Control of Queueing Systems in Heavy Traffic

PhD Presentation, 2007

Gennady Shaikhet

Technion, Israel

Advisors: R. Atar and A. Mandelbaum

Control of Queueing Systems – p. 1/19

Queueing Model

- $I \ge 1 \text{ customer classes}$
- $J \ge 1$ service stations
- Arrivals for class *i*:
 renewal processes, rate λ_i
- Servers in station j: N_j (stat. identical)
- Service of class-*i* by server-*j*: exponential, rate μ_{ij}

Control of Queueing Systems – p. 2/19

Queueing Model

- $I \ge 1 \text{ customer classes}$
- $\textbf{J} \geq 1$ service stations
- Arrivals for class *i*:
 renewal processes, rate λ_i
- Servers in station j: N_j (stat. identical)
- Service of class-*i* by server-*j*: exponential, rate μ_{ij}

Control: has to be specified to complete the description:
 Routing customers
 Scheduling servers

Control of Queueing Systems – p. 2/19

Heavy Traffic Regime

Solution Consider the sequence of systems, indexed by $n \uparrow \infty$

$$\lambda_i^n = n\lambda_i + O(\sqrt{n})$$

$$\quad n\mu_{ij}^n = n\mu_{ij} + O(\sqrt{n})$$

$$N_j^n = n\nu_j + O(\sqrt{n})$$

Control of Queueing Systems - p. 3/19

Heavy Traffic Regime

Consider the sequence of systems, indexed by $n \uparrow \infty$ $\lambda_i^n = n\lambda_i + O(\sqrt{n})$ $n\mu_{ij}^n = n\mu_{ij} + O(\sqrt{n})$ $N_j^n = n\nu_j + O(\sqrt{n})$ $N_j^n = n\nu_j + O(\sqrt{n})$

• The fluid (order *n*) level parameters λ, μ, ν guarantee that the system is critically loaded (busy on the fluid level).

Diffusion Scaling

Define:

 $X_i^n(t)$ = number of class-*i* customers in the system at time *t*,

 $Y_i^n(t)$ = number of class-*i* customers in the queue at time *t*,

 $Z_{i}^{n}(t)$ = number of idle servers in station j at time t,

 $\Psi_{ij}^{n}(t)$ = number of class-*i* customers in service in station *j* at time *t*,

Scale them around the static fluid: ψ_{ij}^* and x_i^* :

$$\hat{X}_{i}^{n}(t) = n^{-1/2} (X_{i}^{n}(t) - nx_{i}^{*}), \quad \hat{\Psi}_{ij}^{n}(t) = n^{-1/2} (\Psi_{ij}^{n}(t) - n\psi_{ij}^{*}).$$
$$\hat{Y}_{i}^{n}(t) = n^{-1/2} Y_{i}^{n}(t), \qquad \hat{Z}_{i}^{n}(t) = n^{-1/2} Z_{i}^{n}(t).$$

Control of Queueing Systems - p. 4/19

First Observation: Diffusion Model

The following relation holds for all $t \ge 0$:

$$\hat{X}^{n}(t) = \hat{X}^{n}(0) + \hat{W}^{n}(t) + \int_{0}^{t} b(\hat{X}^{n}(s), U^{n}(s))ds + \sum_{c \in \mathcal{C}} m_{c}^{n} \int_{0}^{t} \hat{\Psi}_{c}^{n}(s)ds$$

Here U^n is a process with values in some compact space.

Also $0 \leq \hat{\Psi}_c^n \leq kn^{1/2}$ for some k > 0.

First Observation: Diffusion Model

The following relation holds for all $t \ge 0$:

$$\hat{X}^{n}(t) = \hat{X}^{n}(0) + \hat{W}^{n}(t) + \int_{0}^{t} b(\hat{X}^{n}(s), U^{n}(s))ds + \sum_{c \in \mathcal{C}} m_{c}^{n} \int_{0}^{t} \hat{\Psi}_{c}^{n}(s)ds$$

Here U^n is a process with values in some compact space.

Also $0 \leq \hat{\Psi}_c^n \leq kn^{1/2}$ for some k > 0.

As $n \to \infty$, the diffusion model can be rewritten as

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in C} m_c \eta_c(t)$$

For each c, η_c is nondecreasing with $\eta_c(0) \ge 0$.

