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Queueing Model

I � 1 customer classesJ � 1 service stations

Arrivals for class i:
renewal processes, rate �i
Servers in station j:Nj (stat. identical)

Service of class-i by server-j:
exponential, rate �ij
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Queueing Model

I � 1 customer classesJ � 1 service stations

Arrivals for class i:
renewal processes, rate �i
Servers in station j:Nj (stat. identical)

Service of class-i by server-j:
exponential, rate �ij

i
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Control: has to be specified to complete the description:

Routing customers Scheduling servers
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Heavy Traffic Regime
Consider the sequence of systems, indexed by n " 1

�ni = n�i +O(pn)

n�nij = n�ij +O(pn)

Nnj = n�j +O(pn)
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Heavy Traffic Regime
Consider the sequence of systems, indexed by n " 1

�ni = n�i +O(pn)

n�nij = n�ij +O(pn)

Nnj = n�j +O(pn)
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The fluid (order n) level parameters �; �; � guarantee that the

system is critically loaded (busy on the fluid level).
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Diffusion Scaling
Define:Xni (t) = number of class-i customers in the system at time t,Y ni (t) = number of class-i customers in the queue at time t,Znj (t) = number of idle servers in station j at time t,	nij(t) = number of class-i customers in service in station j at time t,
Scale them around the static fluid:  �ij and x�i :^Xni (t) = n�1=2(Xni (t)� nx�i ); ^	nij(t) = n�1=2(	nij(t)� n �ij):^Y ni (t) = n�1=2Y ni (t); ^Zni (t) = n�1=2Zni (t):
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First Observation: Diffusion Model

The following relation holds for all t � 0:^Xn(t) = ^Xn(0) + ^Wn(t) + Z t0 b( ^Xn(s); Un(s))ds+X
2Cmn
 Z t0 ^	n
 (s)ds
Here Un is a process with values in some compact space.

Also 0 � ^	n
 � kn1=2 for some k > 0.

n!1 X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t)
 �
 �
(0) � 0
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2Cmn
 Z t0 ^	n
 (s)ds
Here Un is a process with values in some compact space.

Also 0 � ^	n
 � kn1=2 for some k > 0.

As n!1, the diffusion model can be rewritten asX(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t)

For each 
, �
 is nondecreasing with �
(0) � 0.
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First Observation: Diffusion Model

The following relation holds for all t � 0:^Xn(t) = ^Xn(0) + ^Wn(t) + Z t0 b( ^Xn(s); Un(s))ds+X
2Cmn
 Z t0 ^	n
 (s)ds
Here Un is a process with values in some compact space.

Also 0 � ^	n
 � kn1=2 for some k > 0.

As n!1, the diffusion model can be rewritten asX(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t)

For each 
, �
 is nondecreasing with �
(0) � 0.

Controlled diffusion with drift and singular control.
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Effect of Singular Component
Consider a singular controlled diffusion

X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t):

� XX
e �m
 < 0 


Control of Queueing Systems – p. 6/19



Effect of Singular Component
Consider a singular controlled diffusion

X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t):

The singular term � can restrict X to a certain domain.

X
e �m
 < 0 
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Effect of Singular Component
Consider a singular controlled diffusion

X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t):

The singular term � can restrict X to a certain domain.

It can happen that X can be restricted to a domain,

corresponding to all queues being empty
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Effect of Singular Component
Consider a singular controlled diffusion

X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds +X
2C m
�
(t):

The singular term � can restrict X to a certain domain.

It can happen that X can be restricted to a domain,

corresponding to all queues being empty

m 2

m
1

−X m1

1m

It happens when e �m
 < 0 for some 
.
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Connection to Original (prelimit) Model

Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:
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Preemptive (P) regime:

a service to a customer can be interrupted and resumed at a

later time (possibly in a different station).
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Connection to Original (prelimit) Model

Goal: Find a policy,

that asymptotically (large n) achieves empty queues.

For two types of control policies:

Preemptive (P) regime:

a service to a customer can be interrupted and resumed at a

later time (possibly in a different station).

Non-preemptive (NP) regime:

service to a customer can not be interrupted before it is

completed
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Asymptotic Null Controllability
Null controllability: There exist a sequence of policies (both P

and NP), s.t. for any given 0 < " < T <1,limn!1P�Y n(t) = 0 for all t 2 ["; T ℄� = 1:

0 < T <1Z T0 1fe�Y n(s)>0gds! 0 n!1;
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Asymptotic Null Controllability
Null controllability: There exist a sequence of policies (both P

and NP), s.t. for any given 0 < " < T <1,limn!1P�Y n(t) = 0 for all t 2 ["; T ℄� = 1:
Under weaker conditions, we have

Weak null controllability: There exist a sequence of P

policies, under which for any fixed 0 < T <1,Z T0 1fe�Y n(s)>0gds! 0 in probability, as n!1;
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Critically Loaded System. Fluid View

An example of critically loaded system:

�1 = 7:5; �2 = 2�11 = 4; �12 = 7�21 = 2; �22 = 4�1 = 1; �2 = 1

100%  0% 50%  50%��11 = 1; ��12 = 0:5��21 = 0; ��22 = 0:5 �ij = �j��ij .

