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Abstract

Consider a queueing model with I ≥ 1 customer classes and J ≥ 1 service sta-
tions, each consisting of many independent servers with identical capabilities.
Customers of different classes can be served at these stations at different rates,
that depend on both the class and the station. Service times are exponential
while arrival processes are renewal. A system administrator dynamically con-
trols scheduling and routing. The model is studied in the Halfin–Whitt heavy
traffic regime: one considers a sequence of models parameterized by n ∈ N
where the arrival rates and the number of servers are scaled up in such a way
that the processes representing the number of class-i customers in the sys-
tem, i ∈ I, exhibit diffusive fluctuations about the static fluid model. The
static fluid model represents a Law of Large Numbers behavior of the system
and is assumed to be critically loaded: the total processing rate devoted to
each class’s ‘material’ is equal to its arrival rate and an increase in any of the
external arrival rates results with an overloaded system.

We find a new, unusual heavy traffic ‘behavior’ of a system: under appropri-
ate assumptions there exists a dynamic control policy that maintains a criti-
cally loaded system as if it were underloaded. The effect is studied in chapters
2 and 3.

In chapter 2 the above phenomenon is shown to be related to a formulation
of the limiting diffusion model as a controlled diffusion with a singular control
term. The singular term may be used to constrain the diffusion to lie in certain
subsets of RI at all times t > 0. We say that the diffusion is null-controllable
if it can be constrained to X−, the minimal closed subset of RI containing all
states of the prelimit queueing model for which all queues are empty. We give
sufficient conditions for null controllability of the diffusion in terms of the graph
that encodes the network’s structure. Under these conditions we also show that
an analogous, asymptotic result holds for the queueing model, by constructing
control policies under which, for any given 0 < ε < T < ∞, all queues in the
system are kept empty on the time interval [ε, T ], with probability approaching
one.

In chapter 3 we introduce and analyze the notion of throughput sub-optimality
of the underlying static fluid model. Roughly, this means that the servers can
be allocated so as to achieve a total processing rate that is greater than the
total arrival rate, while, for every i ∈ I, the mass of servers allocated to serve
class i does not exceed the mass of class-i material. Assuming throughput sub-
optimality, (which is shown to be a weaker assumption than that of chapter
2), we introduce a dynamic control policy under which, for every finite T , the
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measure of the set of times prior to T , at which at least one customer is in
the buffer, converges to zero in probability at the scaling limit. The results
of chapter 2 allow for both preemptive policies (where service to a customer
can be interrupted and resumed at a later time, possibly at a different server)
and nonpreemptive ones (where service cannot be interrupted), while chapter
3 only treats preemptive policies. The notion of throughput sub–optimality
complements and explains the null controllability.

Chapter 4 deals with limiting diffusion models of queueing systems and their
formulation as the controlled diffusions. By imposing conditions on the service
rates, significant simplifications of the controlled diffusion model arise, and, in
particular, the model process lives in one dimension. We then indicate partic-
ular cases when an exact solution is available, and describe how to construct
control schemes for the originating queueing model that are conjectured to be
asymptotically optimal.
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Notations

ei A unit coordinate vector.

e = (1, 1, ..., 1). The dimension of vector e may change from one expression
to another.

v·u A scalar product of two vectors v, u of the same dimension.

xe = e · x = x1 + ... + xI for x ∈ RI .

x+ = max{x, 0}, x ∈ R.

x− = max{−x, 0}, x ∈ R.

‖x‖ =
∑I

i=1 |xi|. A norm of x ∈ RI .

‖X‖∗t = sup0≤u≤t‖X(u)‖. A norm of an RI-valued function.

P Probability measure.

σ{A} A sigma-field generated by a collection A of random variables.

Y n
i (t) = number of class i customers in queue at time t.

Zn
j (t) = number of idle servers in station j at time t.

Ψn
ij(t) = number of class i customers being served in station j at time t.

Xn
i (t) = number of class i customers in the system at time t.

X̄n(t) = Xn in fluid scaling.

X̂n(t) = Xn in diffusion scaling.

I = {1, 2, ..., I}. The set of vertices, corresponding to customer classes.

J = {1, 2, ..., J}. The set of vertices, corresponding to server stations.
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V = I ∪ J .

E = {(i, j) ∈ I × J }.

Ea = {(i, j) ∈ E : (i, j) is activity}. See Section 2.2.1.

Eba = {(i, j) ∈ Ea : (i, j) is basic activity}. See Section 2.2.1.

Enb = {(i, j) ∈ Ea : (i, j) is non–basic activity} = Ea \ Eba.

Ga = (V , Ea). The graph of activities.

Gba = (V , Eba). The graph of basic activities.
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Chapter 1

Background

1.1. Queues in heavy traffic

1.1.1. Conventional heavy traffic

The vast majority of works on approximation of queueing networks has dealt
with conventional heavy traffic asymptotics. Consider a sequence of M/M/N
models indexed by n. The number of servers Nn ≡ N is kept fixed, but the
workload is increased by assuming µn → µ, λn → Nµ and ρn = λn/(Nµn) → 1
at the rate of

√
n(1 − ρn) → β, 0 < β < ∞. The scaled queue length

corresponds to accelerating time by n and scaling down space coordinates by√
n as

Q̂n(t) =
Qn(nt)√

n
, t ∈ [0,∞).

In the sequel we use ⇒ to denote weak convergence (see the last paragraph of
Section 2.1 for the definition).

Theorem 1.1. (Iglehart and Whitt, 1970 [39]). Assume Q̂n(0) ⇒ Q̂(0). Then
Q̂n ⇒ Q̂ in D([0,∞)), where Q̂ is a reflecting Brownian motion with drift, that
is

Q̂(t) = Q̂(0)− βNµt +
√

2Nµ W (t) + L(t).

Here W (t) is a standard Brownian motion, and L is the local time for Q̂ at
the origin.

We do not attempt to cover all the papers on conventional approximation.
For a full account, readers are referred to Whitt [56] and Chen and Yao [17].
The heavy traffic analysis for a single station queueing system was initiated by
Kingman [43] in the early 1960’s. One should mention Whitt [55] and Iglehart
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[39]. Mandelbaum and Pats [48] generalized the M/M/1 treatment for the
case of state dependent queues. For multiclass networks, refer to Reiman [51],
Harrison [31], Harrison and Williams [36], Chen and Mandelbaum [18]. The
stochastic processes that arise there as diffusion approximations are closely
related to, or are themselves multidimensional diffusions of the type called
reflected Brownian motions (RBM’s). For open networks the state space is the
nonnegative orthant (see Harrison and Reiman [34], Williams [60], Chen and
Mandelbaum [19] on the subject). See also Harrison, Williams and Chen [37]
for a treatment of closed queueing networks, i.e, systems where the number
of circulating customers is constant in time, with the diffusion approximation
resulting in RBM’s on the nonnegative simplex.

It is known however that, for some multiclass queueing networks, heavy traf-
fic limit results do not hold (see Dai and Wang [23]). The question then arises
on how to determine whether this is true for a particular network. See Williams
[61], Bramson [15], where they establish a framework of proving heavy traffic
limit theorems for multiclass networks under a variety of queueing disciplines.

1.1.2. Queues in the Halfin–Whitt heavy traffic regime

Theorem 1.1 above represents, in the terminology of Gans, Koole and Man-
delbaum [26], an efficiency driven operational regime, in the sense that all
resources are working extremely close to full capacity.

The Halfin–Whitt regime [30] (also known as the QED regime), in contrast,
exhibits a regime where the operation is both Efficiency–Driven (high servers’
utilization) and Quality–Driven (high service levels). Consider the M/M/N
model consisting of a Poisson arrival process with rate λ, and N independent,
statistically identical servers, each offering an exponential service at rate µ.
Let X(t) denote the number of customers in the system at time t. The heavy
traffic regime, proposed by Halfin and Whitt, arises when taking the number of
servers to infinity in a specific manner. Namely, consider a sequence of systems
indexed by N , the number of servers. Denote ρN = λN

NµN . Take N → ∞ and

assume that µN → µ and λN

N
→ µ, 0 < µ < ∞, at the rate of

√
N(1− ρN) → β, 0 < β < ∞. (1.1)

Define the centered, normalized queue length as

X̂N(t) =
XN(t)−N√

N
, t ∈ [0, ∞) (1.2)
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Theorem 1.2. (Halfin and Whitt, 1981 [30]).

1. Assume X̂N(0) ⇒ X̂(0). Then X̂N ⇒ X̂ in D([0,∞)), where X̂ is a diffu-
sion characterized by

X̂(t) = X̂(0) +
∫ t

0
b(X̂(s))ds +

√
2µ W (t).

Here W (t) is a standard Brownian motion, and the drift b is given as

b(x) =





−µβ x ≥ 0,

−µ(x + β) x < 0.

2. The probability of delay has a nondegenerate limit as follows:

lim
N→∞

P (XN(∞) ≥ N) = α, 0 < α < 1, (1.3)

where α is related to β from (1.1) via α = [1 + βΦ(β)/φ(β)]−1. (Here Φ and φ
are, respectively, the distribution and density functions of the standard normal
distribution).

The convergence in (1.1) is in fact necessary and sufficient for the conver-
gence (1.3). Note, however, that the result in Statement 1 remains true without
assuming strict positiveness of β in (1.1).

For more information and motivation regarding the QED regime, see [26].
Due to the desirable features of the Halfin–Whitt regime and because it turns
out to be a good model for large telephone call centers, it has enjoyed recently
considerable attention in the literature. For recent generalizations of [30] see
Whitt [58]–[59] and the references therein. Convergence of the scaled queueing
process, but for the case when service times have phase-type distribution is dis-
cussed in Puhalskii and Reiman [50]. The papers of Jelenkovic, Mandelbaum
and Momcilovic [40] and Mandelbaum and Momcilovic [47] study the limiting
distribution of appropriately scaled virtual waiting time in queues where the
service duration is either deterministic [40], or is a random variable with finite
support [47]. Mandelbaum, Massey and Reiman [46] develop limit theorems
for queueing models, where the arrival rates, the number of servers and the
service rate of each server can depend on time and state. Garnett, Mandel-
baum and Reiman [27] extended the results of [30] for queues with possible
abandonments. Papers dealing with control aspects are discussed in the next
section.
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1.2. Scheduling and routing of queueing networks

Optimal scheduling and routing are among the most interesting and difficult
challenges in the management of queueing networks. The routing problem is
to determine, upon an arrival, which of the available servers, if any, should
we assign to serve a customer. The scheduling problem is to indicate, upon
service completion, which of the available waiting customers, if any, should be
served.

The earliest control work for single server queues was the exact analysis
by Cox and Smith [20]. They looked at a multi–class single–station network
(M/G/1) with linear waiting cost, i.e. one pays ciτ units for each job of
class i that waits for service τ units of time. This is equivalent to looking at∫ t
0

∑
i ciQi(s)ds - the integral over a linear combination of the queue lengths.

They proved the classical cµ rule, which can be described as follows. With
each class of jobs we associate an index ciµi (with µi being its service rate)
and at a decision point one always serves the highest index. See Walrand [54]
for various extensions.

A similar setting was considered in the conventional heavy traffic asymptotic
regime by Van Mieghem [53], with his generalized cµ rule. This culminated
in the work of Mandelbaum and Stolyar [49]. They treat the parallel server
models (J nonidentical servers working in parallel and I customer classes) and
convex cost functions Ci(·), i = 1, ..., I. Optimal scheduling corresponds to the
following: at each time t, when server j becomes idle, it chooses for a service
a type i customer with the largest C ′

i(Qi(t))µij. Note however that the cost
functions C(·) in [49] were restricted to convex functions with C(0) = 0 and
C ′(0) = 0. This excludes a direct application to linear costs.

For linear delay costs, one is referred to Williams [62] and to Harrison [32]
and Harrison and Lopez [33]. In [33] it is proved that for the parallel server
models, the diffusion control problem exhibits a massive state-space collapse
and is reduced from multi-dimension to one-dimension, which is much easier
to solve. This is done by the striking ”equivalent workload formulation”. See
also Harrison and Van Meighem [35].

The difficulty in [35] is that the asymptotic solution does not have a clear
interpretation within the prelimit model. Bell and Williams [11] proved that
for the 2-parallel servers model the asymptotically optimal policy is a threshold
policy; i.e., the priority of service depends on whether the queue lengths are
below or above certain levels - thresholds. The subsequent paper [12] of the
same authors deals with extending the threshold strategy to parallel server
systems.
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Results are less established for networks with many-server stations. By tak-
ing the QED diffusion scaling (taking the number of servers N to infinity in
an appropriate manner), Armony and Maglaras [2] model and analyze rational
customers in equilibrium; they treat jointly the problem of optimal control and
staffing. Harrison and Zeevi [38] analyze the diffusion control problem associ-
ated with a single pool (multiple customer classes) model with linear costs.
Specifically, they show that this control problem has an optimal Markov con-
trol policy (cf. [25]) which is characterized in terms of its underlying Hamilton-
Jacobi-Bellman (HJB) equation.

The works of Atar, Mandelbaum and Reiman [7] and Atar [3] and [4] es-
tablished asymptotic optimality of policies in the QED regime, for treelike
models (the J nodes, which correspond to the J multi-server stations and the
I nodes, corresponding to the I classes, jointly constitute a tree). The scaling
then enforces convergence of the prelimit control problem to a diffusion control
problem which can be dealt with by stochastic control methods, namely via the
HJB equations. Then a method is provided on how to translate the obtained
solutions into prelimit policies. The diffusion limit problem arises as a formal
weak limit of a preemptive network scheduling problem, i.e. one where a ser-
vice to a customer can be stopped at any moment and resumed at a later time,
possibly in a different station. In the prelimit, the behaviour is clearly differ-
ent for nonpreemptive networks, but it is proved that this difference vanishes
asymptotically.

Related papers, working in the QED asymptotic regime, are those of Dai
and Tezcan [21]–[22]. Given a control scheme, [21] gives a recipe for verifying
whether this control admits state space collapse, i.e., a reduction of the di-
mension of the processes involved. Their paper [22] studies a queueing system
with 2 customer classes and 2 server stations under some special conditions on
service and abandonment rates, where they obtain exact control policies.

Gurvich and Whitt [29] propose a routing control called Fixed–Queue–Ratio.
A newly available agent next serves the customer from the head of the queue of
the class (from among those he is eligible to serve) whose queue length exceeds
the most a prespecified proportion of the total queue length. This results in a
dimension reduction, in a sense that vector–valued queue–length process is now
asymptotically evolving as a one–dimensional process. The routing problem in
[29] is treated simultaneously with the problems of optimal network design and
staffing.
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Chapter 2

Null controllability in heavy
traffic

2.1. Introduction

We consider a multiclass queueing model with heterogeneous service stations,
each consisting of many independent servers with identical capabilities. The
servers offer service to different classes of customers at rates that may depend
on both the station and the class. A system administrator dynamically controls
all scheduling and routing in the system. The model is considered in the heavy
traffic parametric regime, first proposed by Halfin and Whitt [30], in which the
number of servers at each station and the arrival rates grow without bound,
while keeping, in an appropriate sense, a critically balanced system. Both the
model and the parametric regime have recently received much attention, espe-
cially in relation to large telephone call centers (see [26] and references therein).
The chapter is based on [8].

When studying queueing models in heavy traffic, one considers a sequence
of models parametrized by n ∈ N that, under a Law of Large Numbers (LLN)
limit, give rise to a fluid model which is critically loaded. Typically, an attempt
is then made to prove that appropriately scaled fluctuations of the queueing
model about the fluid model converge to a diffusion. If, as in the current setting,
a control problem is associated to the queueing model, then a similar approach
gives rise to a controlled diffusion model. In this case, a natural goal is to prove
that, given a cost criterion, the (suitably scaled) value of a control problem
for the queueing model converges to one for the diffusion model. Moreover, it
is often the case that solving the diffusion model for optimal controls helps
understand how to construct control schemes for the queueing model that are
asymptotically optimal. A similar approach is taken in this chapter. However,
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rather than a cost criterion, our formulation will be concerned with a certain
property observed for the diffusion model and shown to be inherited, in an
asymptotic sense, by the queueing model. The property, that is unusual in
heavy traffic formulations, will have to do with the ability to maintain empty
queues.

We let I denote the number of customer classes, and let Xn(t), t ≥ 0 denote
an I-dimensional process for which the ith component Xn

i (t) represents the
total number of class-i customers in the system at time t, in the nth system.
The fluctuations alluded to above are denoted by X̂n(t), t ≥ 0. These fluctu-
ations are scaled in such a way that X̂n gives rise, as weak limits are taken
formally, to a (controlled) diffusion process denoted by X(t), t ≥ 0. Moreover,
one has that

X̂n(t) ∈ X− :=

{
x ∈ RI :

I∑

i=1

xi ≤ 0

}

holds if and only if the total number of customers in the nth system at time t
is less than or equal to the total number of servers. Ideally, if one could freely
rearrange customers in the system without any constraints, it follows that one
could maintain empty queues whenever X̂n(t) ∈ X−. We will thus refer to X−
as the null domain. Although the queueing model considered in this chapter
is subject to additional constraints (e.g., a station may offer service to only
some of the classes), the null domain will play the same role in the asymptotic
regime under consideration.

An important feature of the controlled diffusion model derived in this chapter
is that the stochastic differential equation describing it has a singular control
term, that is a control process with sample paths that are locally of bounded
variation, the increments of which take values in a fixed cone C of RI . The
singular term may be used to constrain the diffusion to lie in certain subsets
of RI at all times t > 0. We say that the diffusion is null-controllable if

C ∩ Xo
− 6= ∅, (2.1)

where Xo
− denotes the interior of X−, because under this condition the diffusion

can be constrained to X−. Condition (2.1) will be given in explicit form in
terms of the model parameters (see (2.33)). Our main result shows that under
(2.1) one can construct control policies for the queueing model in such a way
that, for every given 0 < ε < T < ∞, all queues are kept empty on the time
interval [ε, T ] with probability approaching 1, as n → ∞. We will refer to
such behavior as asymptotic null-controllability. We will, in fact, consider two
versions of the problem: One, referred to as preemptive scheduling, in which
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service to a customer can be interrupted and resumed at a later time (possibly
in a different station). The other, referred to as non-preemptive scheduling,
where service to customers may not be interrupted before service is completed.
The treatment of the non-preemptive case is more complicated than that of the
preemptive case. Thus, to keep the exposition simple we have limited ourselves
in the non-preemptive case to the simplest possible network structure where
null-controllability can show up: two customer classes and two service stations.

Our results on asymptotic null-controllability can be regarded as the demon-
stration of a new, unusual heavy traffic behavior. On one hand, the system is
critically loaded. Indeed, as intuitively expected (and precisely stated in Propo-
sition 2.1), an increase in any of the external arrival rates at the fluid level
results with an overloaded system, in the sense that large queues inevitably
build up. On the other hand, the system behaves as if it is underloaded as far
as the capability of maintaining empty queues is concerned.

Singular control arises in connection with queueing systems in heavy traf-
fic in many references. The singular term is often associated with positivity
or finite buffer constraints for the queue length process (see [44], Chapter 8
for discussion and further references), with admission control (ibid.) or with
constraints on the so-called workload process to lie in a given cone [16]. The
source for the singular term in the current setting is however quite different,
and it has to do with the fact that a many-server limit is taken. To explain
this point, consider a network in which customers of classes, say 1 and 2, can
be served at both station A and station B (these two classes and two stations
could be a subset of a larger setup). Assume that the network operates under
preemptive scheduling. Suppose that at a certain moment one selects, say r
class-1 customers that are in service at station A and r class-2 customers in
station B and considers the option of interchanging their position, so that the
r class-1 [class-2] customers that were selected are moved to station B [respec-
tively, A]. Since the service rates may depend on both the class and the station,
the average rate at which components 1 and 2 of Xn change at that moment
may be different depending on whether such an interchange takes place or not.
If the interchange is performed instantaneously, the rates alluded to above will
change abruptly. Moreover, since in both stations the number of servers is as-
sumed to be large, this effect can be amplified by letting r be large. This, as
scaling limit is taken, results with a control term that can have arbitrarily large
increments over a given time interval. An appropriate formulation for such a
controlled diffusion model will thus have a singular control term. Next, let Ga

denote the graph with classes and stations as vertices, and with (i, j) pairs as
edges if and only if station j can serve class i. It is instructive to note that our
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explanation above relies on a certain property of the graph Ga, namely that it
contains a cycle with vertices 1, 2, A and B. Indeed, this is just another way of
saying that customers of each of the two classes can be served in both stations,
as we have assumed. A heuristic similar to the one described above will lead
to a singular term in the diffusion model whenever Ga contains cycles, whether
with four vertices or more. Thus, in general, cycles contained in Ga will play
an important role in the singular control formulation of the diffusion model.