Control of Queueing Systems - p. 5/19

First Observation: Diffusion Model

The following relation holds for all $t \ge 0$:

$$\hat{X}^{n}(t) = \hat{X}^{n}(0) + \hat{W}^{n}(t) + \int_{0}^{t} b(\hat{X}^{n}(s), U^{n}(s))ds + \sum_{c \in \mathcal{C}} m_{c}^{n} \int_{0}^{t} \hat{\Psi}_{c}^{n}(s)ds$$

Here U^n is a process with values in some compact space.

Also $0 \leq \hat{\Psi}_c^n \leq kn^{1/2}$ for some k > 0.

As $n \to \infty$, the diffusion model can be rewritten as

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in C} m_c \eta_c(t)$$

For each c, η_c is nondecreasing with $\eta_c(0) \ge 0$.

Controlled diffusion with drift and singular control.

Control of Queueing Systems – p. 5/19

Consider a singular controlled diffusion

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t).$$

Control of Queueing Systems - p. 6/19

Consider a singular controlled diffusion

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t).$$

The singular term η can restrict X to a certain domain.

Consider a singular controlled diffusion

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t).$$

- The singular term η can restrict X to a certain domain.
- It can happen that X can be restricted to a domain, corresponding to all queues being empty

Control of Queueing Systems – p. 6/19

Consider a singular controlled diffusion

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t).$$

- The singular term η can restrict X to a certain domain.
- It can happen that X can be restricted to a domain, corresponding to all queues being empty

It happens when $e \cdot m_c < 0$ for some c.

Control of Queueing Systems – p. 6/19

Connection to Original (prelimit) Model

Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:

Connection to Original (prelimit) Model

Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:

Preemptive (P) regime:

a service to a customer can be interrupted and resumed at a later time (possibly in a different station).

Connection to Original (prelimit) Model

Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:

Preemptive (P) regime:

a service to a customer can be interrupted and resumed at a later time (possibly in a different station).

Non-preemptive (NP) regime:

service to a customer can not be interrupted before it is completed

Asymptotic Null Controllability

Null controllability: There exist a sequence of policies (both P and NP), s.t. for any given $0 < \varepsilon < T < \infty$,

$$\lim_{n \to \infty} P\Big(Y^n(t) = 0 \text{ for all } t \in [\varepsilon, T]\Big) = 1.$$

Control of Queueing Systems – p. 8/19

Asymptotic Null Controllability

Null controllability: There exist a sequence of policies (both P and NP), s.t. for any given $0 < \varepsilon < T < \infty$,

$$\lim_{n \to \infty} P\Big(Y^n(t) = 0 \text{ for all } t \in [\varepsilon, T]\Big) = 1.$$

Under weaker conditions, we have

Weak null controllability: There exist a sequence of P policies, under which for any fixed $0 < T < \infty$,

$$\int_0^T \mathbf{1}_{\{e\cdot Y^n(s)>0\}} ds \to 0 \quad \text{in probability, as } n \to \infty,$$

Critically Loaded System. Fluid View

An example of critically loaded system:

$$\lambda_1 = 7.5, \quad \lambda_2 = 2$$

$$\mu_{11} = 4, \quad \mu_{12} = 7$$

 $\mu_{21} = 2, \quad \mu_{22} = 4$

$$\nu_1 = 1, \quad \nu_2 = 1$$

 $\begin{aligned} \xi_{11}^* &= 1, \ \xi_{12}^* &= 0.5 \\ \xi_{21}^* &= 0, \ \xi_{22}^* &= 0.5 \end{aligned}$

 $\psi_{ij}^* = \nu_j \xi_{ij}^*.$

Any reallocation will cause some of the classes to explode.

Control of Queueing Systems - p. 9/19

Basic and non-basic activities

Activities: pairs (i, j), with $\mu_{ij} > 0$

Activities can be:

basic (BA), if $\xi_{ij}^* > 0$ non-basic, if $\xi_{ij}^* = 0$

In the example : basic : (1,1), (1,2), (2,2)non-basic : (2,1)

Control of Queueing Systems - p. 10/19

Basic and non-basic activities

Activities: pairs (i, j), with $\mu_{ij} > 0$

Activities can be:

basic (BA), if $\xi_{ij}^* > 0$ non-basic, if $\xi_{ij}^* = 0$

In the example : basic : (1,1), (1,2), (2,2)non-basic : (2,1)

Usage of <u>non-basic</u> activities is <u>a</u> reason for a new behaviour.