Any reallocation will cause some of the classes to explode.
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Basic and non-basic activities
Activities: pairs (i; j), with �ij > 0

Activities can be:

basic (BA), if ��ij > 0

non-basic, if ��ij = 0

In the example :

basic : (1; 1), (1; 2), (2; 2)
non-basic : (2; 1) 100%  0% 50%  50%
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Basic and non-basic activities
Activities: pairs (i; j), with �ij > 0

Activities can be:

basic (BA), if ��ij > 0

non-basic, if ��ij = 0

In the example :

basic : (1; 1), (1; 2), (2; 2)
non-basic : (2; 1) 100%  0% 50%  50%

Usage of non–basic activities is a reason for a new
behaviour.
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Reallocation via the non–basic activity

Consider the following massive (order n) customers transfers:
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Reallocation via the non–basic activity

Consider the following massive (order n) customers transfers:

50% 50%100% 0% 75% 25%75% 25% 100% 0%50% 50%

Performed instantaneously, such transfers may result in abrupt change of a total
service rate.
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Reallocation via the non–basic activity

Consider the following massive (order n) customers transfers:

50% 50%100% 0% 75% 25%75% 25% 100% 0%50% 50%

Performed instantaneously, such transfers may result in abrupt change of a total
service rate.

The above reallocation does not generate immediate queues.
The reallocation is performed via the closed simple path (simple cycle).

Closed simple path - a cyclic graph, with one non–basic activity, the rest are basic.
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Changing the Fluid Throughput�1 = 7:5; �2 = 2; �11 = 4; �12 = 7; �21 = 2; �22 = 4
100%  0% 50%  50%

Total incoming rate: 7:5 + 2 = 9:5
Total processing rate:4 � 1 + 7 � 0:5 + 4 � 0:5 = 9:5
(Total) output equals to input.

7:5 + 2 = 9:5

4 � 0:75 + 7 � 0:75+2 � 0:25 + 4 � 0:25 = 9:75:
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75% 25% 75%  25%

Total incoming rate: 7:5 + 2 = 9:5

Total processing rate:4 � 0:75 + 7 � 0:75+2 � 0:25 + 4 � 0:25 = 9:75:

(Total) output is greater than input.
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Changing the Fluid Throughput�1 = 7:5; �2 = 2; �11 = 4; �12 = 7; �21 = 2; �22 = 4
100%  0% 50%  50%

Total incoming rate: 7:5 + 2 = 9:5
Total processing rate:4 � 1 + 7 � 0:5 + 4 � 0:5 = 9:5
(Total) output equals to input.

75% 25% 75%  25%

Total incoming rate: 7:5 + 2 = 9:5

Total processing rate:4 � 0:75 + 7 � 0:75+2 � 0:25 + 4 � 0:25 = 9:75:

(Total) output is greater than input.

The existence of a closed simple path, that increases the throughput,
implies (strong) null controllability.
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Activities and non–activities

Activities: pairs (i; j), with �ij > 0

In the example :

Activities : (1; 1), (1; 2), (2; 2)
Non–activity : (2; 1)

50% 50%100% 0%
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Activities and non–activities

Activities: pairs (i; j), with �ij > 0

In the example :

Activities : (1; 1), (1; 2), (2; 2)
Non–activity : (2; 1)

50% 50%100% 0%

"Usage" of non–activities may also imply a new behaviour.
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Reallocation via the non–activity

Consider the following massive (order n) customers transfers:
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Reallocation via the non–activity

Consider the following massive (order n) customers transfers:

50% 50%100% 0%
75% 25%75% 0%

25%

100% 0%50%  0%

50%

The above reallocation generates immediate queues.
The reallocation is performed via the open simple path (imaginary cycle).

Open simple path - a cyclic graph, with one non–activity, the rest are basic activities.

Control of Queueing Systems – p. 14/19



Reallocation via the non–activity

Consider the following massive (order n) customers transfers:

50% 50%100% 0%
75% 25%75% 0%

25%

100% 0%50%  0%

50%

The above reallocation generates immediate queues.
The reallocation is performed via the open simple path (imaginary cycle).

Open simple path - a cyclic graph, with one non–activity, the rest are basic activities.

The existence of an open simple path, that increases the throughput,
implies weak null controllability.
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Throughput Optimality

Recall the Heavy Traffic requirements:Xi ��ij = 1; 8j 2 J ; Xj �ij�j��ij = �i; x�i := Xj2J �j��ij 8i 2 I:

Xi �ij � 1; 8j 2 J Xj2J �j�ij � x�i ; 8 i 2 I;X(i;j)2E �ij�j�ij �Xi2I �i:
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Whenever
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Whenever

Xi �ij � 1; 8j 2 J and

Xj2J �j�ij � x�i ; 8 i 2 I; one hasX(i;j)2E �ij�j�ij �Xi2I �i:
Theorem: The following statements are equivalent:
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Throughput Optimality