Note that the phenomenon described above is indeed a result of the many
server setting, because it must be possible to occasionally let the number r
referred to above take large values, and r is clearly limited by the number
of servers. In particular, this phenomenon is not seen in what is sometimes
referred to as ‘conventional’ heavy traffic, where diffusion limits are obtained
for systems with a fixed number of servers (and large service rates; cf. [49]).

Recall that the so-called fluid model describes the LLN limit of basic quanti-
ties of the queueing model. One ingredient of the fluid model is a (deterministic,
constant) matrix denoted by ξ∗. The entry ξ∗ij represents the (large n limit)
fraction of the number of servers in station j that serve class-i customers. One
refers to (i, j) pairs that are edges of Ga as activities, and to activities (i, j)
for which ξ∗ij > 0 as basic activities. In particular, the number of servers that
are engaged in non-basic activities (ξ∗ij = 0) is of order o(n) (where the total
number of servers is proportional to n), in a sense that can be made precise
(see, for example, Lemma 2.1). The policy that we shall propose for the pre-
emptive case will basically mimic the construction of a constrained diffusion.
Namely, a special rearrangement of customers in the service stations will take
place whenever the process X̂n reaches close to the boundary of X− (from the
inside). In this rearrangement, the number of servers allocated to work in a
certain non-basic activity will be much larger than the typical fluctuations of
the process Xn (but still o(n)). This rearrangement will have an effect on the
dynamics of X̂n that is a reminiscent of that of a Skorohod mechanism [45]
on a constrained diffusion. Namely, it will constrain X̂n to X− by making the
term that, in the limit, shows up as singular control, large. Because of (2.1),
this can be performed in such a way that the term points into the domain.
Although this question is not directly addressed in this chapter, it is expected,
in fact, that the restriction to the time interval [ε, T ] of the processes X̂n con-
verge to a constrained diffusion as n →∞. The picture is quite different in the
non-preemptive setting. The arrangement of customers can only be controlled
indirectly (via routing decisions), and the constraining mechanism of the dif-
fusion cannot be faithfully mimicked. A convergence result as above is not to
be expected; in fact, the processes X̂n that we construct in this case are not
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even tight. The main idea behind the policy proposed in this case is to assure
that a relatively large portion of the servers are engaged in the non-basic ac-
tivity at all times, rather than at times when the boundary is reached as in
the preemptive case.

We reiterate that it is the presence of cycles in Ga that induces a singular
control term in the diffusion. A model similar to the current one is studied
in [3] and [4] under structural assumptions that are complementary to those
of this chapter, in the sense that the graph Ga is assumed there to be a tree.
Indeed, in these references the diffusion has no singular control term, and a
phenomenon as described in this chapter does not occur. Finally, we would like
to mention that one can also consider a setting in which the diffusion has a
singular term as in the current chapter, but null controllability does not hold,
and approach the model from a control theoretic viewpoint so as to minimize
costs of interest. This will be subject for future study.

The organization of the chapter is as follows. In Section 2.2 we first intro-
duce the model and describe how its parameters are rescaled. We then present
the main step toward the derivation of the diffusion model in Theorem 2.1,
where a representation of the prelimit queueing model is provided. The diffu-
sion model, obtained from this representation under the scaling limit, is stated
in equations (2.30)–(2.32). We then state that, under (2.1), the diffusion can
be constrained to X− (Theorem 2.2), and provide the main results regarding
asymptotic null-controllability in the preemptive case (Theorem 2.3) and in
the non-preemptive case (Theorem 2.4). At the end of Section 2.2 we give nu-
merical examples, and demonstrate that asymptotic null-controllability cannot
be expected in overloaded models (Proposition 2.1). Section 2.3 contains the
proofs of Theorems 2.2 and 2.3. The proof of Theorem 2.4 appears in Section
2.4. The appendix contains the proofs of Theorem 2.1, Proposition 2.1 and
some auxiliary results.
Notation. For E a metric space, we denote by D(E) the space of all cadlag
functions (i.e., right continuous and having left limits) from R+ to E. We
endow D(E) with the usual Skorohod topology (cf. [13]). If Xn, n ∈ N and X
are processes with sample paths in D(E), we write Xn ⇒ X to denote weak
convergence of the measures induced by Xn (on D(E)) to the measure induced
by X.
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buffer

station

(a) (b)

Fig 2.1. (a) A network with 2 classes and 3 stations. (b) Corresponding graph Ga with basic
and non-basic activities (solid and, resp., dashed lines). The subgraph Gba of Ga is a tree.

2.2. Setting and main results

2.2.1. Queueing model

A precise description of the queueing model is as follows. A complete probabil-
ity space (Ω,F , P ) is given, supporting all stochastic processes defined below.
The processes will all be constructed in such a way that they have cadlag
sample paths with probability 1. Expectation with respect to P is denoted
by E. The queueing model is parametrized by n ∈ N. It has I ≥ 2 customer
classes and J ≥ 2 service stations (see Figure 2.1(a)). Station j has Nn

j identi-
cal servers working independently. The classes are labeled as 1, . . . , I and the
stations as I + 1, . . . , I + J :

I = {1, . . . , I}, J = {I + 1, . . . , I + J}.

Arrivals are modeled as renewal processes with finite second moment for the
interarrival time. More precisely, we are given parameters λn

i > 0, i ∈ I,
n ∈ N, and independent sequences of strictly positive i.i.d. random variables
{Ǔi(k), k ∈ N}, i ∈ I, with mean EǓi(1) = 1 and variance C2

U,i = Var(Ǔi(1)) ∈
[0,∞). With

∑0
1 = 0, the number of class-i arrivals up to time t for the nth

system is given by

An
i (t) = sup

{
l ≥ 0 :

l∑

k=1

Ǔi(k)

λn
i

≤ t

}
, t ≥ 0.

For i ∈ I, j ∈ J and n ∈ N, we are given parameters µn
ij ≥ 0, representing

the service rate of a class-i customer by a server of station j. If µn
ij = 0, we
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say that class-i customers cannot be served at station j. Consider the graph
Ga having a vertex set I ∪ J and an edge set

Ea = {(i, j) ∈ I × J : µn
ij > 0}.

We assume that Ea does not depend on n. We denote i ∼ j if (i, j) ∈ Ea. A
class-station pair (i, j) is said to be an activity if i ∼ j, or equivalently, if class-i
customers can be served at station j. For every (i, j) ∈ I × J , we denote by
Ψn

ij(t) the number of class-i customers being served in station j at time t. By
definition,

Ψn
ij(t) = 0 for i 6∼ j. (2.2)

Service times are modeled as independent exponential random variables. To
this end, let Sn

ij, (i, j) ∈ I × J be Poisson processes with rate µn
ij (where a

Poisson process of zero rate is the zero process), mutually independent and
independent of the arrival processes. Note that the time up to t devoted to
a class-i customer by a server, summed over all servers of station j, is given
as

∫ t
0 Ψn

ij(s)ds. The number of service completions of class-i customers by all

servers of station j up to time t is, by assumption, given by Sn
ij(

∫ t
0 Ψn

ij(s)ds).
The precise description of the processes Ψn = (Ψn

ij, i ∈ I, j ∈ J ) is not given
at this point. We do emphasize however that they will be constructed in such a
way that future service completion times are independent of the current state,
which results with independent exponential service times (cf. [4]). We note in
passing that whereas renewal arrivals are quite natural in the Halfin–Whitt
setting, assumptions on service times that go beyond exponential (not to be
dealt with in this chapter) lead to far more complicated diffusion models [50].

The processes An and Sn will be referred to as the primitive processes.
Denoting by Xn

i (t) the number of class-i customers in the system (meaning:
in the queue or being served) at time t, and setting X0,n

i = Xn
i (0), it is clear

from the above that:

Xn
i (t) = X0,n

i + An
i (t)− ∑

j∈J
Sn

ij

(∫ t

0
Ψn

ij(s)ds
)

, i ∈ I, t ≥ 0. (2.3)

For simplicity, the initial conditions X0,n
i are assumed to be deterministic.

Finally, we introduce the processes Y n
i (t), representing the number of class-i

customers in the queue (not being served) at time t, and Zn
j (t), representing

the number of servers at station j that are idle at time t. Clearly, we have the
following relations:

Y n
i (t) +

∑

j∈J
Ψn

ij(t) = Xn
i (t), i ∈ I, (2.4)
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Zn
j (t) +

∑

i∈I
Ψn

ij(t) = Nn
j , j ∈ J . (2.5)

Also, the following holds by definition

Y n
i (t) ≥ 0, Zn

j (t) ≥ 0, Ψn
ij(t) ≥ 0, i ∈ I, j ∈ J , t ≥ 0. (2.6)

We will write Xn for the vector (Xn
i , i ∈ I) and similarly Y n = (Y n

i , i ∈ I),
Zn = (Zn

j , j ∈ J ).

2.2.2. Control and rescaling

Equations (2.2)–(2.6) indicate some properties of the processes involved, but
they do not characterize these processes, because the control processes Ψn have
not yet been described. This is the purpose of the following definitions.
Preemptive scheduling. We will regard scheduling as preemptive if service to a
customer can be stopped and resumed at a later time, possibly in a different
station. Formally, such a scheduling is a scheme according to which one selects
Ψn(t) at every t. In this chapter we will be concerned only with scheduling of
feedback form, in the sense that the selection of Ψn(t) depends only on Xn(t),
for every t. The precise definition is as follows.

Definition 2.1. Let n be given. We say that a map fn : ZI
+ → ZIJ

+ is a
preemptive resume scheduling control policy (P-SCP) and Xn is the controlled
process corresponding to fn, initial data X0,n and primitive processes An and
Sn, if Ψn(t) = fn(Xn(t)) and equations (2.2)–(2.6) hold.

Non-preemptive scheduling. By this we mean that it is impossible to interrupt
service to customers. Thus, the quantities Ψn

ij cannot be directly controlled, but
they are affected by the routing decisions according to the following equation:

Ψn
ij(t) = Ψn

ij(0) + Bn
ij(t)− Sn

ij

(∫ t

0
Ψn

ij(s)ds
)

. (2.7)

Above, for each (i, j) ∈ I×J , Bn
ij is a nondecreasing Z+-valued process starting

from zero, that increases by k each time k class-i customers are routed to
station j. Of course, Bn

ij = 0 for i 6∼ j. In non-preemptive scheduling, a control
policy is a scheme for selecting Bn

ij(t) for every t. In this chapter we will
need a randomized formulation, in which the scheme according to which Bn

ij

are determined may depend on an auxiliary stochastic process. In addition,
in our formulation we will only need the routing decisions to take place at
the times when arrivals occur. To this end, for i ∈ I and n ∈ N we let τn,i

k

denote the time of the kth jump of the process An
i , i.e., the time of the kth
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class-i arrival. Finally, it will be assumed that all customers in service at time
zero begin their service at that time, and the initial arrangement of these
customers in the stations, i.e., Ψn

ij(0), is determined by the policy. We write
Ξn(t) = (Xn(t), Y n(t), Zn(t), Ψn(t)).

Definition 2.2. Let n be given. We say that a triplet (Ψ 0,n, F n, Rn) is a non-
preemptive scheduling control policy (N-SCP) and Xn is the controlled process
corresponding to (Ψ 0,n, F n, Rn), initial data X0,n and primitive processes An,
Sn if the following hold:
i. Ψ 0,n ∈ ZIJ

+ is the initial condition for Ψn i.e., Ψn(0) = Ψ 0,n. In particular, it

satisfies Ψ 0,n
ij = 0 for i 6∼ j,

∑
j Ψ 0,n

ij ≤ X0,n
i and

∑
i Ψ

0,n
ij ≤ Nn

j .

ii. Rn is a collection {Rn,i, i ∈ I}, where, for each i, Rn,i = {Rn,i
k : k ∈ N} is

a sequence of R-valued independent random variables. The sequences Rn,i are
mutually independent and independent of the primitive processes.
iii. F n is a collection {F n

ij, (i, j) ∈ I×J } of measurable maps F n
ij : R+×ZI

+×
ZI

+×ZJ
+×ZIJ

+ ×R→ Z+ and for each (i, j) ∈ I ×J , Bn
ij is given in the form

Bn
ij(t) =

∑

k:τn,i
k
≤t

F n
ij(τ

n,i
k , Ξn(τn,i

k −), Rn,i
k ), t ≥ 0.

iv. Equations (2.2)–(2.7) hold.

Remarks. 1. The restriction to policies in which decisions take place only when
arrivals occur may not appear to be natural, and one could consider exten-
sions of this definition, say, by allowing decisions to take place upon arrivals
or service completions, or even continuously in time. Note however that this
restriction does not affect our result (i.e., Theorem 2.4) that is concerned with
the existence (and construction) of N-SCP with a certain property: Clearly, the
existence of such policies under the preceding definition implies the existence
of policies under any extension of it.
2. Existence and uniqueness of the processes Xn and Ψn (given the primitive
processes) is easily obtained by induction on the jump times of the primitive
processes. In addition, one can argue that the future service completion times
are independent of all that has occurred up to the current time. For a pre-
cise statement and an argument to this effect in a more restricted setup, see
Proposition 1 of [7]. This can be adapted to the current setup, but we have
omitted the details.
Fluid scaling. We assume that the parameters of the processes involved are
scaled in the following way. There are constants λi, νj ∈ (0,∞), i ∈ I, j ∈ J
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and µij ∈ (0,∞), (i, j) ∈ Ea such that

n−1λn
i → λi, µn

ij → µij, n−1Nn
j → νj. (2.8)

We also define µij = 0 for i 6∼ j. Note that this is consistent with (2.8) because
µn

ij = 0 for i 6∼ j. Let

µ̄ij = νjµij, (i, j) ∈ I × J , (2.9)

and consider the following linear program:

Minimize ρ ∈ R+ subject to
∑

j∈J
µ̄ijξij = λi,

∑

i∈I
ξij ≤ ρ, ξij ≥ 0, i ∈ I, j ∈ J . (2.10)

Throughout, we assume that the fluid model is critically loaded. More precisely,
we will assume that the Heavy Traffic Condition [33] holds: There exists a
unique optimal solution (ξ∗, ρ∗) to the linear program (2.10), and moreover,∑

i∈I ξ∗ij = 1 for all j ∈ J (and consequently ρ∗ = 1). We shall keep the
notation ξ∗ij throughout the chapter. We also let

x∗i =
∑

j

ξ∗ijνj, ψ∗ij = ξ∗ijνj, i ∈ I, j ∈ J , (2.11)

and refer to the quantities ξ∗, ψ∗, x∗ as the static fluid model, or just fluid model
for short (see in [4] what these quantities intuitively represent).

Following [33], an activity (i, j) ∈ Ea is said to be basic if ξ∗ij > 0. Define
the graph of basic activities Gba to be the subgraph of Ga having I ∪ J as a
vertex set, and the collection Eba of basic activities as an edge set. We will also
denote the set of non-basic activities as Enb = Ea \ Eba (see Figure 2.1(b)).

Like in some other papers that study a similar fluid model in heavy traffic
(e.g., [33]), we will have one more assumption in this chapter about the fluid
model, namely, that the complete resource pooling condition holds. This con-
dition expresses, in a sense, a strong mode of cooperation between the service
stations. More precisely, one of the equivalent formulations of this condition
(see [33]) is that all vertices in J communicate via edges in Gba. It was shown
by Williams [62] that this condition is equivalent to the condition that the
basic activities form a tree. Thus we assume throughout:

The graph Gba is a tree. (2.12)

We now introduce a rescaled version of the processes describing the queueing
model:

X̄n
i (t) = n−1Xn

i (t), Ȳ n
i (t) = n−1Y n

i (t),
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Z̄n
j (t) = n−1Zn

j (t), Ψ̄n
ij(t) = n−1Ψn

ij(t).

Denote X̄n = (X̄n
i , i ∈ I), and use a similar notation for Ȳ n, Z̄n and Ψ̄n. We

will sometimes consider X̄n, Ȳ n and Z̄n as column vector-valued processes.
Heuristically, one expects that (X̄n, Ȳ n, Z̄n, Ψ̄n) ⇒ (x∗, 0, 0, ψ∗), and this is
indeed the case under appropriate conditions (see, for example, equation (2.57)
and Lemma 2.1 for such statements in the preemptive and, respectively, non-
preemptive case). For this reason, these processes are referred to as the fluid-
level rescaled processes.
Diffusion scaling. We further assume that there are constants λ̂i, µ̂ij ∈ R,
i ∈ I, j ∈ J , such that

λ̂n
i := n1/2(n−1λn

i − λi) → λ̂i, µ̂n
ij := n1/2(µn

ij − µij) → µ̂ij, (2.13)

N̂n
j := n1/2(n−1Nn

j − νj) → 0. (2.14)

We introduce a centered, rescaled version of the primitive processes:

Ân
i (t) = n−1/2(An

i (t)− λn
i t), Ŝn

ij(t) = n−1/2(Sn
ij(nt)− nµn

ijt). (2.15)

Similarly, the processes representing the queueing model are centered about
the fluid model quantities and rescaled:

X̂n
i (t) = n−1/2(Xn

i (t)− nx∗i ), (2.16)

Ŷ n
i (t) = n−1/2Y n

i (t), Ẑn
j (t) = n−1/2Zn

j (t), (2.17)

Ψ̂n
ij(t) = n−1/2(Ψn

ij(t)− ψ∗ijn). (2.18)

The processes denoted with hats will be referred to as diffusion-level rescaled
processes. Similarly to the fluid-level processes, define X̂n = (X̂n

i , i ∈ I), with
an analogous definition for Ŷ n, Ẑn and Ψ̂n, and consider X̂n, Ŷ n and Ẑn as
column vector-valued processes.
Scaling of initial conditions. It is assumed that there are constants xi, i ∈ I,
such that the initial conditions satisfy

X̂0,n
i := X̂n

i (0) → xi. (2.19)

Throughout, x = (xi, i ∈ I).
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2.2.3. Main results

Our first result expresses a relation directly between the diffusion-level processes.
Although its proof requires only some elementary manipulations of the rela-
tions (2.2)–(2.6) and (2.16)–(2.18), it has an important role in this chapter as
the basis for deriving the diffusion model. In particular, it will make clear how
the singular control formulation arises. To present it we need some notation.

Denote by C the set of all cycles that are subgraphs of Ga, for which exactly
one edge is a non-basic activity. We call an element c ∈ C a simple cycle (see
Figure 2.2(a)). Lemma 2.4 in the appendix shows, using (2.12), that every
non-basic activity belongs to a simple cycle (as an edge). Consequently, there
is a one-to-one correspondence between Enb and C, which we denote by σ. More
precisely,

σ(i, j) = c whenever (i, j) ∈ Enb and c is the simple cycle through (i, j).
(2.20)

With an abuse of notation, we will write (i, j) ∈ c when we mean that a (not
necessarily non-basic) activity (i, j) ∈ Ea belongs to the edge set of the graph
c.

Next, we associate directions with the edges of simple cycles. Let c be a
simple cycle with vertices i0, j0, i1, j1, . . . , ik, jk, where for 0 ≤ l ≤ k, il ∈ I
and jl ∈ J , and edges (i0, j0) ∈ Enb and (j0, i1), . . . , (ik, jk), (jk, i0) ∈ Eba. The
direction that we associate with the non-basic element (i0, j0) is i0 → j0 (in
words: from i0 to j0). The direction of the other edges, when considered as
edges of c, is consistent with that of the non-basic element, namely: i0 → j0 →
i1 → j1 → · · · jk → i0. Note that an edge (corresponding to a basic activity)
may have different directions when considered as an edge of different simple
cycles. We signify the directions along the simple cycles by s(c, i, j), defined,
for all c ∈ C and (i, j) ∈ c, as

s(c, i, j) =




−1 if (i, j), considered as an edge of c, is directed from i to j

1 if (i, j), considered as an edge of c, is directed from j to i.

We will denote

mn
i,c =

∑

j:(i,j)∈c

s(c, i, j)µn
ij, i ∈ I, mn

c = (mn
i,c, i ∈ I). (2.21)
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Next, consider the system of equations in ψ:




∑
j∈J ψij = ai, i ∈ I,

∑
i∈I ψij = bj, j ∈ J ,

ψij = 0, (i, j) ∈ Enb.

(2.22)

It is known that (2.22) has a unique solution ψ for every a, b satisfying
∑

i ai =∑
j bj (see [3], Proposition A.2). With

DG = {(a, b) ∈ RI × RJ :
∑

i∈I
ai =

∑

j∈J
bj}, (2.23)

denote by G : DG → RIJ the solution map, namely

ψij = Gij(a, b), (i, j) ∈ Ea. (2.24)

The function G is linear and so Lipschitz (a fact that will be used in the sequel).
Denote also

Hn
i (a, b) = −∑

j

µn
ijGij(a, b), i ∈ I, a ∈ RI , b ∈ RJ , Hn = (Hn

i , i ∈ I),

(2.25)
Let `n

i = λ̂n
i −

∑
j∈J µ̂n

ijψ
∗
ij and set

Ŵ n
i (t) = Ân

i (t)−∑

i

Ŝn
ij

(∫ t

0
Ψ̄n

ij(s)ds
)

+ `n
i t. (2.26)

Finally, let the quantities {Ψn
ij}, as (i, j) ranges over the non-basic activities,

be labeled by simple cycles, namely define for every c ∈ C, Ψc = Ψij where
(i, j) = σ−1(c). Let a diffusion-level version of these processes be defined as
Ψ̂n

c = n−1/2Ψn
c .