 \checkmark Consider the following massive (order n) customers transfers:

Control of Queueing Systems - p. 11/19

 \checkmark Consider the following massive (order n) customers transfers:

Control of Queueing Systems - p. 11/19

Control of Queueing Systems - p. 11/19

Performed instantaneously, such transfers may result in abrupt change of a total service rate.

- Performed instantaneously, such transfers may result in abrupt change of a total service rate.
- The above reallocation does not generate immediate queues.
 The reallocation is performed via the closed simple path (simple cycle).

Closed simple path - a cyclic graph, with one non-basic activity, the rest are basic.

Control of Queueing Systems – p. 11/19

Changing the Fluid Throughput

Total incoming rate: 7.5 + 2 = 9.5

Total processing rate:

 $4 \cdot 1 + 7 \cdot 0.5 + 4 \cdot 0.5 = 9.5$

(Total) output equals to input.

Control of Queueing Systems - p. 12/19

Changing the Fluid Throughput

Total incoming rate: 7.5 + 2 = 9.5Total processing rate:

 $4 \cdot 1 + 7 \cdot 0.5 + 4 \cdot 0.5 = 9.5$

(Total) output equals to input.

Total incoming rate: 7.5 + 2 = 9.5Total processing rate:

 $4 \cdot 0.75 + 7 \cdot 0.75 + 2 \cdot 0.25 + 4 \cdot 0.25 = 9.75.$

(Total) output is greater than input.

Control of Queueing Systems – p. 12/19

Changing the Fluid Throughput

Total incoming rate: 7.5 + 2 = 9.5Total processing rate:

 $4 \cdot 1 + 7 \cdot 0.5 + 4 \cdot 0.5 = 9.5$

Total incoming rate: 7.5 + 2 = 9.5Total processing rate:

 $4 \cdot 0.75 + 7 \cdot 0.75 + 2 \cdot 0.25 + 4 \cdot 0.25 = 9.75.$

(Total) output equals to input.

(Total) output is greater than input.

The existence of a closed simple path, that increases the throughput, implies (strong) null controllability.

Control of Queueing Systems – p. 12/19

Activities and non-activities

Activities: pairs (i, j), with $\mu_{ij} > 0$

In the example :

Activities : (1, 1), (1, 2), (2, 2)Non-activity : (2, 1)

Control of Queueing Systems – p. 13/19

Activities and non-activities

Activities: pairs (i, j), with $\mu_{ij} > 0$

In the example :

Activities : (1, 1), (1, 2), (2, 2)Non-activity : (2, 1)

"Usage" of <u>non-activities</u> may also imply a new behaviour.

Control of Queueing Systems - p. 13/19

 \checkmark Consider the following massive (order n) customers transfers:

Control of Queueing Systems - p. 14/19

 \checkmark Consider the following massive (order n) customers transfers:

 \checkmark Consider the following massive (order n) customers transfers:

Control of Queueing Systems - p. 14/19

Control of Queueing Systems - p. 14/19
Reallocation via the non-activity

The above reallocation generates immediate queues.
The reallocation is performed via the open simple path (imaginary cycle).

Open simple path - a cyclic graph, with one non-activity, the rest are basic activities.

Control of Queueing Systems - p. 14/19

Reallocation via the non-activity

The above reallocation generates immediate queues.
The reallocation is performed via the open simple path (imaginary cycle).

Open simple path - a cyclic graph, with one non-activity, the rest are basic activities.

The existence of an open simple path, that increases the throughput, implies weak null controllability.

Control of Queueing Systems – p. 14/19

Recall the Heavy Traffic requirements:

$$\sum_{i} \xi_{ij}^* = 1, \quad \forall j \in \mathcal{J}, \quad \sum_{j} \mu_{ij} \nu_j \xi_{ij}^* = \lambda_i, \quad x_i^* := \sum_{j \in \mathcal{J}} \nu_j \xi_{ij}^* \quad \forall i \in \mathcal{I}.$$

Control of Queueing Systems - p. 15/19

Recall the Heavy Traffic requirements:

$$\sum_{i} \xi_{ij}^* = 1, \quad \forall j \in \mathcal{J}, \quad \sum_{j} \mu_{ij} \nu_{j} \xi_{ij}^* = \lambda_i, \quad x_i^* := \sum_{j \in \mathcal{J}} \nu_{j} \xi_{ij}^* \quad \forall i \in \mathcal{I}.$$