Recall the Heavy Traffic requirements:Xi ��ij = 1; 8j 2 J ; Xj �ij�j��ij = �i; x�i := Xj2J �j��ij 8i 2 I:
We will say that the static fluid model is throughput optimal if

Whenever

Xi �ij � 1; 8j 2 J and

Xj2J �j�ij � x�i ; 8 i 2 I; one hasX(i;j)2E �ij�j�ij �Xi2I �i:
Theorem: The following statements are equivalent:

1. The static fluid model is not throughput optimal;
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Throughput Optimality

Recall the Heavy Traffic requirements:Xi ��ij = 1; 8j 2 J ; Xj �ij�j��ij = �i; x�i := Xj2J �j��ij 8i 2 I:
We will say that the static fluid model is throughput optimal if

Whenever

Xi �ij � 1; 8j 2 J and

Xj2J �j�ij � x�i ; 8 i 2 I; one hasX(i;j)2E �ij�j�ij �Xi2I �i:
Theorem: The following statements are equivalent:

1. The static fluid model is not throughput optimal;

2. There exists a throughput increasing simple path (either open or closed).
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Pool–Dependent Service Rates
A multi–dimensional controlled diffusion:X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t); X 2 RI

�X(t) = xe +We(t) + �min Z t0 �X�(s)ds� Z t0 [� � u(s)℄ �X+(s)ds; �X 2 R
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Pool–Dependent Service Rates
A multi–dimensional controlled diffusion:X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t); X 2 RI

Can be reduced to a 1–dimensional�X(t) = xe +We(t) + �min Z t0 �X�(s)ds� Z t0 [� � u(s)℄ �X+(s)ds; �X 2 R

In particular cases, asymptotically optimal control policies may be explicitly obtained.
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Future direction: singular control

Extend the existing theory to cover the controlled diffusions, arising from queues:X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t)

X(t) = X(0) +W (t) + �1 Z t0 (X(s)�	2(s))�ds� �2 Z t0 	2(s)ds	2(t) = 	2(0)� �2 Z t0 	2(s)ds+ B(t); 0 � 	2(t) � 1:
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Future direction: singular control

Extend the existing theory to cover the controlled diffusions, arising from queues:X(t) = X(0) +W (t) + Z t0 b(X(s); U(s))ds+X
2Cm
�
(t)
Study the models with relatively small stations, like:

n n

X(t) = X(0) +W (t) + �1 Z t0 (X(s)�	2(s))�ds� �2 Z t0 	2(s)ds	2(t) = 	2(0)� �2 Z t0 	2(s)ds+B(t); 0 � 	2(t) � 1:
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Future direction: pool–dependent service

2 classes, 2 stations + abandonments (�1 and �2).

Consider the problem of minimizing linear combinations of queues:V (x) = inf� E�x Z 10 e�
t[
1Y1(t) + 
2Y2(t)℄dt;


1 > 
2 �1 > �2
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2 and �1 > �2 introduces an interesting trade–off:
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The case 
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Control of Queueing Systems – p. 18/19



Future direction: pool–dependent service

2 classes, 2 stations + abandonments (�1 and �2).
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The case 
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Future direction: pool–dependent service

2 classes, 2 stations + abandonments (�1 and �2).

Consider the problem of minimizing linear combinations of queues:V (x) = inf� E�x Z 10 e�
t[
1Y1(t) + 
2Y2(t)℄dt;
The case 
1 > 
2 and �1 > �2 introduces an interesting trade–off:

1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...

2. Keep class 2 in queue: low cost rate, but also lower abandonment rate.

A reduction to one–dim control problem: bang–bang policy (state–dependent)

keep all the queue either in class 1, or in class 2
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Future direction: pool–dependent service

2 classes, 2 stations + abandonments (�1 and �2).

Consider the problem of minimizing linear combinations of queues:V (x) = inf� E�x Z 10 e�
t[
1Y1(t) + 
2Y2(t)℄dt;
The case 
1 > 
2 and �1 > �2 introduces an interesting trade–off:

1. Keep class 1 in queue: high abandonment rate, but also high cost rate; or...

2. Keep class 2 in queue: low cost rate, but also lower abandonment rate.

A reduction to one–dim control problem: bang–bang policy (state–dependent)

keep all the queue either in class 1, or in class 2

Explicit solution???
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Future direction: staffing issues

Consider 2� 3 queueing system with � = 0� 84 1A ; � = 0� 3 10 11 4 2 1A :

� = (0:3; 0:3; 6:1)0
� = (1; 1; 1)0
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Future direction: staffing issues

Consider 2� 3 queueing system with � = 0� 84 1A ; � = 0� 3 10 11 4 2 1A :
Staffing of � = (0:3; 0:3; 6:1)0 : throughput is optimal (hence, no null controllability):

� = (1; 1; 1)0
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Future direction: staffing issues

Consider 2� 3 queueing system with � = 0� 84 1A ; � = 0� 3 10 11 4 2 1A :
Staffing of � = (0:3; 0:3; 6:1)0 : throughput is optimal (hence, no null controllability):

Staffing of � = (1; 1; 1)0: throughput is not optimal (as a result, null controllability):

p

How to characterize a null controllability staffing?
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