Theorem 2.1. Let Xn, Y n, Zn, Ψn satisfy (2.2)–(2.6) and let X̂n, Ŷ n, Ẑn, Ψ̂n

be defined by (2.16)–(2.18). Then the following relations hold for all t ≥ 0:

X̂n(t) = X̂0,n + Ŵ n(t) +
∫ t

0
Hn(X̂n(s)− Ŷ n(s), N̂n − Ẑn(s))ds

+
∑

c∈C
mn

c

∫ t

0
Ψ̂n

c (s)ds, (2.27)

Ŷ n
i (t) ≥ 0, i ∈ I, Ẑn

j (t) ≥ 0, j ∈ J ,
∑

i∈I
[X̂n

i (t)− Ŷ n
i (t)] =

∑

j∈J
[N̂n

j − Ẑn
j (t)],

(2.28)
Ψ̂n

c (t) ≥ 0, c ∈ C. (2.29)
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See the appendix for a proof. We now explain how a diffusion model is
derived from the above result. First, note that the limit, as n → ∞, in the
definition (2.21) of mn

c exists, and is equal to the expression obtained from
(2.21) by replacing µn

ij by µij. We denote the limit by mc. The vectors mc will
be referred to as directions of control because of the role they will play in the
singular control term. In a similar fashion, we denote by H the limit of Hn

as n → ∞, or equivalently, as the expression obtained in (2.25) by replacing
µn

ij by µij. Next, we take a formal limit in (2.26). We let ` = (`i, i ∈ I) where

`i = limn→∞ `n
i = λ̂i − ∑

j∈J µ̂ijψ
∗
ij and let W denote a Brownian motion

for which the mean and the covariance matrix of W (1) are given by ` and,
respectively, Σ := diag(λiC

2
U,i+λi) (for short: an (`, Σ)-Brownian motion). The

expression above for the covariance is obtained by calculating the covariance
matrix of Ŵ n(1) upon formally replacing the fluid-level quantities Ψ̄n

ij(s) in
(2.26) by the quantities ψ∗ij from the fluid model, and finally taking limits as
n →∞.

Next, equation (2.29) imposes a constraint on Ψ̂n
c in the form of a lower

bound at zero. It is also not hard to see that an upper bound on Ψ̂n
c follows

from (2.5), (2.14) and (2.18). However, such a bound is of the order of n1/2,
and as n grows without bound it becomes irrelevant. It therefore makes sense
that, in the proposed diffusion model, each integral in the last term of (2.27)
is replaced by a process ηc that is required to have increasing sample paths,
and no additional limitation.

We thus obtain a diffusion model involving processes X(t), Y (t), Z(t) taking
values in RI

+, RI
+ and, respectively, RJ

+ as well as R+-valued processes ηc, c ∈ C.
Equations (2.30)–(2.32) below, that describe the diffusion model, are analogous
to equations (2.27)–(2.29), respectively:

X(t) = x + W (t) +
∫ t

0
H(X(s)− Y (s),−Z(s))ds +

∑

c∈C
mcηc(t) (2.30)

Yi(t) ≥ 0, i ∈ I, Zj(t) ≥ 0, j ∈ J ,
∑

i∈I
Yi(t) =

∑

i∈I
Xi(t) +

∑

j∈J
Zj(t), t ≥ 0,

(2.31)
For every c ∈ C, ηc is nondecreasing and ηc(0) ≥ 0. (2.32)

We will consider Y, Z and {ηc} as control processes, and regard (2.31), (2.32)
as constraints that they must satisfy. To define precisely what controls will be
regarded as admissible, recall that W is an (`,Σ)-Brownian motion defined
on (Ω,F , P ). Let (Ft) be a right-continuous filtration of sub-sigma-fields of F
such that (W (t) − `t,Ft : t ≥ 0) is a martingale. Let a deterministic initial
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condition x ∈ RI be given. A triplet (Y, Z, η) is said to be an admissible
control and X a corresponding controlled process if Y , Z and η are processes
with cadlag sample paths, Y and Z are (Ft)-progressively measurable, ηc is
(Ft)-adapted, and (2.30)–(2.32) hold for all t ∈ [0,∞) P -a.s.

A principal hypothesis of all the results below is what we refer to as the null
controllability condition:

There exists c ∈ C such that e·mc < 0. (2.33)

Note that the cone C referred to in the introduction, in which the increments
of the I-dimensional process

∑
c mcηc(t) of (2.30) take values, is simply the

cone generated by {mc : c ∈ C}. Also, condition (2.1) of the introduction is
given explicitly by (2.33). The following result is proved in Section 2.3.

Theorem 2.2. Assume (2.33) holds. Then there exists an admissible control
(Y, Z, η) under which e·X(t) ≤ 0 and Y (t) = 0 on [0,∞), P -a.s.

The main results of this chapter establish the validity of statements about
the queueing model, that are analogous to Theorem 2.2 in an asymptotic sense.
The first is concerned with preemptive scheduling (see Section 2.3 for a proof).

Theorem 2.3. Assume (2.33) holds. Then there exist P-SCPs under which,
for every ε and T satisfying 0 < ε < T < ∞,

lim
n→∞P(Y n(t) = 0 for all t ∈ [ε, T ]) = 1.

The treatment of non-preemptive scheduling is more involved. In order to
keep the notation simple we have focused in this chapter on the most simple
case where one can expect a null-controllability result: The case I = J = 2.
Clearly, in this case there is at most one simple cycle. It is expected that the
general case can be treated with similar ideas. The result below is proved in
Section 2.4.

Theorem 2.4. Assume I = J = 2 and let (2.33) hold. Then there exist N-
SCPs under which, for every ε and T satisfying 0 < ε < T < ∞,

lim
n→∞P(Y n(t) = 0 for all t ∈ [ε, T ]) = 1.

Remark. As can be seen in Sections 2.3 and 2.4, Theorems 2.3 and 2.4 hold
with ε = 0 in case that the initial condition x satisfies e· x < −1 (or even
e· x < 0, with an obvious modification of the proofs).
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Fig 2.2. (a) A graph as in Figure 2.1(b) with two simple cycles. Dashed lines represent non-
basic activities. (b) A possible set of directions of control corresponding to the two cycles.
(c) The direction m1 may be used to constrain the diffusion model to the null domain X−.

2.2.4. Discussion

Let us consider some numerical examples. Consider first a system with struc-
ture as depicted in Figure 2.1(a). Assume νj = 1 for j = 1, 2, 3, and

λ =

(
8
4

)
, µ̄ = µ =

(
3 10 1
1 4 2

)
,

(where in this subsection we abuse notation and label j by 1, . . . , J). One
checks that the heavy traffic condition holds, and

ξ∗ =

(
1 0.5 0
0 0.5 1

)
, m1 =

(
−7
3

)
, m2 =

(
9
−2

)
.

Above, m1 and m2 are the directions of control corresponding to the two
non-basic activities (2, 1) and (1, 3). In fact, the graph that appears in Fig-
ure 2.1(b) precisely describes Ga and Gba in the current example. Clearly the
null-controllability condition holds, since e·m1 < 0. The simple cycles and di-
rections of control are depicted in Figure 2.2(a) and (b). To demonstrate the
geometric aspect we refer to Figure 2.2(c), where the null domain X− is shown
along with a vector field defined on its boundary assuming the constant value
m1. Under appropriate assumptions, one can construct a diffusion in R2 with
a boundary term according to this vector field, that will be constrained to X−.
In contrast, m2 can not be used to constrain the diffusion to the same domain.
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In general, the diffusion can be constrained to X− provided that at least one
of the vectors mc satisfies e·mc < 0. This is the source for condition (2.33).

We next consider examples with two classes and two stations:

µ = µ̄ =

(
8 10
3 6

)
, λ =

(
13
3

)
, ξ∗ =

(
1 0.5
0 0.5

)
, m =

(
−2
3

)
,

(2.34)

µ = µ̄ =

(
4 7
2 4

)
, λ =

(
7.5
2

)
, ξ∗ =

(
1 0.5
0 0.5

)
, m =

(
−3
2

)
.

(2.35)
Above, we have presented both the data and the solution to the linear program
in each case. In both cases the heavy traffic condition holds and the activities
are as depicted in Figure 2.3(a). Note that in these examples there is a single
cycle. The null controllability condition does not hold in the first example,
and it does hold in the second. In fact, one can write the null controllability
condition (2.33) for the above examples in a straightforward way as:

µ11 + µ22 < µ12 + µ21. (2.36)

It is instructive to note that there are values of µ for which (2.36) does not ex-
press the null controllability condition (2.33). Consider the following example:

µ = µ̄ =

(
3 7
6 11

)
, λ =

(
3.5
11.5

)
, ξ∗ =

(
0 0.5
1 0.5

)
, m =

(
4
−5

)
.

Note that the values of both sides of the inequality (2.36) are the same as in
example (2.34). Still, as can be verified by calculating e·m, the null controlla-
bility condition, that did not hold in example (2.34), does hold in this example.
The reason is that the structure of the graph has changed and it now corre-
sponds to Figure 2.3(b). In particular, the direction of the cycle is reversed,
and condition (2.33) is equivalent to (2.36) with a reversed inequality. We can
see that the null controllability condition depends on the values of µ as well
as the direction of the cycle, which in turn is determined by the fluid model
parameters λ and µ̄.

We now come back to the point referred to in the introduction regard-
ing the unusual heavy traffic behavior. A particular consequence of our main
results can be stated as follows. One can find policies (preemptive and non-
preemptive) under which, for every t > 0,

lim
n→∞P (e·Y n(t) = 0) = 1. (2.37)
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(a) (b)

Fig 2.3. Two examples with cycles in opposite directions (dashed lines represent non-basic
activities).

What we referred to as unusual is that a critically loaded system shows a
behavior that is typical to underloaded systems: the possibility to maintain
empty queues with probability approaching one. We would like to make pre-
cise the statement that the system under study is critically loaded. One aspect
of this is that the underlying fluid model is critically loaded, in the sense that
the linear program (2.10) is solved with ρ∗ = 1, by assumption. More signif-
icant, however, is a statement that can be made regarding the probabilistic
model. Namely, one can show that in a probabilistic model associated with an
overloaded fluid model, queues inevitably build up.

To this end, let λ′i, i ∈ I be constants satisfying λ′i ≥ λi for all i and λ′i > λi

for at least one i ∈ I. The parameters (λ, µ̄) lead to a fluid model that is
critically loaded. In the same sense, the pair (λ′, µ̄) correspond to an overloaded
fluid model. We consider a sequence of processes An

OL defined analogously
to An, but with λ′n replacing the parameters λn, where λ′n is a sequence
satisfying n−1λ′n → λ′ (compare with (2.8)). Let Xn

OL stand for the processes
Xn obtained by replacing throughout our probabilistic model An by An

OL.
Define analogously all other processes involved, e.g., Y n

OL in place of Y n. As
the following result shows, the model thus obtained is indeed overloaded in
the sense that queues (in fact, large queues) necessarily build up. The result
shows a sharp contrast with (2.37).

Proposition 2.1. There exist constants C1 and C2 > 0 depending only on
(λ, λ′, µ̄) (and not depending on n or t) such that under any policy, for every
t,

lim
n→∞P (e·Y n

OL(t) ≥ (−C1 + C2t)n) = 1. (2.38)

A proof is sketched in the appendix.
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2.3. Diffusion model and queueing model in the preemptive case

In this section we prove Theorems 2.2 and 2.3.
Proof of Theorem 2.2. Let c0 be such that e·mc0 < 0. Consider the domain

Dα = {ξ ∈ RI : e· ξ < −α}

for some fixed α ≥ 0. Fix some j0 ∈ J . We will construct a control with the
following properties:

Y (t) = 0, Zj(t) = 0, for all j 6= j0, ηc(t) = 0 for all c 6= c0, t ≥ 0.
(2.39)

The process Zj0 will satisfy

Zj0(t) = −e·X(t), t ≥ 0. (2.40)

As a result, (2.31) will be satisfied. Finally, the process ηc0 will serve as a
constraining term of a reflected diffusion on the domain Dα with reflection
field identically equal to mc0 on the boundary ∂Dα. We therefore consider
equation (2.30) in the special form

X(t) = x + W (t) +
∫ t

0
H̃(X(s))ds + mc0ηc0(t), (2.41)

where H̃(ξ) = H(ξ, (e· ξ)ej0). Note that H̃ is linear. Consider first the case
x ∈ Dα. The result of [45] regarding existence of strong solutions to stochastic
differential equations with oblique reflection, stated for a bounded domain,
implies, using a standard localization argument, the existence of a pair (X, ηc0)
with the following properties. The process X is progressively measurable, ηc0

is continuous nondecreasing, adapted, with values in R+, equation (2.41) holds
for all t ≥ 0, a.s. and X(t) ∈ Dα, t ≥ 0, a.s. In particular, we have constructed
a process X with the property e·X(t) ≤ −α, t ≥ 0, a.s. Letting now Y , Z
and ηc, c 6= c0 be defined via (2.39) and (2.40), we have constructed a triplet
(Y, Z, η) that is an admissible control, and have shown that X and Y satisfy
the conclusion of the theorem.

In the case where e·x > −α, clearly x + βmc0 ∈ Dα for β large. Fix any β
as above, and set y = x + βmc0 ∈ Dα. Denote the control and the controlled
process corresponding to starting from y as (Ỹ , Z̃, η̃) and, respectively, X̃. Now
set Y = Ỹ , Z = Z̃, ηc0(t) = β + η̃c0(t) and X(t) = X̃(t). Then X(0) = y, and
clearly (2.41) still holds for all t ≥ 0. As a result, (Y, Z, η) is an admissible
control and the conclusion of the theorem holds.
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We remark that in the proof above we can simply take α = 0. Our results
regarding asymptotic null controllability will be inspired by a similar construc-
tion but α will be taken to be positive.

Recall that, by definition, a P-SCP is a map that determines Ψn(t) for a
given value of Xn(t) in such a way that (2.2)–(2.6) hold. The following lemma
shows that, under suitable conditions, we can determine the value of Ψn by
first selecting values for Y n(t), Zn(t) and {Ψn

c (t), c ∈ C}.
Lemma 2.1. There is a constant a0 > 0 such that the following holds for all
n large. Suppose that, for some t, the following relations hold: Xn(t) ∈ ZI

+,
‖Xn(t)− nx∗‖ ≤ a0n, Y n(t) ∈ ZI

+, Zn(t) ∈ ZJ
+,

e·Y n(t) + e·Nn = e·Xn(t) + e·Zn(t), [e·Y n(t)] ∨ [e·Zn(t)] ≤ a0In + 1,

Ψn
c (t) ∈ Z+, c ∈ C, and

Ψn
c (t) ≤ a0n, c ∈ C.

Set

Ψn
ij(t) = Gij(X

n(t)− Y n(t), Nn − Zn(t))− ∑

c∈C:(i,j)∈c

s(c, i, j)Ψn
c (t). (2.42)

Then the quantities

{Xn
i (t), i ∈ I}, {Y n

i (t), i ∈ I}, {Zn
j (t), j ∈ J }, {Ψn

ij(t), (i, j) ∈ I × J }

satisfy (2.2) and (2.4)–(2.6).

The proof of this lemma appears in the appendix.
Proof of Theorem 2.3. We begin by describing the policy. By Definition
2.1 we need to describe a map that determines Ψn(t) for a given value of
Xn(t). Given the one-to-one relations (2.16) and (2.18), this is equivalent to
describing Ψ̂n(t) for a given value of X̂n(t). Let a0 be the constant from Lemma
2.1. If ‖X̂n(t)‖ > a0n

1/2 we assume that Ψ̂n(t) is determined as the image of
X̂n(t) under some fixed map fn, in a way that is consistent with Definition 2.1
but otherwise arbitrary (there will be no need to describe fn more precisely).
Focusing below on the case ‖X̂n(t)‖ ≤ a0n

1/2, we fix a sequence Kn, n ∈ N so
that n1/2Kn ∈ Z+ for all n and

Kn →∞, n−1/2Kn → 0, as n →∞. (2.43)

Denote
D1 = {ξ ∈ RI : e· ξ < −1}.

29



Fix throughout a simple cycle c0 for which e·mc0 < 0. Also fix throughout
i0 ∈ I and j0 ∈ J . The proposed policy sets

Ψ̂n
c0

(t) =





0, X̂n(t) ∈ D1

Kn, X̂n(t) ∈ Dc
1

t ≥ 0, (2.44)

and Ψ̂n
c (t) = 0 for all c 6= c0, t ≥ 0. It also sets Ŷ n

i (t) = 0 for all i 6= i0,
Ẑn

j (t) = 0 for all j 6= j0 and

Ŷ n
i0

(t) = (e· X̂n(t)− e· N̂n)+, Ẑn
j0

(t) = (e· X̂n(t)− e· N̂n)−, t ≥ 0.
(2.45)

By (2.43) and (2.44), Ψn
c0

(t) ≤ a0n for all n large. By Lemma 2.1, Ψn(t) are
well defined given Xn(t), and (2.2), (2.4)–(2.6) hold. This completes the de-
scription of the P-SCP. Clearly, this description, along with equation (2.3),
uniquely define the processes Ψn and Xn given the initial conditions and prim-
itive processes. Although the description applies for any initial condition X̂0,n,
the treatment with be slightly different for X̂0,n in D1 and outside.

In what follows let 0 < ε < T < ∞ be fixed. Let

τ̄n = inf{t : ‖X̂n(t)‖ > a0n
1/2}. (2.46)

Let also

H̃n(ξ) = Hn(ξ − (e· ξ − e· N̂n)+ei0 , −(e· ξ − e· N̂n)−ej0).

For t ≤ τ̄n, one has by (2.27)

X̂n(t) = X̂0,n + Ŵ n(t) +
∫ t

0
H̃n(X̂n(s))ds + mn

c0

∫ t

0
Ψ̂n

c0
(s)ds. (2.47)

Note that H̃n satisfy

‖H̃n(ξ)‖ ≤ CH(‖ξ‖+ ‖N̂n‖), ξ ∈ RI , n ∈ N, (2.48)

where CH is a constant independent of n. Denote Cn
e = −e·mn

c0
. Note that by

assumption Cn
e → −e·mc0 > 0 as n → ∞. It is assumed in what follows that

n is so large that
Cn

e > |e·mc0|/2 =: 2C0. (2.49)

Denote X̂n
e = e· X̂n and similarly Ŵ n

e = e· Ŵ n, X̂0,n
e = e· X̂0,n and H̃n

e = e· H̃n.
Then by (2.44) and (2.47) we have

X̂n
e (t) = X̂0,n

e + Ŵ n
e (t) +

∫ t

0
H̃n

e (X̂n(s))ds− Cn
e Kn

∫ t

0
1X̂e

n(s)≥−1ds, t ≤ τ̄n.

(2.50)

30



The rest of our argument is divided into four steps.
Step 1. We first show that there exists a deterministic constant C1 independent
of x, n and Kn such that

‖X̂n‖∗T ≤ C1(1 + ‖X̂0,n‖+ ‖Ŵ n‖∗T ) on the event τ̄n ≥ T. (2.51)

To this end, denote An = [4‖e‖(‖X̂0,n‖+ ‖Ŵ n‖∗T )] ∨ 1 and let

τn
1 = inf{t ∈ [0, T ] : X̂n

e (t) ≤ −An − 1}.

Note that τn
1 > 0. Since by assumption τ̄n ≥ T , (2.47) and (2.50) are valid for

t ≤ T . By (2.48) and (2.50), noting that X̂n
e (t) ≥ −An− 1 for t ≤ τn

1 , we have

KnC
n
e

∫ t

0
1X̂n

e (s)≥−1ds ≤ An + 1 + βn + ‖e‖‖X̂0,n‖+ ‖e‖‖Ŵ n‖∗T

+ ‖e‖CH

∫ t

0
‖X̂n(s)‖ds, t ≤ τn

1 ∧ T,

where we denote βn = ‖e‖CHT‖N̂n‖. Note that βn → 0. Hence by (2.47),

‖X̂n(t)‖ ≤ C2(An + 1) + C2

∫ t

0
‖X̂n(s)‖ds, t ≤ τn

1 ∧ T,

where C2 does not depend on X̂0,n, Ŵ n, Kn or n. By Gronwall’s lemma,

‖X̂n‖∗τn
1 ∧T ≤ C2(An + 1)eC2T . (2.52)

Since on the event τn
1 ≥ T the property (2.51) follows from (2.52), we consider

in what follows only the case τn
1 < T . If X̂n

e (t) < −1 for all t ∈ [0, τn
1 ], let

τn
2 = 0; otherwise let

τn
2 = sup{t ∈ [0, τn

1 ] : X̂n
e (t) ≥ −1}.