We will say that the static fluid model is throughput optimal if

Whenever
$$\sum_{i} \xi_{ij} \leq 1$$
, $\forall j \in \mathcal{J}$ and $\sum_{j \in \mathcal{J}} \nu_{j} \xi_{ij} \leq x_{i}^{*}$, $\forall i \in \mathcal{I}$, one has

$$\sum_{i,j)\in\mathcal{E}}\mu_{ij}\nu_j\xi_{ij}\leq\sum_{i\in\mathcal{I}}\lambda_i.$$

Control of Queueing Systems - p. 15/19

Recall the Heavy Traffic requirements:

$$\sum_{i} \xi_{ij}^* = 1, \quad \forall j \in \mathcal{J}, \quad \sum_{j} \mu_{ij} \nu_{j} \xi_{ij}^* = \lambda_i, \quad x_i^* := \sum_{j \in \mathcal{J}} \nu_{j} \xi_{ij}^* \quad \forall i \in \mathcal{I}.$$

We will say that the static fluid model is throughput optimal if

Whenever
$$\sum_{i} \xi_{ij} \leq 1$$
, $\forall j \in \mathcal{J}$ and $\sum_{j \in \mathcal{J}} \nu_{j} \xi_{ij} \leq x_{i}^{*}$, $\forall i \in \mathcal{I}$, one has
 $\sum_{(i,j) \in \mathcal{E}} \mu_{ij} \nu_{j} \xi_{ij} \leq \sum_{i \in \mathcal{I}} \lambda_{i}.$

Recall the Heavy Traffic requirements:

$$\sum_{i} \xi_{ij}^* = 1, \quad \forall j \in \mathcal{J}, \quad \sum_{j} \mu_{ij} \nu_j \xi_{ij}^* = \lambda_i, \quad x_i^* := \sum_{j \in \mathcal{J}} \nu_j \xi_{ij}^* \quad \forall i \in \mathcal{I}.$$

We will say that the static fluid model is throughput optimal if

Whenever
$$\sum_{i} \xi_{ij} \leq 1$$
, $\forall j \in \mathcal{J}$ and $\sum_{j \in \mathcal{J}} \nu_j \xi_{ij} \leq x_i^*$, $\forall i \in \mathcal{I}$, one has

$$\sum_{(i,j)\in\mathcal{E}}\mu_{ij}
u_j\xi_{ij}\leq\sum_{i\in\mathcal{I}}\lambda_i.$$

Theorem: The following statements are equivalent:

1. The static fluid model is not throughput optimal;

Recall the Heavy Traffic requirements:

$$\sum_{i} \xi_{ij}^* = 1, \quad \forall j \in \mathcal{J}, \quad \sum_{j} \mu_{ij} \nu_{j} \xi_{ij}^* = \lambda_i, \quad x_i^* := \sum_{j \in \mathcal{J}} \nu_{j} \xi_{ij}^* \quad \forall i \in \mathcal{I}.$$

We will say that the static fluid model is throughput optimal if

Whenever
$$\sum_{i} \xi_{ij} \leq 1$$
, $\forall j \in \mathcal{J}$ and $\sum_{j \in \mathcal{J}} \nu_j \xi_{ij} \leq x_i^*$, $\forall i \in \mathcal{I}$, one has

$$\sum_{(i,j)\in\mathcal{E}}\mu_{ij}
u_j\xi_{ij}\leq\sum_{i\in\mathcal{I}}\lambda_i.$$

Theorem: The following statements are equivalent:

- 1. The static fluid model is not throughput optimal;
- 2. There exists a throughput increasing simple path (either open or closed).

Control of Queueing Systems – p. 15/19

Pool–Dependent Service Rates

A multi–dimensional controlled diffusion:

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s))ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t), \qquad X \in \mathbb{R}^I$$

Control of Queueing Systems - p. 16/19

Pool–Dependent Service Rates

A multi–dimensional controlled diffusion:

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s))ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t), \qquad X \in \mathbb{R}^I$$

Can be reduced to a 1-dimensional

$$\breve{X}(t) = x_e + W_e(t) + \mu_{min} \int_0^t \breve{X}^-(s) ds - \int_0^t [\theta \cdot u(s)] \breve{X}^+(s) ds, \quad \breve{X} \in \mathbb{R}$$

Control of Queueing Systems - p. 16/19

Pool–Dependent Service Rates

A multi–dimensional controlled diffusion:

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s))ds + \sum_{c \in \mathcal{C}} m_c \eta_c(t), \qquad X \in \mathbb{R}^I$$

Can be reduced to a 1-dimensional

$$\breve{X}(t) = x_e + W_e(t) + \mu_{min} \int_0^t \breve{X}^-(s) ds - \int_0^t [\theta \cdot u(s)] \breve{X}^+(s) ds, \quad \breve{X} \in \mathbb{R}$$

In particular cases, asymptotically optimal control policies may be explicitly obtained.

