, trangorm F(t) in the following way:

] _
F) = fx@®)+ Y e fxt—jo)
i=1
[t1-1 _
= fx®) + eIt - (j + D)
j=0
=1 _
f(x(t)) +e** e fxt—1—j1)
=0

]
= f(x(t)) + e *"F(t —1). (3.3)

It follows from (3.2)that

o X(t+ 1) —x(b) X)) —x(t—1)
FO =~ ar? . Flt-m=- ar? '
SubstitutingF (t) andF (t — ) from here into(3.3), we trangorm Eq.(3.2)to the form
X(t+ 1) = x(t) — arzf(x(t)) +eM X)) —X(t—1)), t>T1. (3.4)
The procesg(t) is definedby Eq.(3.4)for t > to = 2z with the initial condition
X(0) = ¢(0), 0 € [to — 27, to] = [0, 27], (3.5)
where
x(0) — a%e M f(x(0)), 6 €lto—2t,to—1) = [0, 1),
$0) = 2 _
¢ —1)—ar“f(p® — 1)), 06 €lto—r1,to) =][r,21].

Note that via(2.2)the order of nonlinearity of Eq3.4)is, generally speaking, more than one.

Definition 3.1. The solution of EQq.(3.4) with initial condition (3.5) is called asymptotically quasitrivial if
limj_oo X(t 4+ j) = O for eacht € [to, to + 7).

Definition 3.2. The trivial solution of Eq(3.4)is called stable if for any > 0 there eists ad = §(¢) > 0 such hat
IX(1)] < €, forallt > to, if |4l = SURe(ty—21.15) 1P ()] < 8.

Definition 3.3. The trivial solution of Eq(3.4)is called asymptotically quasistable if it is stable and the solution of
Eq.(3.4)is asymptotically quasitrial for each initial conditior(3.5).

Theorem 3.1. For asmall enoughr > 0 each bounded solution of E(B.4)with initial condition(3.5)is asynptot-
ically quasitrivial.

Proof. Using the general method of Lyapumdunctional construction10,11], we will construct a Lyapunov
functional for Eq.(3.4)in the formV (t) = V1(t) + Va(t), where

Vit) = (x(t) — e x(t — )% t=to, (3.6)
is a Lyapunov functional for the auxiliary linear difference equation
Xt +17)=X(1) +eTXt —x(t—1)), t>r (3.7)

Indeed, for Eq(3.7)we haveAVi(t) = 0.
CalculatingA V4 (t) for Eq.(3.4)via (3.6), we obtain

AVi(t) = (X(t 4+ 1) — €T (1)? — (X(t) — e *TX(t — 7))?
= (X(t) — e *TX(t — 1) — ar?f (X(1))% — (X(t) — e *TX(t — 1))?
= at? f2(x(t)) — 2at?f (x(t))X(t) + 2ar2e " f (x(1)X(t — 7). (3.8)
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UsingLemma 1.ffor« = m;j, B = y = 1, from(3.8)we have

AVi(t) < a2t f2(x(t)) — 2ar?f (x(t)x(t)

K
mj 1
2are " i ——xMitly = Mt . 3.9

+2ar ;“'(miH O+ t—1) (3.9)

Put

Ko o
Vo(t) = 2are ™" Z m-—JlrlxmiH(t —1), t>to. (3.10)
|

i=1
It follows from (2.3)thatVa(t) > 0. Egimating AV (t) = AVi(t) + AVz(t), via (3.9)and(3.10)we obtain
AV (1) < a®t*f2(x(t)) — 2ar?(1 — e *7) f (X(1))X(t)
< —pi(r) fa(x(®) (B2(r) — fa(x(1))), t >to, (3.12)
where
2(1—e™7)

pro) =a%th, pa(r) ==

3

K K (3.12)
f1(x) = Zaixmi“ >0, fa(x) = z:ozixmi*1 >0, x#0.
i—1 i—1

Suppose that there exists > 0, such that thedution of Eq.(3.4) is uniformly bounded forr € [0, 1], i.e.,
IX(t)] < M, t > to. Since fa(x) is a function that is non-decreasing for> 0 andlim,_,o B2(t) = oo, there ejsts a
small enoughr > 0 such thatfo(x(t)) < f2(M) < B2(t). From here an@3.11)it follows that

AV () < —n(7) fa(x®)), t=>to, (3.13)
wherey1(t) = B1(t)(B2(r) — f2(M)) > 0. Rewrite (3.13)fort + jt,i.e.,
AV(E+j7) < —pyi(r) fix(t+jr)), t>to, j=0,1,...,

and sumitfromj =0toj =i — 1:
i—1
Vit+it)—V(®) < —Vl(f)z fix(t+jr)), t=>to. (3.14)
j=0

From here it follows that

o0

yi(m) Y fixt+ 1) V() <00, t>to.

j=0
Therefore, lim_ « f1(x(t 4 j7)) = 0 for eacht > tp. Due to(2.3)and(3.12)
0<axX™™(t+j7r) < fix(t+j7)), t=>to

So, limj_,  [X(t 4+ j7)| = O for eacht > to, i.e., the solution of Eq(3.4)is asymptotically quasitrivial. The theorem
is proven. O

Theorem 3.2. The trivial solution of Eq(3.4)is stable.

Proof. We will use hee the finctionalV (t), that wasconstructed in the proof dfheorem 3.1Via (3.14)we have
Vi+it)<V@®), i=01,...,t>t.

Puttingt = to + j 7 + swith j = [(=] ands € [0, 7), we obtain

V(tg+ (j +i)T+5) <V({)=V(to+ jT+5) < V(g +5). (3.15)
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From(3.6)we have

Vito+S) = (X(to+S) — € *"d(to+ 5 — 1))?
< 2(x(to + 9)I> + e 27|1p1?). (3.16)

It follows from Eq.(3.4)andtg +s— t = 7 + S € [1, tp) that
IX(to+ )| < (L+€7)|p(r +9)| +at?[f (@(r +9)| + e |p(9)].
Due to(2.2),

K
(@0 = Zai lp@)I™ < Callgll”, 6 €I0,1tol,
i—1

where
K 1 if o <1,
- i=1,..,k

Therefore,

X(to+9)| < Call¢ll”,  Cs=1+2e"" +ar’Cy,
and using3.16) we obtain

Vi(to+9) < 2(C3lIg11% + e #7[1¢]%). (3.17)
It follows from (3.10)that

~

Vallo+9) = 2ar’e™" 3 g™ ot — ) = Callgl ", (3.18)
where
Ko o
Cy = 2ar%e ™" .le o —Ilr T
From(3.15) (3.17)and(3.18) for the functionalV (t) = V1(t) + Va(t) there follows the inequality
V() <V(to+9) < Collgl®, t=to, (3.19)

Co=C1+ 2(C§ + e_ZM).
Via (3.12) (3.14)and(3.19)we obtain
y@ax®)™ < p1(0) fL(x (1))
i—1

yi(m) Y fix(t+ 1) < V(1) < Collgl®. t=to.
j=0

IA

1
So, for arbitrarg > 0 there eists as = (Cglyl(r)alemﬁl) * < 0such bat|x(t)| < e, if ||¢|| < 8. The theorem

is proven. 0O

Corollary 3.1. For asmall enoughr > 0 the trivial solution of Eq.(3.4)is asymptotically quasistable.
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