Note that X̂n
e (τn

2 ) ≥ −1− ‖e‖‖X̂0,n‖. Hence by (2.50)

−An+‖e‖‖X̂0,n‖ ≥ X̂n
e (τn

1 )−X̂n
e (τn

2 ) = Ŵ n
e (τn

1 )−Ŵ n
e (τn

2 )+
∫ τn

1

τn
2

H̃n
e (X̂n(s))ds.

As a result,

An/2 ≤
∣∣∣∣∣
∫ τn

1

τn
2

H̃n
e (X̂n(s))ds

∣∣∣∣∣ ≤ ‖e‖CHτn
1 ‖X̂n‖∗τn

1
+ βn.
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This and (2.52) show An/2 − βn ≤ ‖e‖CHτn
1 C2(An + 1)eC2T . Since An ≥ 1,

An/(An + 1) ≥ 1/2. As a result, there exists a deterministic constant δ > 0
not depending on X̂0,n, Ŵn, Kn, n such that, provided that n is large enough,

τn
1 ≥ δ on the event τ̄n ≥ T. (2.53)

Combining (2.52) and (2.53) we have that ‖X̂n‖∗δ ≤ C3(1 + ‖X̂0,n‖+ ‖Ŵ n‖∗T ),
where C3 does not depend on X̂0,n, Ŵ n, Kn, n. In a similar fashion we have for
i = 1, 2, . . .

‖X̂n‖∗iδ ≤ C3(1 + ‖X̂n‖∗(i−1)δ + ‖Ŵ n‖∗T ).

Assuming without loss that C3 ≥ 1 the above implies

‖X̂n‖∗T ≤ (2C3)
T/δ+1(1 + ‖X̂0,n‖+ ‖Ŵ n‖∗T )

and proves (2.51).
Step 2. Recall that W denotes an (`, Σ)-Brownian motion. We next show that

lim
n→∞P(τ̄n ≤ T ) = 0, (2.54)

and
Ŵ n ⇒ W on [0, T ]. (2.55)

Let Ai, i ∈ I and Sij, (i, j) ∈ I×J be mutually independent Brownian motions
with mean zero and variances given by EA2

i (1) = λiC
2
U,i, ES2

ij(1) = µij. By
Theorem 14.6 of [13],

(Ân, Ŝn) ⇒ (A, S) locally on compacts. (2.56)

By (2.5) and (2.6), Ψn
ij(t) ≤ Nn

j for all i, j and t. Thus by (2.8) and (2.26),

‖Ŵ n‖∗T ≤ ‖Ân‖∗T +‖Ŝn‖∗C4T +‖`n‖T for a suitable constant C4. Hence n−1/2‖Ŵ n‖∗T
converges to zero in probability. By (2.51), n−1/2‖X̂n‖∗T∧τ̄n converges to zero
in probability. Using the definition (2.46), this establishes (2.54). In turn, this
shows that n−1/2‖X̂n‖∗T converges to zero in probability. By (2.45), so do
n−1/2‖Ŷ n‖∗T and n−1/2‖Ẑn‖∗T . Note that G(x∗, ν) = ψ∗, as follows from (2.11)
and (2.24). Using (2.42), linearity of the map G, (2.43) and (2.16)–(2.18) we
thus obtain, for a suitable constant C5,

‖Ψ̄n(t)− ψ∗‖∗T ≤ n−1‖G(Xn − nx∗ − Y n, Nn − nν − Zn)‖∗T + n−1/2Kn

≤ C5n
−1/2(‖X̂n‖∗T + ‖Ŷ n‖∗T + ‖N̂n‖+ ‖Ẑn‖∗T ) + n−1/2Kn

→ 0 in probability. (2.57)
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Combining (2.26), (2.56) and (2.57), the claim (2.55) follows from the lemma
on p. 151 of [13] regarding random change of time.
Step 3. Recall (2.19). We prove the theorem in the case x ∈ D1. In this case,
for all n large, X̂0,n ∈ D1. Denote

τn = inf{s ∈ [0, T ] : X̂n
e (s) ≥ −1/2}.

Denote also Ωn = {τ̄n > T}. By (2.54), limn P(Ωn) = 1. If we show

lim
n→∞P({τn ≤ T} ∩Ωn) = 0, (2.58)

it would follow that P(X̂n
e (t) ≤ −1/2 for all t ∈ [0, T ]) → 1, and in turn, by

(2.17) and (2.45), that P(Y n(t) = 0 for all t ∈ [0, T ]) → 1, as n → ∞. Hence
in order to prove the theorem it suffices to prove (2.58).

To this end, note that the jumps of the process Ŵ n are bounded by n−1/2

and write

P({τn ≤ T} ∩Ωn) ≤ P({there exist 0 ≤ s < t ≤ T such that

− 1 ≤ X̂n
e (θ) ≤ −1/2 for all θ ∈ [s, t],

X̂n
e (s) ≤ −7/8 and X̂n

e (t) ≥ −5/8} ∩Ωn). (2.59)

Under the event indicated immediately above, on the (random) interval [s, t],
X̂n

e ≥ −1, and thus by (2.50),

1

4
≤ X̂n

e (t)− X̂n
e (s) =

∫ t

s
H̃n

e (X̂n(θ))dθ + Ŵ n
e (t)− Ŵ n

e (s)− Cn
e Kn(t− s).

(2.60)

Moreover, by (2.48) and (2.51),
∫ t

s
H̃n

e (X̂n(θ))dθ ≤ CH‖e‖C1(t− s)[r + ‖Wn‖∗T ] + βn,

where r = 1+supn ‖X̂0,n‖. Since Kn →∞, it follows that there is a determin-
istic n0 such that for all n ≥ n0

∆n(s, t) := Ŵ n
e (t)− Ŵ n

e (s) + CH‖e‖C1(t− s)‖Ŵ n‖∗T + βn

≥ 1

4
+ [Cn

e Kn − CH‖e‖C1r](t− s)

≥ 1

4
+ C0Kn(t− s)

≥




C0K
1/2
n , t− s ≥ K−1/2

n ,

1/4, t− s < K−1/2
n ,

(2.61)

33



where C0 is as in (2.49), and on the first inequality we used the fact that
CH‖e‖C1r does not depend on n. Combining (2.59) and (2.61), we see that
there are constants C6, C7 > 0 not depending on n and Kn such that

P({τn ≤ T} ∩Ωn)

≤ P(there exist s < t ≤ T such that ∆n(s, t) ≥ C0K
1/2
n )

+ P(there exist s < t ≤ T such that t− s < K−1/2
n , ∆n(s, t) ≥ 1/4)

≤ P(‖Ŵn‖∗T ≥ C6K
1/2
n )

+ P(wT (Ŵn, K
−1/2
n ) ≥ 1/8− βn) + P(CH‖e‖C1K

−1/2
n ‖Ŵn‖∗T ≥ 1/8)

≤ 2P(‖Ŵn‖∗T ≥ C7K
1/2
n ) + P(wT (Ŵn, K

−1/2
n ) ≥ 1/8− βn),

where wT (f, δ) denotes the modulus of continuity of a function f on [0, T ].
Since by (2.55) Ŵ n are tight, and the weak limit process has continuous sample
paths, (2.58) follows (see e.g., Theorem 16.8 of [13]) and hence the result.
Step 4. Finally, we prove the theorem in the case x ∈ Dc

1. Let τn
3 = inf{t ∈

[0, T ] : X̂n
e < −1}. Then

P({τn
3 > ε} ∩Ωn) ≤ P({X̂n

e (θ) ≥ −1 for all θ ∈ [0, ε]} ∩Ωn).

An argument similar to step 3 (only simpler) shows that under the event
indicated on the r.h.s. of the above display,

∆n(0, ε) ≥ −1− r + [Cn
e Kn − CH‖e‖C1r]ε,

and in turn that P(τn
3 > ε) converges to zero as n → ∞. We can now review

the argument of step 3, replacing X̂0,n by X̂n(τn
3 ) and τn by τn

4 := inf{t ∈
[τn

3 , T ] : X̂n
e (t) ≥ −1/2} (where τn

4 = ∞ on the event τn
3 > T ) so as to show

that P(τn
4 ≤ T ) → 0 as n →∞. The only issue that is different now is that the

“initial condition” X̂n(τn
3 ) is random and cannot be bounded by a deterministic

constant r. Instead, let us define the random variable rn := 1 + ‖X̂n(τn
3 )‖ and

let Ωn
1 := {rn ≤ C0(CH‖e‖C1)

−1Kn} ∩ {τn
3 ≤ T}. Coming back to (2.61) with

rn in place of r, it is clear that the second inequality will hold on Ωn
1 , and so the

remainder of the argument of step 3 is valid once Ωn is replaced by Ωn ∩Ωn
1 .

Since P(τn
3 ≤ T ) converges to one, the relations (2.51), (2.54) and (2.55) imply

that the random variables rn are tight, and therefore P(Ωn
1 ∩ Ωn) → 1 as

n →∞. This establishes the theorem.

2.4. The non-preemptive case

In this section we treat the non-preemptive case and prove Theorem 2.4. Recall
that we only consider the case I = J = 2. Thus I = {1, 2} and J = {3, 4}.
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The heavy traffic and complete resource pooling conditions, that are in force,
imply that the graph of basic activities Gba is a tree with vertex set I ∪ J =
{1, 2, 3, 4} (cf. (2.12)). It follows that there are exactly 3 activities that are
basic. Had we not had a fourth activity, the graph Ga would not contain a
cycle and it would not be possible to fulfill the null controllability condition
(2.33). Thus, the hypotheses of the theorem require that there be a fourth, non-
basic activity. We have labeled the classes as ‘1’ and ‘2’. Although J = {3, 4},
it will be more natural in the discussion that follows, and throughout the
section, to refer to the stations as ‘station 1’ and ‘station 2’, and with an
abuse of notation regard the index set for the stations as {1, 2}. Accordingly,
we have four activities, (i, j), i, j ∈ {1, 2}, and without loss of generality, we
let (2, 1) be the only non-basic activity (see Figure 2.3(a)). As a result, the
direction of the only simple cycle, that we denote as c, is: class 2 → station 1
→ class 1 → station 2 → class 2. By (2.21) we get mn

c = (µn
11−µn

12,−µn
21 +µn

22)
and mc = (µ11 − µ12,−µ21 + µ22). In what follows we will write mn for mn

c

and m for mc. We also let Cn
m = −e·mn and Cm = −e·m. Note that condition

(2.33) can be written as Cm ≡ −e·m > 0.
We now specify the N-SCP for which the conclusions of Theorem 2.4 will be

shown. According to Definition 2.2, we must specify the initial arrangement
and how routing is determined upon each arrival. To this end we need some
notation. Note that by (2.23) and (2.25) there exists a constant C ′

H such that

‖Hn(a, b)‖ ≤ C ′
H

2I
(‖a‖+ ‖b‖), (a, b) ∈ DG, n ∈ N. (2.62)

Let

κ =
2 + 16C ′

H

Cm

, δ =
1

8κ‖m‖ ∧
log 2

C ′
H

, γ =
log 8

δ
. (2.63)

The initial arrangement and the routing rules will depend on X̂0,n, and in
particular on whether e· X̂0,n < −1 or not. First consider the case where
e· X̂0,n < −1.
Initial arrangement. Recall that Xn(0) = X0,n is given and we have to specify
Ψn(0). We set

Ψn
21(0) = dn5/8κe, (2.64)

Ψn
11(0) = d(Nn

1 −Nn
2 + X0,n

1 + X0,n
2 )/2e − Ψn

21(0), (2.65)

Ψn
12(0) = b(Nn

2 −Nn
1 + X0,n

1 −X0,n
2 )/2c+ Ψn

21(0), (2.66)

Ψn
22(0) = X0,n

2 − Ψn
21(0). (2.67)
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Using (2.4), (2.5) one verifies that

Y n
1 (0) = Y n

2 (0) = 0, |Zn
1 (0)− Zn

2 (0)| ≤ 1. (2.68)

Routing. The routing decisions can be based only on n, the value of Ξn right
before the arrival, and some auxiliary randomness that we have denoted by
Rn. The way we use the randomness in the proposed policy is so as to split the
customers of class 2 into two sub-classes, that we label as α and β. Upon the
kth class-2 arrival, an independent biased coin is tossed according to which it
is decided what sub-class the arrival belongs to. The bias of the coin is allowed
to depend on k. We denote by αn(k) the probability that the kth class-2 arrival
is classified as a class-α customer. The value of αn(k) is determined as

αn(k) =

{
κ(γ + µ21)

λ2n3/8
exp

[
γ(k − 1)

nλ2

]}
∧ 1. (2.69)

Since we assume that X̂0,n < −1 and the difference between Zn
1 (0) and Zn

2 (0)
is at most 1, it follows that the initial arrangement is such that there are free
servers in both stations. Below, we shall describe the routing policy only as
long as there are free servers in both stations. The description of the policy
at other times is not important and will be left completely open (in fact, one
of the main ingredients of the proof will be to show that the event that there
are no free servers in one of the stations some time before T has probability
approaching zero as n →∞). The routing rules are as follows.
1. Class-1 customers are routed to the station with more free servers. More
precisely, if a class-1 customer arrives at time t, it is instantaneously routed to
station j, where

j =





1 if Ẑn
1 (t−) > Ẑn

2 (t−)

2 otherwise.

2. Class-α customers are routed to station 1 upon arrival.
3. Class-β customers are routed to station 2 upon arrival.

Next, consider the case where the initial condition satisfies e· X̂0,n ≥ −1.
Denote rn = e·X0,n − e·Nn + dn1/2e. For the initial arrangement, we let rn

class-1 customers be left in the queue, and let Ψn
ij(0) be defined as in (2.64)–

(2.67), except that we substitute X0,n − rn for X0,n. As a result, in place of
the left part of (2.68) we will have Y n

1 (0) = rn, Y n
2 (0) = 0. The routing is

determined as follows. The rn class-1 customers that are initially put in the
queue are kept in the queue. Rules 1–3 above apply for all the other customers.
Upon the first arrival after the time τn

0 when the number of free servers in the
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system first exceeds rn +dn1/2e, all the rn customers are moved into service: γn
1

into station 1 and γn
2 into station 2. Here, γn

1 = d(Zn
2 (τn

0−)−Zn
1 (τn

0−)+rn)/2e,
γn

2 = b(Zn
1 (τn

0−) − Zn
2 (τn

0−) + rn)/2c. Clearly, e· X̂n(τn
0 ) ≤ −1. Also, by the

above choice for γn
i , one achieves that Y n

i (τn
0 ) = 0 and |Zn

1 (τn
0 )−Zn

2 (τn
0 )| ≤ 1,

a situation similar to (2.68). From the time τn
0 on, the routing rules 1–3 above

apply for all the new arrivals. Note that once again we have ignored the scenario
that there are no free servers in one of the stations at some time before T , for
reasons as mentioned before.

Here and for most of this section we shall assume that e·x < −1. Since
X̂0,n → x, we have

e· X̂0,n < −1 (2.70)

for all large n, and as a result only the first part of the definition of the policy
will be relevant until, at the end of the section, we return to the treatment of
the case e·x ≥ −1.

Without loss of generality assume that T is a multiple of δ, and set k̄ =
T/δ. Divide the time interval [0, T ] as follows: I0 = {0}, I1 = (0, δ], . . . ,
Ik̄ = ((k̄ − 1)δ, k̄δ]. Let h̄ : [0, T ] → R be defined as

h̄(t) = 2−k for all t ∈ Ik, k = 0, 1, . . . , k̄.

Define

τn = inf

{
t ≥ 0 : X̂n

e (t) ≥ − h̄(t)

2

}
∧ T. (2.71)

Let h′ = 1
32

2−k̄ ≡ 1
32

h̄(T ). Let

σn = inf{t ≥ 0 : Ẑn
1 (t) ∧ Ẑn

2 (t) ≤ 4h′} (2.72)

and ζn = τn ∧ σn. By (2.70) and since Ẑn
1 (0) and Ẑn

2 (0) are nearly equal (cf.
(2.68)), it is useful to note that

Ẑn
1 (0) ∧ Ẑn

2 (0) ≥ 1/4. (2.73)

Also, it is clear that there are idle servers in both stations up to time σn.
Denote

D(a, p) = {ξ ∈ RI : ‖ξ‖ ≤ a, e· ξ ≤ −p}, a > 0, p > 0.

Let Kn = n1/8 and
Dn

k = D(eγδkKn, 2
−k).

For k = 0, 1, . . . , k̄, denote

Ωn
k = {X̂n(t) ∈ Dn

k′ , t ∈ Ik′ , for all k′ ≤ k} ∩ {ζn > kδ}. (2.74)
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Proposition 2.1. Let the assumptions of Theorem 2.4 hold and assume also
that e·x < −1. Then for k = 0, 1, . . . , k̄, P(Ωn

k ) → 1.

The above result implies that P(σn ≤ T ) → 0. Since by construction of the
policy, Y n(t) = 0 for t ≤ σn, this establishes Theorem 2.4 in this case.

In preparation for the proof of Proposition 2.1 we need some notation and
preliminary results. Recall that we have denoted the only cycle by c, and that
according to our notation Ψn

c (t) ≡ Ψn
21(t) and Ψ̂n

c (t) ≡ Ψ̂n
21(t). Let An

α(t) [An
β(t)]

denote the number of class-α [respectively, class-β] customers that have arrived
up to time t. Let

Ân
α(t) = n−1/2An

α(t)−Kn

∫ t

0
(µ21 + γ)ψ0(s)ds, (2.75)

where
ψ0(t) = κeγt, t ≥ 0. (2.76)

A sequence of processes is said to be C-tight if it is tight and every subsequen-
tial limit has continuous sample paths with probability one. The following
three lemmas will be proved later in this section.

Lemma 2.1. Under the assumptions of Proposition 2.1 one has

|Ân
α|∗T → 0 in probability, (2.77)

‖X̄n − x∗‖∗T∧σn ≡ n−1/2‖X̂n‖∗T∧σn → 0 in probability. (2.78)

‖Ψ̄n − ψ∗‖∗T∧σn ≡ n−1/2‖Ψ̂n‖∗T∧σn → 0 in probability. (2.79)

In addition, the processes Ân
i (· ∧ σn), Ŝn

ij

(∫ ·∧σn

0 Ψ̄n
ij(s)ds

)
are C-tight. In par-

ticular, one has |Ŝn
21

(∫ ·
0 Ψ̄n

21(s)ds
)
|∗T∧σn → 0 in probability.

Lemma 2.2. Under the assumptions of Proposition 2.1, |Ψ̂n
c −Knψ0|∗T∧σn → 0

in probability, where ψ0 is as in (2.76).

Lemma 2.3. Under the assumptions of Proposition 2.1, limn→∞ P(σn ≤ τn) =
0.

The following will be used several times in the proofs of both Proposition
2.1 and the above lemmas. Recall that for t ≤ σn, Y n(t) = 0. Hence have from
(2.27)

X̂n(t) = X̂0,n + Ŵ n(t) +
∫ t

0
[Hn(s) + mnΨ̂n

c (s)]ds, t ≤ σn, (2.80)
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where we have denoted

Hn(s) = Hn(X̂n(s),−Ẑn(s)). (2.81)

Also, substituting zero for Ŷ n in (2.28), using (2.14) and positivity of Ẑn
j , we

have for all n large

‖Ẑn(t)‖ ≤ ‖X̂n(t)‖+ 1, t ≤ σn. (2.82)

Thus by (2.25), (2.62), (2.81) and (2.82), for all n large,

‖Hn(s)‖ ∨ ‖e·Hn(s)‖ ≤ C ′
H(1 + ‖X̂n(s)‖), t ≤ σn. (2.83)

Proof of Proposition 2.1. We argue by induction on k. As the induction
base, consider k = 0. By (2.70) and since X̂0,n converge, we have X̂n(0) ∈ Dn

0

for all large n. By Lemma 2.3, it remains to show that τn > 0 with probability
approaching 1. This follows from (2.71) and the fact that the jumps of X̂n are
bounded by n−1/2.