Future direction: singular control

Extend the existing theory to cover the controlled diffusions, arising from queues:

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in C} m_c \eta_c(t)$$

Control of Queueing Systems - p. 17/19

Future direction: singular control

Extend the existing theory to cover the controlled diffusions, arising from queues:

$$X(t) = X(0) + W(t) + \int_0^t b(X(s), U(s)) ds + \sum_{c \in C} m_c \eta_c(t)$$

Study the models with relatively small stations, like:

$$X(t) = X(0) + W(t) + \mu_1 \int_0^t (X(s) - \Psi_2(s))^- ds - \mu_2 \int_0^t \Psi_2(s) ds$$
$$\Psi_2(t) = \Psi_2(0) - \mu_2 \int_0^t \Psi_2(s) ds + B(t), \qquad 0 \le \Psi_2(t) \le 1.$$

Control of Queueing Systems – p. 17/19

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt,$$

Control of Queueing Systems - p. 18/19

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt_y$$

The case $c_1 > c_2$ and $\theta_1 > \theta_2$ introduces an interesting trade–off:

Control of Queueing Systems – p. 18/19

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt,$$

The case $c_1 > c_2$ and $\theta_1 > \theta_2$ introduces an interesting trade–off:

1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt,$$

The case $c_1 > c_2$ and $\theta_1 > \theta_2$ introduces an interesting trade–off:

- 1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...
- 2. Keep class 2 in queue: low cost rate, but also lower abandonment rate.

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt_y$$

The case $c_1 > c_2$ and $\theta_1 > \theta_2$ introduces an interesting trade–off:

- 1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...
- 2. Keep class 2 in queue: low cost rate, but also lower abandonment rate.
- A reduction to one-dim control problem: bang-bang policy (state-dependent) keep all the queue either in class 1, or in class 2

Control of Queueing Systems – p. 18/19

2 classes, 2 stations + abandonments (θ_1 and θ_2).

Consider the problem of minimizing linear combinations of queues:

$$V(x) = \inf_{\pi} E_x^{\pi} \int_0^\infty e^{-\gamma t} [c_1 Y_1(t) + c_2 Y_2(t)] dt_y$$

The case $c_1 > c_2$ and $\theta_1 > \theta_2$ introduces an interesting trade–off:

- 1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...
- 2. Keep class 2 in queue: low cost rate, but also lower abandonment rate.
- A reduction to one-dim control problem: bang-bang policy (state-dependent) keep all the queue either in class 1, or in class 2

Explicit solution???

Control of Queueing Systems – p. 18/19

• Consider 2×3 queueing system with $\lambda = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, $\mu = \begin{pmatrix} 3 & 10 & 1 \\ 1 & 4 & 2 \end{pmatrix}$.

Control of Queueing Systems – p. 19/19

$$\textbf{Orbit} Consider 2 \times 3 \text{ queueing system with } \lambda = \begin{pmatrix} 8 \\ 4 \end{pmatrix}, \quad \mu = \begin{pmatrix} 3 & 10 & 1 \\ 1 & 4 & 2 \end{pmatrix}.$$

Staffing of $\nu = (0.3, 0.3, 6.1)'$: throughput is optimal (hence, no null controllability):

Control of Queueing Systems - p. 19/19

• Consider
$$2 \times 3$$
 queueing system with $\lambda = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, $\mu = \begin{pmatrix} 3 & 10 & 1 \\ 1 & 4 & 2 \end{pmatrix}$.

Staffing of $\nu = (0.3, 0.3, 6.1)'$: throughput is optimal (hence, no null controllability):

Staffing of $\nu = (1, 1, 1)'$: throughput is <u>not</u> optimal (as a result, null controllability):

Control of Queueing Systems - p. 19/19

• Consider
$$2 \times 3$$
 queueing system with $\lambda = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, $\mu = \begin{pmatrix} 3 & 10 & 1 \\ 1 & 4 & 2 \end{pmatrix}$.

Staffing of $\nu = (0.3, 0.3, 6.1)'$: throughput is optimal (hence, no null controllability):

Staffing of $\nu = (1, 1, 1)'$: throughput is <u>not</u> optimal (as a result, null controllability):

How to characterize a null controllability staffing?

Control of Queueing Systems – p. 19/19