Next consider the induction step. Assuming that for a given k < k̄ one has

lim
n→∞P(Ωn

k ) = 1, (2.84)

we shall prove
lim

n→∞P(Ωn
k+1) = 1. (2.85)

In view of Lemma 2.3, it suffices to show

lim
n→∞P(τn ≤ (k + 1)δ) = 0, (2.86)

and
lim

n→∞P(‖X̂n‖∗δ(k+1)∧σn ≤ eγδ(k+1)Kn) = 1. (2.87)

To this end, note that from (2.80) we have

X̂n
e (t) = X̂0,n

e + Ŵ n
e (t) +

∫ t

0
[Hn

e (s)− Cn
mΨ̂n

c (s)]ds, t ≤ σn. (2.88)

By (2.63), one verifies that the constants κ, δ and γ satisfy

eC′Hδ ≤ 2, 1 + C ′
Heγδ ≤ 1

2
Cmκ, (2.89)

4(1 + ‖m‖κδeγδ) ≤ eγδ. (2.90)

39



Denote
Ω̃n

k = Ωn
k ∩ {σn > τn} ∩ {τn ≤ (k + 1)δ}.

Let h = 1
8
2−k. On Ωn

k (hence on Ω̃n
k ) the following must hold:

‖X̂n(kδ)‖ ≤ eγδkKn, X̂n
e (kδ) ≤ −8h. (2.91)

In addition, on Ω̃n
k ,

there exist kδ < s < t ≤ (k + 1)δ ∧ σn such that

X̂n
e (s) ≤ −7h, X̂n

e (t) ≥ −5h.

Hence in view of (2.88), the following must hold on Ω̃n
k :

2h ≤ X̂n
e (t)− X̂n

e (s) = Ŵ n
e (t)− Ŵ n

e (s) +
∫ t

s
[Hn

e (u)− Cn
mΨ̂n

c (u)]du. (2.92)

Denote an = |Ψ̂n
c − Knψ0|∗T∧σn , bn = ‖Ŵ n‖∗T∧σn and dn

u,v = Ŵ n
e (v) − Ŵ n

e (u).
Let

Ω̂n
k = Ωn

k ∩ {Cman ≤ 2} ∩ {2bn + 2δ‖m‖an + T ≤ Kn}. (2.93)

By Lemmas 2.1–2.3 and (2.84),

lim
n→∞P(Ω̂n

k ) = 1. (2.94)

On the event Ω̂n
k , by (2.80), (2.83), denoting

Λn = ‖X̂n(kδ)‖+ 2bn + δ‖mn‖ |Ψ̂n
c |∗T∧σn + T

we have

‖X̂n(u)‖ ≤ Λn +
∫ u

kδ
C ′

H‖X̂n(u′)‖du′, u ≤ (k + 1)δ ∧ σn.

By Gronwall’s inequality and the first part of (2.89) this shows that ‖X̂n(u)‖ ≤
2Λn, for u as above. Using this along with (2.93), and assuming in what follows
that n is so large that ‖mn‖ ≤ 2‖m‖ and Cn

m ≥ Cm/2, we have on the event
Ω̂n

k

‖X̂n(u)‖ ≤ 4Kneγδk(1 + ‖m‖κδeγδ) ≤ Kneγδ(k+1), u ≤ (k + 1)δ ∧ σn, (2.95)

where in the last inequality we used (2.90). Equations (2.94) and (2.95) estab-
lish (2.87). Next, combining (2.92) and (2.95), and using again (2.93), we have
on the event Ω̃n

k ∩ Ω̂n
k :

2h ≤ dn
s,t + (C ′

H + 1)(t− s) + Kn(t− s)eγδk[C ′
Heγδ − Cmκ/2].
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Writing C = C ′
H + 1 and using the second part of (2.89), we conclude that for

all large n, on the event Ω̃n
k ∩ Ω̂n

k , there exist s and t such that kδ < s < t ≤
(k + 1)δ ∧ σn and

dn
s,t ≥ 2h + (eγδkKn − C)(t− s) ≥





1
2
K1/2

n , t− s ≥ K−1/2
n ,

2h, t− s < K−1/2
n .

Hence for all large n

P(Ω̃n
k )

≤ P((Ω̂n
k )c) + P( there exist 0 ≤ s < t ≤ T ∧ σn such that 2dn

s,t ≥ K1/2
n )

+ P( there exist 0 ≤ s < t ≤ T ∧ σn such that t− s < K−1/2
n and dn

s,t ≥ 2h)

≤ P((Ω̂n
k )c) + P(4bn ≥ K1/2

n ) + P(wT∧σn(Ŵn, K
−1/2
n ) ≥ h).

By (2.94), the tightness of bn and the C-tightness statement in Lemma 2.1,
we see that P(Ω̃n

k ) → 0 as n → ∞. By (2.84) and Lemma 2.3, this shows
(2.86).

Let a constant r > 0 be given and let θn = inf{t ∈ [0, δ] : X̂n
e (t) ≤ −r}. Let

ε be as in Theorem 2.4. The following consequence of the above proof will be
useful.

Corollary 2.1. Under the assumptions of Proposition 2.1, limn→∞ P(θn >
ε/2) = 0. In addition, ‖X̂n‖∗θn are tight.

Proof. With the notation from (2.74) and (2.93), define Ωn = {θn >
ε/2} ∩ Ω̂n

1 . By Lemmas 2.1–2.3 and Proposition 2.1, limn→∞ P(Ω̂n
1 ) = 1 and

therefore it suffices to show that P(Ωn) → 0. On Ωn we have

−r ≤ X̂n
e (ε)− X̂n

e (0) = Ŵ n
e (ε)− Ŵ n

e (0) +
∫ ε

0
[Hn

e (u)− Cn
mΨ̂n

c (u)]du,

and an argument along the lines of the proof of Proposition 2.1 proves the first
claim of the result.

Next we prove the tightness statement. Note that by assumption ‖X̂n(0)‖ ≤
C0 for some deterministic constant C0 independent on n. Let ςn = (2r +
‖e‖C0)e

−γδK−1
n and Ω̃n = {θn > ςn} ∩ Ω̂n

1 . On Ω̃n we have (just as in the
proof of Proposition 2.1)

−r ≤ X̂e
n(ςn) = X̂n

e (0) + Ŵ n
e (ςn) +

∫ ςn

0
[Hn

e (u)− Cn
mΨ̂n

c (u)]du

≤ X̂n
e (0) + Ŵ n

e (ςn) + (C ′
H + 1)ςn −Kn ςneγδ

≤ Ŵ n
e (ςn) + (C ′

H + 1)ςn − 2r.
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As a result,
lim

n→∞P(θn > ςn) = 0. (2.96)

Let C̃ = C0 +4r‖m‖κ+2CHr +1. On Ω̂n
1 , for n so large that ςn < δ, with the

notation an = |Ψn
c −Knψ0|∗T∧σn , we have

‖X̂n‖∗ςn ≤ ‖X̂n(0)‖+ wT (Ŵ n, ςn) + ‖mn‖δan + ‖mn‖κKne
γδςn + CHKne

γδςn

≤ wT (Ŵ n, ςn) + 2‖m‖δan + C̃ − 1.

Since by Lemmas 2.1–2.2, we have limn→∞ P(wT (Ŵ n, ςn)+2‖m‖δan > 1) = 0,
we conclude that limn→∞ P(‖X̂n‖∗ςn ≤ C̃) = 1. In view of (2.96), this shows

that ‖X̂n‖∗θn are tight.
We turn to prove Lemmas 2.1–2.3.

Proof of Lemma 2.1. We first prove (2.77). Let Rn
k denote the indicator of

the event that in the nth system, the kth class-2 arrival was classified as an
arrival of class α. Then ERn

k = P(Rn
k = 1) = αn(k) given in (2.69). Since An

α(t)
represents the number of class-2 arrivals up to time t that were classified as
class α, we can write An

α(t) =
∑An(t)

k=1 Rn
k . By (2.75) we have

Ân
α(t) = n−1/2An

α(t)− n1/8 λ2C

γ
(eγt − 1),

where throughout this proof C = (µ21 + γ)κ/λ2. Fix ε > 0. Then Ân
α(t) ≥ ε if

and only if An
α(t) ≥ n1/2ε + Kn

t , where

Kn
t = n5/8 λ2C

γ
(eγt − 1).

Therefore

P( there exists t ≤ T, such that Ân
α(t) ≥ ε) ≤ pn

1 + pn
2 , (2.97)

where

pn
1 = P(sup

t≤T
|An

2 (t)− λn
2 t| ≥ n3/4) → 0 as n →∞ (2.98)

pn
2 = P(sup

t≤T
|An

2 (t)− λn
2 t| < n3/4, and there exists t ≤ T,

such that
An(t)∑

k=1

Rn
k ≥ n1/2ε + Kn

t )

≤ P( there exists t ≤ T, such that
β(n,t)∑

k=1

Rn
k −Kn

t ≥ n1/2ε),
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where β(n, t) = bλn
2 t + n3/4c. The convergence statement in (2.98) is due to

the tightness of Ân
2 (cf. (2.56)). A direct calculation based on (2.69) shows

β(n,t)∑

k=1

E(Rn
k) ≤ Kn

t + C ′n3/8,

for all large n, where C ′ is a deterministic constant not depending on n. Hence

pn
2 ≤ P(there exists t ≤ T such that

β(n,t)∑

k=1

(Rn
k − ERn

k) ≥ n1/2ε− C ′n3/8).

Denoting m(l) =
∑l

k=1(R
n
k − ERn

k) we can write

pn
2 ≤ P(|m|∗2λnT ≥ n1/2ε/2) ≤ 16

E[m(2λn
2T )2]

ε2n
,

where in the last step we used Doob’s inequality for the martingale m. In turn,
E[m(l)2] =

∑l
k=1 αn(k), and substituting 2λn

2T for l one finds that pn
2 → 0. As

a result, the l.h.s. of (2.97) converges to zero. A similar calculation, that we
omit, shows that the probability that there exists t ≤ T such that Ân

α(t) ≤ −ε
also converges to zero. Since ε is arbitrary, (2.77) follows.

Exactly as in the proof of Theorem 2.3 we have

n−1/2Ŵ n ⇒ 0. (2.99)

Since X̂0,n converges, we have from (2.80), (2.81) and (2.83), for all large n,

‖X̂n(t)‖ ≤ Kn+‖Ŵ n(t)‖+C ′
H

∫ t

0
(1+‖X̂n(s)‖)ds+T‖mn‖ ‖Ψ̂n

c ‖∗t , t ≤ σn.

(2.100)
Using the inequality

Ψ̂n
c (t ∧ σn) ≤ Ψ̂n

c (0) + n−1/2An
α(T ) (2.101)

and Gronwall’s inequality we have

‖X̂n(t)‖ ≤ C1(Kn + ‖Ŵ n(t)‖+ n−1/2An
α(T ) + 1), t ≤ σn ∧ T, (2.102)

for an appropriate constant C1 not depending on n. It follows from (2.77) that

lim
n→∞P(An

α(T ) ≥ n3/4) = 0. (2.103)
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Combining (2.99), (2.102) and (2.103) we have (2.78). Using (2.4), (2.5), (2.11),
(2.16)–(2.18) and the fact that Ŷ n(t) = 0 we have, for all t ≤ σn,

Ψ̂n
11(t) + Ψ̂n

12(t) = X̂n
1 (t), Ψ̂n

c (t) + Ψ̂n
22(t) = X̂n

2 (t), Ẑn
1 (t) + Ψ̂n

11(t) + Ψ̂n
c (t) = N̂n

1 .

These equations along with (2.82) show that

‖Ψ̂n(t)‖ ≤ C2(1 + ‖X̂n(t)‖+ Ψ̂n
c (t)), t ≤ σn, (2.104)

for a constant C2 not depending on n. Combining (2.101), (2.103) and (2.78)
we have (2.79). The result (2.79) implies that the processes Ψ̄n

ij(· ∧ σn) are
tight and that every subsequential limit has continuous sample paths with
probability one. Using this and the time change lemma [13] along the lines of
the proof of Theorem 2.3 above proves C-tightness as claimed. Finally, consider
the last claim in the statement of the lemma. Since ψ∗21 = 0, (2.79) shows that
|Ψ̄n|∗T∧σn → 0 in probability. Using this and (2.56), the claim follows using
again the time change lemma.
Proof of Lemma 2.2. By construction of the policy, Bn

21(t) = An
α(t) for all

t ≤ σn. Thus by (2.7),

Ψn
21(t) = Ψn

21(0) + An
α(t)− Sn

21

(∫ t

0
Ψn

21(s)ds
)

.

Denote
%(t) = (µ21 + γ)ψ0(t), t ≥ 0. (2.105)

Recalling that Ψ̂n
c (t) = n−1/2Ψn

c (t) = n−1/2Ψn
21(t), using (2.75), one checks by

direct calculation that

Ψ̂n
c (t) = Ψ̂n

c (0) + n1/8
∫ t

0
%(s)ds− µn

21

∫ t

0
Ψ̂n

c (s)ds + W̃ n
0 (t), t ≤ σn,

where

W̃ n
0 (t) = Ân

α(t)− Ŝn
21

(∫ t

0
Ψ̄n

21(s)ds
)

.

Note that ψ0(t) = κ +
∫ t
0 %(s)ds − µ21

∫ t
0 ψ0(s)ds, and let ψn

0 be the unique
solution to

ψn
0 (t) = κ +

∫ t

0
%(s)ds− µn

21

∫ t

0
ψn

0 (s)ds. (2.106)

Then, for t ≤ σn,

Ψ̂n
c (t)− n1/8ψn

0 (t) = Ψ̂n
c (0)− n1/8κ− µn

21

∫ t

0
[Ψ̂n

c (s)− n1/8ψn
0 (s)]ds + W̃ n

0 (t).
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By (2.64), Ψ̂n
c (0) − n1/8κ → 0. By Lemma 2.1, |W̃ n

0 |∗T∧σn → 0 in probability.
An application of Gronwall’s inequality therefore shows that

|Ψ̂n
c − n1/8ψn

0 |∗T∧σn → 0 in probability. (2.107)

Also, by (2.13) and (2.106) it is easy to see that δn(t) ≤ Cεn +C
∫ t
0 δn(s)ds for

t ≤ T , where δn(t) = |ψ0(t) − ψn
0 (t)|, C is a constant and n1/8εn → 0. Hence

n1/8|δn|∗T → 0. Along with (2.107), this proves the lemma.
Proof of Lemma 2.3. By (2.73) the initial values for both Ẑn

1 and Ẑn
2 are

greater than 8h′. We thus have {σn ≤ τn} ⊆ Ωn
1 ∪Ωn

2 , where for i = 1, 2,

Ωn
i = {there exist u1 < u2 ≤ ζn such that

sup
u∈[u1,u2]

Ẑn
i (u) ≤ 7h′, Ẑn

i (u1) ≥ 6h′, Ẑn
i (u2) ≤ 5h′}.

Step 1. We show that P(Ωn
1 ) → 0. Let u1 and u2 be as specified in the expression

for Ωn
1 . Note that the size of the jumps of X̂n is bounded by n−1/2. Hence

for u ≤ τn we have X̂n
e (u) ≤ −32h′ + n−1/2. This, combined with (2.14),

(2.28), and the fact that Y n
i (u) = 0 for u ≤ σn imply that Ẑn

1 (u) < Ẑn
2 (u) for

u ∈ [u1, u2]. According to our definition of the policy, all class-1 customers are
routed to station 2 during the period [u1, u2] and only class-α customers are
routed to station 1 during this period. As a result, Bn

11(u2)−Bn
11(u1) = 0 and

Bn
21(u2)−Bn

21(u1) = An
α(u2)− An

α(u1). By (2.7), we have

∑

i=1,2

(Ψn
i1(u2)− Ψn

i1(u1)) = An
α(u2)− An

α(u1)−Dn
1 (u1, u2),

where

Dn
j (t1, t2) :=

∑

i=1,2

[
Sn

ij

(∫ t2

0
Ψn

ij(s)ds
)
− Sn

ij

(∫ t1

0
Ψn

ij(s)ds
)]

, j = 1, 2.

Note that Dn
j (t1, t2) represents the number of departures from station j during

(t1, t2]. Using (2.5) and (2.14), one has on Ωn
1 that

h′n1/2 ≤ An
α(u2)− An

α(u1)−Dn
1 (u1, u2). (2.108)

Denoting, for j = 1, 2,

W̃ n
j (t) :=

∑

i=1,2

Ŝn
ij

(∫ t

0
Ψ̄n

ij(s)ds
)

,
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S̃n
j (t1, t2) = W̃ n

j (t2)− W̃ n
j (t1) +

∑

i=1,2

[
µn

ij

∫ t2

t1
Ψ̂n

ij(s)ds + n1/2µn
ijψ

∗
ij(t2 − t1)

]
,

(2.109)
and

Ãn
1 (t1, t2) = Ân

α(t2)− Ân
α(t1) + n5/8

∫ t2

t1
%(s)ds,

where % is as in (2.105), one checks by direct calculation that (2.108) can
be written as h′ ≤ Ãn

1 (u1, u2) − S̃n
1 (u1, u2). Note that % is bounded above.

Moreover, µn
11ψ

∗
11 is bounded below by a positive constant. Using (2.104) and

denoting ∆ = u2 − u1 we therefore have, for all large n,

h′ ≤ 2|Ân
α|∗T + wT∧σn(W̃ n

1 , ∆)− n1/2Λn
1∆, (2.110)

where
Λn

1 = C1 − C2n
−1/2(1 + ‖X̂n‖∗T∧σn + |Ψ̂n

c |∗T∧σn),

and C1 > 0 and C2 are suitable constants. We conclude that P(Ωn
1 ) ≤ P(Ωn

1,1)+
P(Ωn

1,2), where

Ωn
1,1 = {there exists ∆ ∈ (0, n−1/4] such that (2.110) holds},

Ωn
1,2 = {there exists ∆ ∈ (n−1/4, T ] such that (2.110) holds}.

By Lemmas 2.1 and 2.2, Λn
1 → C1 and |Ân

α|∗T → 0 in probability, and W̃ n
1 (·∧σn)

are C-tight. This shows that P(Ωn
1,1) → 0. On Ωn

1,2, if Λn
1 ≥ 0 then n1/4Λn

1 ≤ εn

must hold, where εn = 2|Ân
α|∗T + 2|W̃ n

1 |∗T∧σn . Hence P(Ωn
1,2) ≤ P(Λn

1 < 0) +

P(Λn
1 ≤ n−1/4εn) → 0. This shows that P(Ωn

1 ) → 0.
Step 2. We next show that P(Ωn

2 ) → 0. Letting u1 and u2 be as in the expression
for Ωn

2 and arguing as before one obtains that Ẑn
1 (u) > Ẑn

2 (u) for u ∈ [u1, u2]
and consequently that all class-1 customers are routed to station 1 during this
period. Analogously to (2.108) we find that on Ωn

2

h′n1/2 ≤ An
β(u2)− An

β(u1)−Dn
2 (u1, u2).

Using the inequality An
β(u2) − An

β(u1) ≤ An
2 (u2) − An

2 (u1) and some direct
calculation we deduce from the above that

h′ ≤ Ãn
2 (u1, u2)− S̃n

2 (u1, u2), (2.111)

where S̃n
2 is as in (2.109) and

Ãn
2 (t1, t2) = Ân

2 (t2)− Ân
2 (t1) + λn

2n
−1/2(t2 − t1).
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Note that the r.h.s. of (2.111) contains the term γnn
1/2(u2 − u1), where γn =

n−1λn
2−

∑
i=1,2 µn

i2ψ
∗
i2. We claim that γn is bounded above by a negative constant

for all n large. Indeed, recall that ξ∗21 = 0 and note that from (2.10) we have
λ2 = µ̄22ξ

∗
22. With (2.9) and (2.11) this shows λ2 = µ22ψ

∗
22 <

∑
i=1,2 µi2ψ

∗
i2. The

claim regarding γn thus follows from (2.8).
Along the lines of step 1, we obtain instead of (2.110)

h′ ≤ wT∧σn(Ân
2 − W̃ n

2 , ∆)− n1/2Λn
2∆,

where ∆ = u2 − u1,

Λn
2 = C3 − C4n

−1/2(1 + ‖X̂n‖∗T∧σn + |Ψ̂n
c |∗T∧σn),

and C3 > 0 and C4 are constants. The rest of the argument for showing
P(Ωn

2 ) → 0 is similar to that in step 1 and is omitted. We conclude that
P(σn ≤ τn) → 0.
Proof of Theorem 2.4. In view of Proposition 2.1, it only remains to treat
the case where e·x ≥ −1. We can split the sequence of systems into two
subsequences according as e· X̂0,n < −1 or not, and since the result is already
proved for the subsequence on which e· X̂0,n < −1, we will assume without
loss of generality that e· X̂0,n ≥ −1 for all n. As a result, the second part of
the definition of the proposed policy applies. In the first part of the proof we
used the fact that the system starts with no queues. In the current situation
we argue that even if the system starts with a queue, it is brought quickly to
zero. Recall the notation τn

0 from definition of the policy. Note that prior to
time τn

0 there are rn class-1 customers that are kept in the queue and that
as far as all other customers are concerned, the system behaves exactly as
in the first part of the definition. As a result, we can use Corollary 2.1 with
r = 1 + supn n−1/2rn < ∞, and it follows that P(τn

0 ≤ ε/2) converges to 1.
At time τn

0 the system is in a state very similar to that in which a system
satisfying e· X̂0,n < −1 is at time zero, in the sense that e· X̂n(τn

0 ) < −1 and
|Zn

1 (τn
0 ) − Zn

2 (τn
0 )| ≤ 1. A review of the proof of Proposition 2.1, replacing

the initial values of all processes by their values at time τn
0 shows that, with

probability approaching 1, Y n(t) is kept zero for t ∈ [ε, T ]. As in section 2.3,
the only remaining issue is that X̂n(τn

0 ) must be shown to be tight. This is
indeed the case by Corollary 2.1.
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2.5. Appendix to chapter 2

Lemma 2.4. (i) All nodes I ∪ J of Gba are connected through the edges of
Gba.
(ii) Every non-basic activity (i, j) ∈ Enb belongs to a simple cycle.

Proof. For (i), consider a node of Ga, i ∈ I. By (2.10),
∑

j µ̄ijξ
∗
ij > 0, and

therefore there exists j ∈ J such that ξ∗ij > 0. This shows that (i, j) ∈ Eba

and thus i must be a node of Gba. A similar argument holds for a node j ∈ J
observing that

∑
i ξ
∗
ij = 1 by the heavy traffic condition. Item (ii) follows since

Gba is a tree.
Proof of Theorem 2.1. We first show that the relations (2.3)–(2.6), when
rescaled appropriately, imply the following:

X̂n
i (t) = X̂0,n

i + Ŵ n
i (t)− ∑

j∈J
µn

ij

∫ t

0
Ψ̂n

ij(s)ds, i ∈ I, j ∈ J , (2.112)

Ŷ n
i (t) +

∑

j∈J
Ψ̂n

ij(t) = X̂n
i (t), i ∈ I, (2.113)

Ẑn
j (t) +

∑

i∈I
Ψ̂n

ij(t) = N̂n
j , j ∈ J , (2.114)

Ŷi(t) ≥ 0, Ẑj(t) ≥ 0, Ψ̂n
c (t) ≥ 0 i ∈ I, j ∈ J , c ∈ C, t ≥ 0. (2.115)

To this end, note that by (2.15), (2.16) and (2.19),

X̂n
i (t) = n−1/2(Xn

i (t)− nx∗i )

= X̂0,n
i + Ân

i (t)− ∑

j∈J
Ŝn

ij

(∫ t

0
Ψ̄n

ij(s)ds
)

+ n−1/2


λn

i t− ∑

j∈J
nµn

ij

∫ t

0
Ψ̄n

ij(s)ds


 .

By (2.13), (2.17) and (2.18), the last term in the above display is equal

− ∑

j∈J
µn

ij

∫ t

0
Ψ̂n

ij(s)ds + λ̂n
i t + n1/2


λi −

∑

j∈J
µn

ijψ
∗
ij


 t.

Using (2.10), (2.11) and (2.13),

n1/2


λi −

∑

j∈J
µn

ijψ
∗
ij


 t = − ∑

j∈J
µ̂n

ijψ
∗
ijt.
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Combined with (2.26), this establishes (2.112) above. Equations (2.113) and
(2.114) and the first two inequalities in (2.115) directly follow from (2.4), (2.5),
(2.6), (2.11), (2.14), (2.16), (2.17) and (2.18). For the last inequality in (2.115)
recall that for c ∈ C, Ψ̂n

c = Ψ̂n
ij where (i, j) = σ−1(c), and that for all (i, j) of

this form ψ∗ij = 0.
Equations (2.28)–(2.29) follow from (2.113)–(2.115). As for (2.27), it suffices

to prove the identity

Ψ̂n
ij(t) = Gij(X̂

n(t)− Ŷ n(t), N̂n − Ẑn(t))− ∑

c∈C:(i,j)∈c

s(c, i, j)Ψ̂n
c (t), (2.116)

for all (i, j) ∈ Ea, t ≥ 0. Indeed, with (2.21), the above implies the identity

− ∑

j∈J
µn

ijΨ̂
n
ij(t) = − ∑

j∈J
µn

ijGij(X̂
n(t)− Ŷ n(t), N̂n − Ẑn(t)) +

∑

c∈C
mn

i,cΨ̂
n
c (t),

which, along with (2.25) and (2.112) establish (2.27). In order to show (2.116),
define

Υ n
ij(t) = Ψ̂n

ij(t) +
∑

c∈C:(i,j)∈c

s(c, i, j)Ψ̂n
c (t), (i, j) ∈ Ea. (2.117)

As follows from the uniqueness statement succeeding (2.22), in order to prove
(2.116) it is enough to show that {Υ n

ij} satisfy the system of equations (2.22)

with a = X̂n(t) − Ŷ n(t) and b = N̂n − Ẑn(t). To this end, note that if (i, j)
is a non-basic activity then there is exactly one simple cycle c for which (i, j)
is an edge and one has s(c, i, j) = −1 and, by definition of Ψ̂n

c , Ψn
c = Ψn

ij.
This show that Υ n

ij = 0 for (i, j) ∈ Enb. Next, note that for a given c ∈ C and
a node i ∈ I of c, there are exactly two edges of c of the form (i, j). By the
construction of directions, for these two values of j, the signifiers s(c, i, j) must
have opposite signs. As a result,

∑
c∈C

∑
j:(i,j)∈c s(c, i, j)Ψ̂n

c (t) = 0. Changing the
order of summation and using an analogous argument for summation over i,
we obtain

∑

j∈J

∑

c∈C:(i,j)∈c

s(c, i, j)Ψ̂n
c (t) = 0, i ∈ I,

∑

i∈I

∑

c∈C:(i,j)∈c

s(c, i, j)Ψ̂n
c (t) = 0, j ∈ J . (2.118)

Equations (2.113), (2.114) and (2.118) now show that {Υ n
ij} satisfy (2.22) with

the values a and b mentioned above. This proves (2.116), and in turn, the
relation (2.27), and completes the proof of the theorem.
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Proof of Lemma 2.1. Let Xn(t), Y n(t), Zn(t) and {Ψn
c (t)} be given, satisfy-

ing all requirements in the statement of the lemma. Define {Ψn
ij(t)} according

to (2.42). Equations (2.2), (2.4) and (2.5) follow directly from the definition
of G and {s(c, i, j)}. As for (2.6), it remains only to prove that Ψn

ij(t) ≥ 0 for
every (i, j) ∈ Eba. Along the lines of Lemma 3 of [4], note that ψ∗ = G(x∗, ν),
as follows from (2.11). Using linearity of the map G on the domain DG and
the bound assumed on Ψn

c ,

Ψn
ij(t) ≥ Gij(nx∗, nν) + Gij(X

n(t)− nx∗ − Y n(t), Nn − nν − Zn(t))− C1a0n,

where C1 is a constant independent of n, t and the choice of a0, and therefore

Ψn
ij(t) ≥ (ψ∗ij − C1a0)n− C2(‖Xn(t)− nx∗ − Y n(t)‖ ∨ ‖Nn − nν − Zn(t)‖),

where C2 is a constant depending only on the map G. With the assumed
bound on ‖Xn − nx∗‖ ∨ ‖Y n‖ ∨ ‖Zn‖, using also (2.14), we obtain Ψn

ij(t) ≥
(ψ∗ij − C3a0)n − C4n

1/2 for appropriate constants C3, C4 independent of n, t
and a0. Since ψ∗ij > 0 for all (i, j) ∈ Eba, it follows that a0 > 0 may be chosen
so that, for all large n, Ψn

ij(t) ≥ 0.

Sketch of proof of Proposition 2.1. We simplify the notation by writing
An, Ān, Xn and, respectively, X̄n for An

OL, Ān
OL, Xn

OL, X̄n
OL, etc. (there will be

no confusion). Note that an analogous result to (2.56) holds, and in particular,
for every t,

n−1An
i (t) → tλ′i in probability (2.119)

as n →∞. Fix t ≥ 1. By (2.112) we have

X̄n
i (t) = X̄n

i (0) + Ān
i (t)−∑

j

µij

∫ t

0
Ψ̄n

ij(s)ds + ∆n
i (t),

where

∆n
i (t) =

∑

j

[
n−1/2Ŝn

ij(
∫ t

0
Ψ̄n

ij(s)ds) + (µn
ij − µij)

∫ t

0
Ψ̄n

ij(s)ds
]
. (2.120)

By (2.5) and (2.6) Ψ̄n
ij(t) is bounded. An argument as in step 2 in the proof

of Theorem 2.3 shows that the first term in (2.120) converges to zero in prob-
ability. Since µn

ij → µij, so does the second term, and it turn ∆n
i (t) → 0 in

probability. It can be shown that there exists a constant δ > 0 depending only
on (λ, λ′, µ̄), such that for any sub-stochastic matrix (ξij)

max
i

[λ′i −
∑

j

µ̄ij ξij] ≥ δ. (2.121)
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Let Ωn =
{
for all i ∈ I, |∆n

i (t)|+
∣∣∣t−1Ān

i (t)− λ′i
∣∣∣ ≤ δ/3

}
. By (2.119), we have

P (Ωn) → 1. Define

ξn
ij =

1

t

∫ t

0

Ψ̄n
ij(s)

νj

ds , ξ̄n
ij =

ξn
ij∑

i′ ξ
n
i′j

.

It can be shown by (2.5) and (2.8) that λ′i −
∑

j µ̄ij ξn
ij ≥ λ′i −

∑
j µ̄ij ξ̄n

ij − δ/3,
for all n large and all i. Since ξ̄ is sub-stochastic, (2.121) implies that for some
i we must have λ′i −

∑
j µ̄ij ξ̄n

ij ≥ δ, hence λ′i −
∑

j µ̄ij ξn
ij ≥ 2δ/3, for some i.

This can be used to show maxi X̄
n
i (t) ≥ δt/3 on Ωn. Due to the relation

Ȳ n
i (t)+

∑
j Ψ̄n

ij(t) = X̄n
i (t), we have Ȳ n

i (t) ≥ X̄n
i (t)−C, for all i, where C does

not depend on n or t. Hence maxi Ȳ
n
i (t) ≥ δt/3−C. We conclude that on Ωn,

for all n large,
∑

i Y
n
i (t) ≥ [δt/3− C]n, and the result follows.

51



Chapter 3

Throughput sub-optimality and
heavy traffic

3.1. Introduction

In this chapter we introduce the notion of throughput sub-optimality for an
underlying fluid model, and show that it plays a central role in the ability to
achieve efficiency in a strong sense, that is usually only seen in systems that
are sub-critically loaded. The chapter is based on [10].

The number of servers at each pool and the arrival rates of the queueing
model in heavy traffic are scaled up at a nearly fixed proportion. When viewed
at a scale at which the arrival and service processes exhibit diffusive fluctu-
ations, the processes that represent the number of class-i customers in the
system, i ∈ I, fluctuate about a certain static fluid model. Assume that the
fluid model is critically loaded, in a standard sense. In particular, (1) servers
can be allocated in such a way that the total processing rate devoted to class-i
‘material’ is equal to the arrival rate λi, for every i ∈ I; and (2) property (1)
does not hold if one of the arrival rates λi is replaced by some λ′i > λi (there
are some further assumptions; see Section 3.2). It is possible for such a model
to satisfy the following condition: servers can be allocated so as to achieve
a total processing rate that is greater than the total arrival rate, while, for
every i ∈ I, the ‘mass’ of servers allocated to serve class i does not exceed
the ‘mass’ of class-i ‘material.’ If this condition holds we say that the fluid
model is throughput sub-optimal. Our main result shows that when the (crit-
ically loaded) fluid model is throughput sub-optimal, one can find a dynamic
control policy for the queueing model that is efficient in a strong sense: Under
this policy, for every finite T , the measure of the set of times prior to T , at
which at least one customer is in the buffer, converges to zero in probability
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at the scaling limit.
A related analysis appears in Chapter 2, where the same model is proved

to satisfy a stronger result under a stronger assumption. While the current
chapter addresses the capability to maintain a system with no customer in
the buffer ‘most of the time’, with large probability, the result of Chapter 2
concerns maintaining a system with no customers in the buffer ‘at all times’
(apart from an initial transition phase), with large probability. More precisely,
under appropriate assumptions, it is shown ibid. that there exists a policy
under which, for every 0 < ε < T < ∞, the probability that at least one
customer is present in the buffer any time within [ε, T ] approaches 1 in the
scaling limit. This phenomenon is shown to be related, on one hand to a
formulation of the limiting diffusion model as a diffusion with singular control
(see Section 2.3 of Chapter 2). On the other hand, it is shown to be related
to a condition on the graph that encodes the network’s structure. This graph
has a vertex for each class i ∈ I, a vertex for each server pool j ∈ J , and an
edge, with an associated weight µij, between a class vertex i and a pool vertex
j if, and only if µij > 0. The assumption of Chapter 2 is the existence of a
cycle p in this graph, having a negative total signed weight, µ(p), where the (p-
dependent) signs of the weights µij are appropriately defined (as in equations
(3.17) in the current chapter; see also equation (3.18) for a definition of µ(p)
as the sum of the signed weights along p). We will show that the algebraic
condition alluded to above is a special case of the main assumption of the
current chapter, namely throughput sub-optimality. We will also characterize
the latter condition in terms of the graph and the signed weights, and show
that throughput sub-optimality may occur in one of two ways: The existence
of either a cycle or an open path p (appropriately defined), with signed weight
µ(p) < 0.

We make two further remarks about the relation to Chapter 2. First, the
difference between having no customers in the buffer for a given period of time
(as in Chapter 2) and having no customers in the buffer most of the time,
may be significant with regard to the queuelength performance measure. In
fact, under the policy constructed in the current chapter, there are short time
periods in which large queues build. We believe that a result of the type of the
previous chapter is not possible under the conditions of the current chapter,
but we do not prove this claim. Second, the results of Chapter 2 allow for
both preemptive policies (where service to a customer can be interrupted and
resumed at a later time, possibly at a different server) and nonpreemptive ones
(where service cannot be interrupted), while the current chapter only treats
preemptive policies. We leave open the question of whether analogous results
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are possible for the nonpreemptive case.
Both chapters 2 and 3 reveal two aspects of a phenomenon, where critically

loaded many-server systems behave as sub-critically loaded. As this chapter’s
main result shows, the notion of throughput sub-optimality captures this phe-
nomenon. It is reasonable to expect that this connection continues to hold in
a wider context of critically loaded many server systems, such as ones with
similar parametric regime but more general structure than the ones studied
here.

The main tool in analyzing the probabilistic model is a related deterministic
dynamic fluid model, that, roughly, replaces stochastic fluctuations by deter-
ministic ones. Throughput sub-optimality is shown to have an effect on this
model that is similar to the one discussed above. The proof of the result relies
on the graph-theoretic characterization alluded to above, and specifically uses
the existence of a path p with the property µ(p) < 0. The result for the proba-
bilistic model follows from the deterministic one in a relatively straightforward
way.

The organization of the chapter is as follows. Section 3.2 contains the de-
scription of the model and assumptions, and the statement of the main result.
Some numerical examples are given at the end of this section. Section 3.3
provides an algebraic characterization of throughput (sub) optimality. The dy-
namic fluid model is introduced in Section 3.4. A property for this model that
is analogous to the main result is proved, based on the results of Section 3.3.
Relying on the deterministic model results, we provide in Section 3.5 a proof
of the main result.

3.2. Setting and main result

3.2.1. Probabilistic queueing model

The queueing model is described in Section 2.2.1. Recall the equations (3.1)–
(3.5) below, which indicate some properties of the processes involved.

Xn
i (t) = X0,n

i + An
i (t)− ∑

j∈J
Sn

ij

(∫ t

0
Ψn

ij(s)ds
)

, i ∈ I, t ≥ 0. (3.1)

Y n
i (t) +

∑

j∈J
Ψn

ij(t) = Xn
i (t), i ∈ I, (3.2)

Zn
j (t) +

∑

i∈I
Ψn

ij(t) = Nn
j , j ∈ J . (3.3)
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Fig 3.1. A queueing model with four customer classes and three service pools

Also, the following holds by definition

Y n
i (t) ≥ 0, Zn

j (t) ≥ 0, Ψn
ij(t) ≥ 0, i ∈ I, j ∈ J , t ≥ 0. (3.4)

Ψn
ij(t) = 0 for (i, j) s.t. µn

ij = 0. (3.5)

For simplicity, the initial conditions X0,n
i are assumed to be deterministic.

Note that (3.1)–(3.5) do not characterize these processes, because the process
Ψn has not yet been described. As reflected in the following definition, we
regard Ψn as a control process, that can be obtained as ‘feedback’ from the
‘state’ process Xn and the arrival process An.

Definition 3.1. Fix n. We say that a process Ψn with values in ZI×J+ and
cadlag paths is a scheduling control policy (SCP) if the following conditions
hold:

i. Given initial data Xn,0 and primitive processes An and Sn, there exist
processes Xn, Y n and Zn with values in ZI+, ZI+, and ZJ+ , respectively,
such that (3.5)–(3.4) are met;

ii. For every t ≥ 0, Ψn(t) is measurable on σ{Xn(s), An(s) : s ≤ t}.
Note that uniqueness of the processes Xn, Y n and Zn, given An, Sn and

Ψn, is immediate from (3.1)–(3.3). Note also that according to this definition,
service to a customer can be stopped and resumed at a later time, possibly in
a different station.

We will use some elementary graph theoretic terminology and notation as
follows (see e.g., [24] for standard definitions). For a non-empty set V and
E ⊆ V × V , we write G = (V, E) for the graph with vertex set V and edge set
E. A vertex having exactly one neighbor is called a leaf vertex, and an edge
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joining a leaf vertex is called a leaf edge. A connected graph that does not
contain cycles is called a tree.

Denote the index set for all customer classes and service stations by V :=
I ∪ J , and the set of all class-station pairs by E := I × J . Recall the set of
class–station pairs (activities), where station j can serve class i

Ea = {(i, j) ∈ I × J : µn
ij > 0}, (3.6)

We assume that Ea does not depend on n. Throughout, if E1 is a subset of E ,
we write Ec

1 for the complement of E1 with respect to E . The set of class-station
pairs that are not activities is denoted by Ec

a ≡ E \ Ea.

3.2.2. Static model: heavy traffic and throughput optimality

Heavy traffic condition and related assumptions. Following Chapter 2, recall
the constants λi, νj, i ∈ I, j ∈ J , and µij, (i, j) ∈ Ea, such that (2.8) holds.

Consider a fluid model, where the arrivals and service processes are replaced
by deterministic flows with corresponding rates λi and µij. There are I classes
of incoming fluid and J processing stations, with capacity νj for station j. Let
Ξ be the set of I × J matrices ξ with ξij ≥ 0, (i, j) ∈ E , and

∑
i ξij ≤ 1,

j ∈ J . For ξ ∈ Ξ, ξij will represent the fraction of the service capacity from
station j allocated to class i. We call an element of Ξ an allocation matrix. The
fluid model uses a fixed allocation matrix for all times (hence the term ‘static’
model). Set µ̄ij = µijνj, (i, j) ∈ E . Recall the linear program (2.10):

Find {ξij, (i, j) ∈ E} and ρ ∈ R+ so as to minimize ρ subject to





∑
j∈J µ̄ijξij = λi, i ∈ I,

∑
i∈I ξij ≤ ρ, j ∈ J ,

ξij ≥ 0, (i, j) ∈ E .

(3.7)

For ρ ∈ [0, 1], a ξ as above is clearly an allocation matrix. The first line of
(3.7) expresses that the system is balanced, in the sense that, for each i, the
total processing rate of class-i material equals the arrival rate of this class.
We will assume throughout that the system is critically loaded, in the sense
of the Heavy Traffic Condition [33]. Namely, we assume that there exists a
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unique optimal solution (ξ∗, ρ∗) to the linear program (3.7), and moreover,∑
i∈I ξ∗ij = 1 for all i ∈ J (and consequently ρ∗ = 1). Let

ψ∗ij = ξ∗ijνj, x∗i =
∑

j

ξ∗ijνj, i ∈ I, j ∈ J . (3.8)

The following simple relations follow directly from the heavy traffic condition

∑

j∈J
ψ∗ij = x∗i ,

∑

i∈I
ψ∗ij = νj, λi =

∑

j∈J
µijψ

∗
ij, i ∈ I, j ∈ J . (3.9)

The quantity ψ∗ij represents the mass of class-i material present at station
j under the allocation matrix ξ∗, and x∗i represents the total mass of class-
i material being processed. Recall also the definition of basic and non–basic
activities (see Section 2.2.2) and the complete resource pooling condition (2.12).

Throughput optimality. The uniqueness statement included in the heavy traffic
condition implies that given any allocation matrix ξ other than ξ∗,

there is a class i ∈ I for which
∑

j∈J
µ̄ijξij < λi, (3.10)

namely, that the processing rate is not sufficient for handling arrivals of this
particular class. Note however that there is no analogous limitation concerning
the total processing rate. That is, it is possible that there exists an allocation
matrix ξ under which ∑

(i,j)∈E
µ̄ijξij >

∑

i∈I
λi. (3.11)

The set of allocation matrices ξ ∈ Ξ that satisfy

∑

j∈J
ξijνj ≤ x∗i for all i ∈ I (3.12)

is of interest. Under these allocation matrices, for each i ∈ I, the total mass
of class-i material being processed does not exceed that under ξ∗. A condition
involving simultaneously (3.11) and (3.12) will be key in this chapter. We will
say that the static fluid model is throughput optimal if the following holds:

Whenever ξ ∈ Ξ and
∑

j∈J
ξijνj ≤ x∗i ∀ i ∈ I, one has

∑

(i,j)∈E
µ̄ijξij ≤

∑

i∈I
λi.

(3.13)
We will say that the static fluid model is throughput sub-optimal if it is not
throughput optimal.
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When the static fluid model is throughput sub-optimal, one can find ξ ∈ Ξ
meeting (3.11) and (3.12). Recall that x∗ represents the mass of material of
each class being processed in all service stations. Thus when (3.13) fails to
hold, one can keep the same mass of material of each class as under ξ∗, and
redistribute it among the stations so as to obtain a greater total processing rate
than under ξ∗. Because of (3.10), a use of this allocation matrix will necessarily
result with instability. In the probabilistic queueing model, however, one can
vary the capacity allocation over time, and the existence of ξ as above turns
out to have a crucial impact. This is expressed in Theorem 3.1 below, which
is our main result.

The following assumption regards the second order behavior of the parame-
ters and initial condition.

Assumption 3.1. There exist constants x̂i, λ̂i, µ̂ij ∈ R, i ∈ I, j ∈ J , such
that

n1/2(n−1λn
i − λi) → λ̂i, n1/2(µn

ij − µij) → µ̂ij.

n1/2(n−1X0,n
i − x∗i ) → x̂i, n1/2(n−1Nn

j − νj) → 0. (3.14)

Theorem 3.1. Let the heavy traffic and complete resource pooling conditions
hold. Let Assumption 3.1 hold. If the static fluid model is throughput sub-
optimal then there exists a sequence of SCPs, under which for any fixed 0 <
T < ∞ and % > 1/2,

∫ T

0
1{e·Y n(s)>0}ds → 0 in probability, as n →∞, (3.15)

n−%‖Xn −X0,n‖∗T → 0 in probability, as n →∞. (3.16)

3.2.3. Examples

We demonstrate throughput sub-optimality by some numerical examples.

Example 3.1 Consider the following static fluid model in heavy traffic, with
2 classes of customers and 3 stations

ν =

(
1
1

)
, λ =

(
8
4

)
, µ = µ̄ =

(
3 10 1
1 4 2

)
,

The resulting optimal static allocation is as follows (3.8)

ψ∗ = ξ∗ =

(
1 0.5 0
0 0.5 1

)
and x∗ =

(
1.5
1.5

)
.
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To see that the fluid model is throughput sub-optimal, let ε > 0 be sufficiently
small and consider the allocation matrix

ξ̂ =

(
1− ε 0.5 + ε 0

ε 0.5− ε 1

)
.

Clearly, we have
∑

j ξ̂ijνj = x∗i for every i. However,
∑

(i,j)∈E ξ̂ijµ̄ij > λ1 + λ2.
Thus the condition of throughput optimality (3.13) is not satisfied. The result
of Theorem 3.1 holds. We note that the assumptions of [8] are also valid in
this example. See more information on this example in the end of Section 3.3.

Example 3.2 In this example, the data is the same as in Example 1 above,
except for one entry:

ν =

(
1
1

)
, λ =

(
8
4

)
, µ = µ̄ =

(
3 10 1
0 4 2

)
.

The resulting optimal static allocation is as follows

ψ∗ = ξ∗ =

(
1 0.5 0
0 0.5 1

)
x∗ =

(
1.5
1.5

)
.

With ε > 0 sufficiently small, the matrix

ξ̂ =

(
1− ε 0.5 + ε 0

0 0.5− ε 1

)

is an allocation matrix. Moreover,
∑

j ξ̂ijνj = x∗i and
∑

(i,j)∈E ξ̂ijµ̄ij > λ1 + λ2.
Thus the fluid model is throughput sub-optimal. As shown in the end of Section
3.3, the conditions of [8] are not satisfied for this example.

Example 3.3 Consider

ν =




1
1
1


 , λ =




4
1
2


 , µ = µ̄ =




2 4 0.5
0.3 1 1
0.1 0.5 4


 ,

The resulting optimal static allocation is as follows

ψ∗ = ξ∗ =




1 0.5 0
0 0.5 0.5
0 0 0.5


 and x∗ =




1.5
1

0.5


 .

The fluid model for this example is throughput optimal, as we show in the end
of Section 3.3, using the tools we develop in Section 3.3.
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3.3. Characterization of throughput optimality

The main result of this section (Theorem 3.2) characterizes throughput opti-
mality in terms of some graph-theoretic properties of the network. To state it
we need some definitions.

Recall that by the complete resource pooling condition (2.12) the graph Gba

is a tree, and by construction of it as a subgraph of Ga, all its edges are of the
form (i, j) where i ∈ I and j ∈ J . In the definition below and elsewhere in
this section it will be convenient to identify (i, j) with (j, i) (where i ∈ I and
j ∈ J ) when referring to an element of the edge set E . Although the notation
is abused, there will be no confusion, since I and J do not intersect.

Definition 3.2. i. A subgraph q = (Vq, Eq) of Gba is called a basic path if
one has Vq = {i0, j0, ..., ik, jk}, and

Eq = {(i0, j0), (j0, i1), . . . , (ik, jk)}

where k ≥ 1 and i0, . . . , ik ∈ I, j0, . . . , jk ∈ J are 2k+2 distinct vertices.
Note that every edge of a basic path is a basic activity (i.e., an element
of Eba). Denote by BP the set of basic paths. Basic paths are used in this
chapter mainly in order to define simple paths, as follows.

ii. Let the leaves i0 and jk of a basic path q be denoted by iq and, respectively,
jq. The pair (iq, jq) could be an activity (an element of Ea), in which case
it is necessarily a non-basic activity (i.e., an element of Ea \Eba), and we
say that the graph (Vq, Eq ∪ {(iq, jq)}) is a closed simple path; otherwise
(iq, jq) is not an activity (i.e., it is in Ec

a) and we say that q itself is an
open simple path. We say that p is a simple path if it is either a closed
or an open simple path. Denote by CSP and OSP the sets of closed and
open simple paths, respectively, and by SP the set of simple paths. For a
path p ∈ SP , we write Vp and Ep for its vertex and edge sets, respectively.
Finally, if p is a simple path, let qp ∈ BP denote the corresponding basic
path q, and let ip ∈ I and jp ∈ J denote the leaves iq and jq of qp.

Note that if p = (Vp, Ep) is a simple path and qp = (Vq, Eq) is its correspond-
ing basic path, then Vq = Vp, and Eq = Ep \ {(ip, jp)}.

Next, we associate directions with edges of simple paths. Let p be a simple
path and let q = qp = (Vq, Eq) be the corresponding basic path. Write Eq =
{(i0, j0), . . . , (ik, jk)}, where i0, . . . , ik ∈ I and j0, . . . , jk ∈ J . The direction
that will be associated with the edges in Eq, when considered as edges of p, is
as follows: jk → ik → jk−1 → ik−1 → · · · → j0 → i0. In the case of an open
simple path, this exhausts all edges of p. In the case of a closed simple path, the
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direction of (ip, jp) = (i0, jk) is i0 → jk. We note that an edge (corresponding
to a basic activity) may have different directions when considered as an edge of
different simple paths. We signify the directions along simple paths by s(p, i, j),
defined for i ∈ I, j ∈ J , (i, j) ∈ Ep, p ∈ SP , as

s(p, i, j) =




−1 if (i, j), considered as an edge of p, is directed from i to j

1 if (i, j), considered as an edge of p, is directed from j to i.

(3.17)
We will denote

µ(p) =
∑

(i,j)∈Ep

s(p, i, j)µij, i ∈ I (3.18)

Theorem 3.2. Let the heavy traffic and complete resource pooling conditions
hold. Then the following statements are equivalent

1. The static fluid model is throughput sub-optimal;
2. There exists a simple path p ∈ SP such that µ(p) < 0.

Condition (3.13) is stated in terms of the variables {ξij}. It will be convenient
to work with the variables {ψij} in the proof below. To this end, recall that
νj > 0 for all j and ψ∗ij = ξ∗ijνj. Thus the negation of (3.13) can be written as
follows: There exists

ψ ∈ RE+ (3.19)

satisfying
(a)

∑
i∈I ψij ≤ νj for all j ∈ J ,

(b)
∑

j∈J ψij ≤ x∗ij for all i ∈ I,

(c)
∑

(i,j)∈E µijψij >
∑

i∈I λi.

(3.20)

Proof that statement 2 of Theorem 3.2 implies statement 1. As-
sume that statement 2 holds and fix a simple path p with µ(p) < 0. Let q = qp

be the corresponding basic path, and recall that ψ∗ij > 0 for (i, j) ∈ Eq. Denote

α = min
(i,j)∈Eq

ψ∗ij > 0. (3.21)

For each (i, j) ∈ I × J we define

σij = −αs(p, i, j) if (i, j) ∈ Ep, (3.22)
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and σij = 0 otherwise. Let

ψij = ψ∗ij + σij for (i, j) ∈ I × J . (3.23)

To show that statement 1 of the theorem holds, let us show that ψ satisfies
(3.19) and (3.20). For (i, j) 6∈ Ep, ψij = ψ∗ij ≥ 0. For (i, j) ∈ Eq,

ψij ≥ ψ∗ij − α ≥ 0,

by (3.21). In the case where p is an open simple path Ep = Eq, and (3.19)
follows. In the case where p is a closed simple path, it is left to show that
ψip jp ≥ 0. Recall that the direction associated with (ip, jp) is ip → jp. Thus by
(3.17) and (3.22), ψip jp ≥ ψ∗ip jp = 0, establishing (3.19).

Next, if p is a closed simple path then every vertex v of it has exactly two
neighbors along p, say, v′ and v′′, and the directions of the corresponding edges
are v′ → v and v → v′′. Hence by (3.17) and (3.22),

∑
j∈J σij = 0 holds for

every i ∈ I, and
∑

i∈I σij = 0 holds for every j ∈ J . The term σip jp , which
is positive in the case when p is closed, is in fact zero in the case when p is
open, thus yielding

∑
j∈J σij ≤ 0 for every i ∈ I and

∑
iI σij ≤ 0 for every

j ∈ J . Since ψ∗ satisfies (3.20)(a) and (b), it follows from(3.23) that so does
ψ. Finally, by (3.23) and since (3.20)(c) holds for ψ∗ with equality, it suffices
to prove ∑

(i,j)∈E
µijσij > 0 (3.24)

to establish that ψ satisfies (3.20)(c). By (3.22) and (3.18)
∑

(i,j)∈E
µijσij = −α

∑

(i,j)∈Ep

µijs(p, i, j) = −α µ(p) > 0,

where the inequality follows from (3.21) and the assumption µ(p) < 0. This
establishes (3.24) and completes the proof that statement 2 implies statement
1.

In the rest of this section we prove that statement 1 of the theorem implies
statement 2. Define

M(σ) :=
∑

(i,j)∈E
µijσij, (3.25)

for any matrix σ ∈ RE . Let S denote the set of σ ∈ RE satisfying the conditions
∑

j∈J
σij ≤ 0 for all i ∈ I,

∑

i∈I
σij ≤ 0 for all j ∈ J , (3.26)

ψ∗ij + σij ≥ 0 for all (i, j) ∈ Ea, (3.27)
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and
σij = 0 for all (i, j) ∈ Ec

a. (3.28)

Note that S is non-empty and compact, and let

Mmax = max{M(σ) : σ ∈ S}. (3.29)

It is easy to see that the existence of a ψ satisfying (3.19) and (3.20) is equiv-
alent to the condition Mmax > 0.

Throughout what follows, let statement 1 hold. By the above discussion,
Mmax > 0. Let Sopt [resp., S+] denote the set of σ ∈ S such that M(σ) = Mmax

[resp., M(σ) > 0], and note that Sopt and S+ are non-empty. For σ ∈ S+

consider the graph Gσ = (Vσ, Eσ), where

Eσ = {(i, j) ∈ Ea : σij 6= 0} (3.30)

and Vσ = {i ∈ I : (i, j) ∈ Eσ some j} ∪ {j ∈ J : (i, j) ∈ Eσ, some i} consists
of all corresponding vertices. Since M(σ) > 0, we have:

there exists (i, j) ∈ Eσ with σij > 0. (3.31)

By (3.26) and (3.30),

if (i, j) is a leaf edge of Gσ then σij < 0, (3.32)

and

if (i, j) ∈ Eσ and σij > 0 then there exist two edges (i, j0), (i0, j) ∈ Eσ

with σi0,j < 0 and σi,j0 < 0.
(3.33)

Definition 3.3. Let σ ∈ S+ be given. A subgraph g = (Vg, Eg) of the graph Gσ

is called a good path for σ, if it satisfies the following conditions.

(i) (Connectivity) All vertices in Vg communicate via the edges in Eg.
(ii) The degree of each vertex is at most 2.
(iii) The number of edges is at least 3.
(iv) (Alternating signs) Whenever (i1, j), (i2, j) ∈ Eσ, one has σi1,jσi2,j < 0;

whenever (i, j1), (i, j2) ∈ Eσ, one has σi,j1σi,j2 < 0.
(v) (Maximality) Whenever g is a subgraph of some subgraph g′ of Gσ, and

g′ satisfies properties (i)–(iv) above, one has g′ = g.
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It is not hard to see that observations (3.31) and (3.33) about the graph Gσ

imply that, whenever σ ∈ S+, there exists at least one good path for σ.
Let σ ∈ S+ be given. For any edge (i, j) ∈ Eσ, define sσ(i, j) = −sign(σij)

and for any good path g for σ set

µ(σ, g) :=
∑

(i,j)∈ Eg

sσ(i, j)µij. (3.34)

We write S̄C [respectively, S̄O] for the set of all σ ∈ Sopt for which there
exists a good path [respectively, there exists no good path] g for σ that is
a cycle. The letters C and O are mnemonics for closed and open. Note that
Sopt = S̄C ∪ S̄O. We also set

SC = {(σ, g) : σ ∈ S̄C and g is a good path for σ that is a cycle},
SO = {(σ, g) : σ ∈ S̄O and g is a good path for σ that is not a cycle}.

Lemma 3.1. Let (σ, g) ∈ SO. Write g = (Vg, Eg), where

Vg = {v1, . . . , vk}, Eg = {(v1, v2), . . . , (vk−1, vk)},
and v1, . . . , vk are distinct elements of Vσ. Then σv1,v < 0 for every edge
(v1, v) ∈ Eσ, and similarly σv,vk

< 0 for (v, vk) ∈ Eσ.

Proof. Argue by contradiction and assume that σv1,v2 > 0. By (3.33) (v1, v2)
must have a neighbour (v0, v1) with v0 6= v2, satisfying σv0,v1 < 0. It is easy to
see that if we had v0 ∈ Vg, there would exist a good path for σ that is a cycle,
violating the assumption of the lemma that there exist no such good paths for
σ. Define a new graph g′ by Vg′ = Vg∪{v0} and Eg′ = Eg∪(v0, v1), and note that
it is a good path (cf. Definition 3.3). This contradicts the maximality property
(Definition 3.3(v)), and therefore one must have σv1,v2 < 0. The second leaf
edge (vk−1, vk) is treated similarly.

To prove the second statement of the lemma, let v0 6= v2 be such that
v0 ∈ Vσ, (v0, v1) ∈ Eσ. Argue by contradiction and assume that σv0,v1 > 0.
Since we already proved that σv1,v2 < 0, we can again use the assumption that
there is no good path for σ that is a cycle to conclude that v0 6∈ Vσ. Defining g′

by Vg′ = Vg ∪ {v0} and Eg′ = Eg ∪ (v0, v1) produces a good path that contains
g, contradicting property (v) of Definition 3.3. Hence σv0,v1 < 0.

Lemma 3.2. Let (σ, g) ∈ SC∪SO. Then there exists a set SPg ⊂ SP of simple
paths, such that

µ(σ, g) =
∑

p∈ SPg

µ(p). (3.35)
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Proof. Consider first the case where (σ, g) ∈ SC . Write g = (Vg, Eg) and let
γ0 ∈ RE be defined by

γ0
ij =





sign(σij) , if (i, j) ∈ Eg

0 , otherwise.
(3.36)

By (3.34) and (3.36) we have

M(γ0) ≡ ∑

(i,j)∈E
γ0

ijµij =
∑

(i,j)∈Eg

sign(σij)µij = −µ(σ, g). (3.37)

The following property is due to (3.36) and the fact that g is a good path for
σ that is a cycle:

for any i ∈ I and j ∈ J we have
∑

j∈J
γ0

ij = 0 and
∑

i∈I
γ0

ij = 0. (3.38)

Define a finite sequence γr ∈ RE recursively as follows. Given γr, if there are
no non-basic activities (i.e., elements of Ea \Eba) in the set of edges where γr is
supported then terminate, and set R = r. Otherwise, select such a non-basic
activity, and let pr denote the (unique) closed simple path containing it as an
edge. Define γr+1 ∈ RE by

γr+1
ij =





γr
ij + s(pr, i, j) , if (i, j) ∈ Epr

γr
ij , otherwise.

(3.39)

For 0 ≤ r < R, the selected non-basic activity at step r is (ipr , jpr) (using the
notation from Definition 3.2). By the discussion following Definition 3.2, the
direction for this activity is ipr → jpr and thus by (3.17) we have that

γr+1
i,j = γr

i,j − 1 where (i, j) = (ipr , jpr). (3.40)

Given a non-basic activity (i, j), let r be the first r′ for which (i, j) is the
selected non-basic activity at step r′ (if such r′ exists). Since the transformation
(3.39) modifies γ only at basic activities and at the non-basic activity selected
at the given step, it follows that γr

i,j = γ0
i,j. Hence by (3.27), (3.30) and (3.36)

that γ0
i,j = 1. Thus (3.40) shows that γr+1

i,j = 0. As a result, the support of γr+1

contains one non-basic activity less that that of γr. It follows that R < ∞.
Thus γR is well-defined and supported on basic activities.

Next, since by construction, the selected simple paths are closed, it follows
by the linearity of the transformation (3.39) that (3.38) holds for each γr, and
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in particular, for γR. It also follows from the linearity of (3.39), using (3.18),
that M(γr+1) = M(γr) + µ(pr) for 0 ≤ r < R. Hence

M(γR) = M(γ0) +
R−1∑

r=0

µ(pr). (3.41)

The fact that γR is supported on basic activities and that these form a tree (cf.
(2.12)), combined with the fact that γR satisfies (3.38) implies that γR = 0.
Hence M(γR) = 0, and using (3.37) and (3.41), we obtain (3.35).

Next, consider (σ, g) ∈ SO. Then g = (Vg, Eg), where

Vg = {v1, . . . , vk} Eg = {(v1, v2), . . . , (vk−1, vk)},

and v1, . . . , vk are distinct elements of Vσ. First, note that either (v1, vk) ∈ I×J
or (vk, v1) ∈ I×J . Indeed, by Lemma 3.1 and properties (iii)–(iv) of Definition
3.3, |Eg| is an odd number, while having both v1 and vk belong to either I or
J would result with an even number for |Eg|.

Also, we claim that (v1, vk) ∈ Ec
a. Argue by contradiction and assume that

µv1,vk
> 0. If we had σv1,vk

> 0, then by Lemma 3.1, σv1,v2 < 0 and σvk−1,vk
< 0,

and there would exist a good path, which is a cycle. This is prohibited since
(σ, g) ∈ SO. Hence σv1,vk

≤ 0. Set δ := min{|σv1,v2|, |σvk−1,vk
|} and define

a new matrix σ′ ∈ RE by assigning σ′v1,vk
= σv1,vk

+ δ and σ′ij = σij for
(i, j) ∈ E \ {(v1, vk)}. By the definition σ′ satisfies (3.26)–(3.28) (see also
Lemma 3.1), which implies M(σ′) = M(σ)+δ µv1,vk

> M(σ). This contradicts
the assumption σ ∈ Sopt. Therefore µv1,vk

= 0 meaning (v1, vk) ∈ Ec
a.

The rest of the argument is similar to the treatment of the case where
(σ, g) ∈ SC , with some modifications, as follows. Instead of (3.36), consider
γ0 ∈ RE defined as

γ0
ij =





sign(σij) , if (i, j) ∈ Eg,

1 , if (i, j) = (v1, vk),

0 , otherwise.

(3.42)

Since (v1, vk) is not an activity, µv1,vk
= 0, and thus (3.37) is still valid. Also,

it follows from Lemma 3.1 that γ0
v1,v2

= γ0
vk−1,vk

= −1, and as a result, (3.38) is
valid. We can now repeat the construction of {γr}, 0 ≤ r < R and the inductive
argument that leads to (3.41). The matrix γR, in this case, is supported on
basic activities plus the edge (v1, vk). Denoting by p the open simple path
whose leaves are v1 and vk, we apply one last time a transformation of the
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form (3.39) as follows:

γR+1
ij =





γR
ij + s(p, i, j), if (i, j) ∈ Ep,

γR
ij − 1, if (i, j) = (ip, jp) ≡ (v1, vk),

γR
ij , otherwise.

As a result,

M(γR+1) = M(γ0) +
R−1∑

r=0

µ(pr) + µ(p).

Arguing as before, we obtain that γR+1 is supported on basic activities, satisfies
(3.38) thus vanishes. Hence M(γR+1) = 0, and (3.35) follows as before.

Lemma 3.3. Let (σ, g) ∈ SC ∪ SO. Then the following statements are true.

(i) µ(σ, g) ≤ 0.
(ii) If µ(σ, g) = 0 then there exists σ′ ∈ Sopt satisfying Eσ′  Eσ.

Proof. We first prove part (i). Consider first the case where (σ, g) ∈ SC .
Arguing by contradiction, assume µ(σ, g) > 0. Let

α = min
(i,j)∈ Eg

|σij| > 0, (3.43)

and for each (i, j) ∈ Eσ define

σ′ij = σij + sσ(i, j)α if (i, j) ∈ Eg, and σ′ij = σij otherwise. (3.44)

We show that σ′ satisfies conditions (3.26)–(3.28), and therefore that σ′ ∈
S. To this end, note that the sums in (3.26) remain unchanged under the
transformation from σ to σ′, due to the fact that g is a cycle and using the
alternating signs property (Definition 3.3(iv)). Thus (3.26) is satisfied by σ′.
The relation (3.27) follows from (3.43) and (3.44), since σ′ij > σij for (i, j) ∈ Eg

with σij < 0 and σ′ij ≥ 0 for (i, j) ∈ Eg with σij > 0. The relation (3.28) holds
trivially. This shows σ′ ∈ S. We have

M(σ′) =
∑

(i,j)∈E
σ′ijµij =

∑

(i,j)∈E
σijµij + α

∑

(i,j)∈Eg

sσ(i, j)µij

= M(σ) + αµ(σ, g). (3.45)

Since µ(σ, g) > 0 by assumption, we have M(σ′) > M(σ), which contradicts
the assumption σ ∈ Sopt. Hence (i) holds.

Consider now the case where (σ, g) ∈ SO. Argue by contradiction and assume
that µ(σ, g) > 0. Define σ′ as in (3.43)–(3.44). Once again, we claim that the
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constraints (3.26)–(3.28) are satisfied for σ′. The argument following (3.44)
applies, and it remains only to check (3.26) for the vertices v1 and vk. The
validity of (3.26) in this case follows from (3.43), (3.44) and Lemma 3.1, since
we have σv1,v2 < 0, σvk−1,vk

< 0 and σ′ij ≤ 0 holds for all (i, j) ∈ Eg with σij < 0.
This shows that σ′ ∈ S. The rest of the argument is as in the previous case.

Next we prove part (ii). The desired σ′ is, in fact, the one constructed in
the proof of part (i). Indeed, we have proved that σ′ ∈ S. Moreover, since
µ(σ, g) = 0 and σ ∈ Sopt, we have by (3.45) that σ′ ∈ Sopt. By (3.43) and
(3.44),

σ′i′j′ = 0 for all (i′, j′) ∈ arg min
(i,j)∈Eg

|σij|,

and therefore statement (ii) holds.

Proof that statement 1 of Theorem 3.2 implies statement 2. Let
σ ∈ Sopt. Let g be such that (σ, g) ∈ SC ∪ SO. Set (σ0, g0) = (σ, g) and define
a finite sequence (σr, gr) ∈ SC ∪ SO recursively as follows. If µ(σr, gr) < 0
then set R = r and terminate. Otherwise, by Lemma 3.3(i), µ(σr, gr) = 0. Let
σr+1 denote the matrix σ′ from Lemma 3.3(ii) corresponding to (σr, gr). Since
σr+1 ∈ Sopt = S̄C ∪ S̄O, it follows from the definition of SO and SC that there
exists g such that (σr+1, g) ∈ SC ∪ SO. Let gr+1 be such a good path.

The finiteness of R follows from Lemma 3.3(ii) and the finiteness of the set
Eσ.

By construction, (σR, gR) ∈ SC ∪ SO and µ(σR, gR) < 0. Lemma 3.2 thus
implies that there exists a simple path p such that µ(p) < 0. This concludes
the proof of the Theorem.

We end this section by revisiting the three examples from Section 3.2.3. We
can now use Theorem 3.2 to determine throughput sub-optimality for each
example.

Example 3.1 The simple path p corresponding to Example 3.1 (see Figure
3.2, left) satisfies µ(p) = −4 < 0. Hence Theorem 3.1 applies. Moreover, p is a
closed simple path, and one checks that [8, Theorem 2.3] is valid too.

Example 3.2 In the case of Example 3.2, the simple path p is open (see Figure
3.2, right). We have µ(p) = −3 < 0. Theorem 3.1 applies. Since p is open, [8,
Theorem 2.3] does not apply.

Example 3.3 To see that the fluid model of Example 3.3 is throughput op-
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p p

Fig 3.2. Simple paths for Examples 3.1 and 3.2: On the left p is a closed simple path, while
on the right p is open. For Example 3.1, µ21 > 0 and (2, 1) is a non-basic activity. For
Example 3.2, µ21 = 0 and (2, 1) is not an activity

timal, one could calculate µ(p) for all simple paths. We can instead use the
linear optimization problem described in (3.26)–(3.29), and find that Mmax = 0
(3.29).

3.4. Dynamic fluid model

As a tool for analyzing the probabilistic model, we consider a model with de-
terministic arrival and service rates. The model is obtained from (3.1)–(3.4) by
replacing the primitive processes An

i (t) and Sn
ij(t) by the deterministic func-

tions λit, µijt, i ∈ I, j ∈ J , and adding perturbations. More precisely, the
model consists of deterministic cadlag functions Xi, Yi, Zj, Ψij, Wi, i ∈ I,
j ∈ J , satisfying the equations below, for all t ≥ 0.

Xi(t) = x∗i + Wi(t) + λit−
∑

j∈J
µij

∫ t

0
Ψij(s)ds, i ∈ I, (3.46)

Yi(t) +
∑

j∈J
Ψij(t) = Xi(t), i ∈ I, (3.47)

Zj(t) +
∑

i∈I
Ψij(t) = νj + θj, j ∈ J , (3.48)

Ψij(t) = 0, (i, j) ∈ Ec
a, (3.49)

Yi(t) ≥ 0, Zj(t) ≥ 0, Ψij(t) ≥ 0, i ∈ I, j ∈ J . (3.50)

Above, the constants {x∗i , λi, µij, νj; i ∈ I, j ∈ J } are as in Section 3.2, and
{θj; j ∈ J } are additional real constants. We refer to (W, θ) as data for the
model.

Definition 3.4. Given σ > ε > 0, we will say that the data (W, θ) for the
dynamic fluid model (3.46)–(3.50) is an (ε, σ)-perturbation if

‖W (t)‖ ≤ ε for all 0 ≤ t < σ , and ‖θ‖ ≤ ε. (3.51)
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Let the heavy traffic and complete resource pooling conditions hold and,
in addition, assume that the static fluid model is throughput sub-optimal.
Let ε > 0 and σ > 0 be given and assume that the data (W, θ) is an (ε, σ)-
perturbation. Below we will construct functions {Xi(t), i ∈ I}, {Yi(t), i ∈ I},
{Zj(t), j ∈ J } and {Ψij(t), (i, j) ∈ I × J } that satisfy (3.46)–(3.50), such
that

∫ σ
0 1{e·Y (s)>0}ds and ‖X(t)−x∗‖∗σ are o(1) as ε becomes small. The precise

statement will be formulated in Theorem 3.3.
Since the static fluid model is throughput sub-optimal, we have from The-

orem 3.2 that there exists a simple path p with µ(p) < 0. Fix such a path p.
Set

E+
p = {(i, j) ∈ Ep : s(p, i, j) = 1}, E−p = {(i, j) ∈ Ep : s(p, i, j) = −1},

and note that

µ(p) =
∑

(i,j)∈Ep

s(p, i, j)µij = Σ+
p − Σ−

p < 0, (3.52)

where
Σ±

p :=
∑

(i,j)∈E±p
µij.

In addition, set

Σ0
p :=

∑

(i,j)∈Ec
p∩Eba

µij. (3.53)

Define the constant

α =
1

2
(1 + Σ+

p /Σ−
p ). (3.54)

The following inequalities follow from (3.52) and (3.54)

1

2
< α < 1 , Σ+

p − αΣ−
p =

1

2
(Σ+

p − Σ−
p ) < 0. (3.55)

We will need the following result from [3, Proposition 7] (that follows from the
tree structure of Eba): the system of equations





∑
j∈J φij = ai, i ∈ I,

∑
i∈I φij = bj, j ∈ J ,

φij = 0, (i, j) ∈ Ec
ba,

(3.56)
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in the unknown φ has a unique solution, whenever a and b satisfy
∑

i ai =
∑

j bj.
With

DG =
{
(a, b) ∈ RI × RJ :

∑

i∈I
ai =

∑

j∈J
bj

}
, (3.57)

denote by G : DG → RI×J the solution map, namely

φij = Gij(a, b), (i, j) ∈ E , (3.58)

and note that this map is linear. We need a notion of an operator norm for G,
and thus set

CG := sup
{

max
ij
|Gij(a, b)| : (a, b) ∈ DG , ‖a‖ ∨ ‖b‖ ≤ 1

}
. (3.59)

Recall that, by the definition of basic activities, ψ∗ has the property that
ψ∗ij > 0 for (i, j) ∈ Eba. Set

δ1 =
1

2
min

(i,j)∈Eba

ψ∗ij > 0, a0 = (2CG)−1δ1, (3.60)

δ2 =





δ1 min
{

αΣ−p −Σ+
p

2Σ0
p

, (1− α)
}

if Σ0
p > 0,

0 if Σ0
p = 0.

(3.61)

By (3.55) we have 0 ≤ δ2 < δ1.
We can now construct the functions X, Y, Z, Ψ . The construction will be

based on a finite sequence of times 0 = η0 < ζ1 < η1 < ζ2 < · · · that are
bounded by τ , where

τ = τ̃ ∧ σ , τ̃ = inf{t ≥ 0, ‖X(t)− x∗‖ ≥ ε1/2} (3.62)

and where ηk, ζk are to be defined recursively. Observe that τ > 0, which follows
from (3.46), (3.51) and ε < ε1/2 for ε > 0 sufficiently small. Let β = β(ε) ∈ RE
be a constant matrix satisfying

|β| := max
(i,j)∈E

|βij| ≤ ε2. (3.63)

Define the constant matrix ψ̃ ∈ RE as

ψ̃ij =





ψ∗ij + αδ1 + βij, (i, j) ∈ E−p ,

ψ∗ij − δ1 + βij, (i, j) ∈ E+
p ,

ψ∗ij − δ2 + βij, (i, j) ∈ Ec
p ∩ Eba ,

0, (i, j) ∈ Ec
p ∩ Ec

ba .

(3.64)
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Throughout, we use Xe for e · X, and use a similar convention for x∗e, νe and
θe. Fix i0 ∈ I and j0 ∈ J . Set η0 = 0. Let k ≥ 1 and consider the system of
equations (3.65)–(3.68):





Xi(t) = Xi(ηk−1) + Wi(t)−Wi(ηk−1)

+λi(t− ηk−1)−∑
j∈J µij

∫ t
ηk−1

Ψij(s)ds, i ∈ I, t ∈ [ηk−1, ζk),

Ψ(t) = ψ̃, t ∈ [ηk−1, ζk),

Yi(t) = Xi(t)−∑
j∈J Ψij(t), i ∈ I, t ∈ [ηk−1, ζk),

Zj(t) = νj + θj −∑
i∈I Ψij(t), j ∈ J , t ∈ [ηk−1, ζk),

(3.65)
where

ζk = inf{t ≥ ηk−1 : Xe(t)−Xe(ηk−1) ≤ −7ε} ∧ τ, (3.66)

and




Xi(t) = Xi(ζk) + Wi(t)−Wi(ζk)

+λi(t− ζk)−∑
j∈J µij

∫ t
ζk

Ψij(s)ds, i ∈ I, t ∈ [ζk, ηk),

Y (t) = (Xe(t)− νe − θe)
+ei0 , Z(t) = (Xe(t)− νe − θe)

−ej0 , t ∈ [ζk, ηk),

Ψ(t) = G(X(t)− Y (t), ν + θ − Z(t)), t ∈ [ζk, ηk),

(3.67)
where

ηk = inf{t ≥ ζk : ‖X(t)−X(ζk)‖ ≥ 3ε} ∧ τ. (3.68)

Lemma 3.4. Equations (3.65)–(3.68) uniquely define a finite sequence ηk, ζk

and functions X, Y, Z and Ψ on t ∈ [0, τ). For all ε > 0 sufficiently small,
these functions satisfy (3.46)–(3.50) on [0, τ).

Proof. Note first that, if k ≥ 1 and ηk−1 and X(ηk−1) are given then the
first two equations in (3.65) define X and Ψ uniquely on [ηk−1, ζk). The last
two lines of (3.65) define Y and Z on the same interval. Moreover, it is easy
to see that equations (3.46)–(3.49) are satisfied on [0, ζk), provided that they
are satisfied on [0, ηk−1). The validity of the constraints (3.50) is argued later.
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Next, let ζk and X(ζk) be given. Substituting into the first equation in (3.67)
the values for Y, Z and Ψ from the last three equations of (3.67) results with
an equation of the form

Xi(t) = Xi(ζk) + Wi(t)−Wi(ζk) +
∫ t

ζk

Fi(X(s))ds, i ∈ I,

where Fi : RI → R are globally Lipschitz. This uniquely defines X, and in
turn, Y , Z and Ψ on [ζk, ηk). Thus X, Y , Z and Ψ are uniquely defined on
[0, ηk), provided that they are on [0, ζk). Let

K = inf{k ≥ 0 : ηk = τ or ζk+1 = τ}. (3.69)

We show that K < ∞. To this end, observe that, for ε > 0 sufficiently small,
we have ζ1 ≥ ε2 > 0. Indeed, if ζ1 = σ, this is clear. Otherwise, (3.51), (3.48)
and (3.50) imply the inequality Ψij(t) ≤ νj + ε, and as a result, from (3.65)
and (3.51) it follows that for any 0 ≤ t ≤ ζ1

|Xe(t)−Xe(0)| ≤ ‖X(t)−X(0)‖ ≤ 2ε + (c1 + c2ε)t, (3.70)

where c1 =
∑

i λi +
∑

ij µijνj and c2 =
∑

ij µij. By right-continuity of X and
(3.66) we have that |Xe(ζ1) −Xe(0)| ≥ 7ε. Thus ζ1 ≥ 5ε(c1 + c2ε)

−1 ≥ ε2 for
ε sufficiently small. For k ≤ K denote

I1
k = [ηk−1, ζk), I2

k = [ζk, ηk), Ik = I1
k ∪ I2

k . (3.71)

An argument similar to the one for ζ1 ≥ ε2 shows that each of the intervals I1
k

and I2
k has a length of at least ε2. Hence K is finite. The inductive argument

given above thus shows that the functions X, Y , Z and Ψ are uniquely defined
on [0, τ) and satisfy (3.46)–(3.49). We now show that the relations (3.50) hold.
The two interval types are treated separately.

Intervals I1
k : Let k and t ∈ I1

k be fixed. By (3.65), Ψij(t) is given by ψ̃, defined

in (3.64). The nonnegativity of each ψ̃ij for all sufficiently small ε follows from
(3.60) and 0 ≤ δ2 < δ1 (cf. (3.61)). To show that Zj are nonnegative, note that
by (3.65) and (3.64)

Zj(t) = νj + θj −
∑

i∈I
Ψij(t) = νj + θj −

∑

i∈I
ψ̃ij

≥ θj − C|β|+ δ1|{i : (i, j) ∈ E+
p }|

− αδ1|{i : (i, j) ∈ E−p }|+ δ2|{i : (i, j) ∈ Ec
p ∩ Eba}|,
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where C = |Ea|, and we have used (3.9) in the last line. By Definition 3.2
and (3.17), for any vertex j ∈ J in Vp there exists exactly one edge, (i1, j) ∈
Ep, with s(p, i1, j) = 1, and there exists at most one edge (i2, j) ∈ Ep with
s(p, i2, j) = −1 (in the case where p is an open simple path and j is a leaf,
such i2 does not exist). Thus the positivity of δ1, nonnegativity of δ2 and the
bounds on β and θ show that Zj(t) ≥ (1 − α)δ1 − (C + 1)ε ≥ 0 for all ε
sufficiently small and j ∈ J .

Given i ∈ I, by similar considerations,
∑

j∈J
Ψij(t) =

∑

j∈J
ψ̃ij

≤ x∗i + C|β| − δ1|{j : (i, j) ∈ E+
p }|

+ αδ1|{j : (i, j) ∈ E−p }| − δ2|{j : (i, j) ∈ Ec
p ∩ Eba}|

≤ x∗i + Cε− (1− α)δ1.

Since t < τ , we have by (3.62) that ‖X(t)− x∗‖ < ε1/2. By (3.55) and (3.60),
(1 − α)δ1 > 0. We conclude that

∑
j∈J Ψij(t) ≤ Xi(t), and in turn by (3.65),

Yi(t) ≥ 0, provided that ε is sufficiently small.
Intervals I2

k : Fix k and t ∈ I2
k . The nonnegativity of Yi(t) and Zj(t) is

immediate from (3.67). It remains to show that Ψij(t) ≥ 0, (i, j) ∈ E . This
follows from [4, Lemma 3], noting that its assumption ‖X(t) − x∗‖ ≤ a0 is
satisfied for t < τ and ε sufficiently small, and that the special structure
assumed in [4, Assumption 3] is not used in the proof of the cited lemma. This
concludes the proof of Lemma 3.4.

Theorem 3.3. Let the heavy traffic and complete resource pooling conditions
hold. Assume that the static fluid model is throughput sub-optimal. Then there
exist functions γ1 and γ2 from (0,∞) to itself, satisfying limε→0 γ1(ε) = 0 and
limε→0 γ2(ε) = ∞, such that the following statement holds. If the data (W, θ)
for the dynamic fluid model is an (ε, σ)-perturbation then the functions X, Y ,
Z and Ψ , that are uniquely defined by (3.65)–(3.68), satisfy

∫ σ∧γ2(ε)

0
1{e·Y (s)>0}ds ≤ γ1(ε), (3.72)

‖X(t)− x∗‖ ≤ γ1(ε) for all 0 ≤ t ≤ σ ∧ γ2(ε). (3.73)

The proof of the following lemma appears at the end of the section.

Lemma 3.5. Recall the definitions of K (3.69) and intervals I1
k and I2

k from
(3.71). There exist constants m1, m2, m3 ∈ (0,∞), not depending on ε, σ and
k, such that for any k ≤ K
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1. |I1
k | ≤ m1ε;

2. ‖X − x∗‖∗ηk
≤ km2ε;

3. |I2
k | ≥ m3/k.

Proof of Theorem 3.3. We begin by showing that

Y (t) = 0 for all t ∈ [ζk, ηk), k < K. (3.74)

By (3.67), it suffices to show that

Xe(t)− νe − θe ≤ 0, for all t ∈ [ζk, ηk), k < K. (3.75)

Indeed, from (3.66), (3.51) and using νe = x∗e (by (3.9)), we have

Xe(ζ1)− νe − θe ≤ Xe(ζ1)−Xe(0) + (Xe(0)− x∗e)− θe ≤ −7ε + ε− θe ≤ −5ε.

Then by (3.68), taking into account the possibility of jumps of at most 2ε for
We, we have for t ∈ [ζ1, η1):

Xe(t)− νe − θe ≤ Xe(ζ1)− νe − θe + ‖X(t)−X(ζ1)‖ ≤ −5ε + 5ε ≤ 0.

A proof by induction that repeats the above argument, using (3.66) and (3.68)
shows that (3.75), and in turn (3.74), holds for k ≥ 1.

Next let us show that

τ ≥ σ ∧ γ2(ε), (3.76)

where γ2(ε) := m3

4
| log ε|, for sufficiently small ε. Consider the number k0 =

k0(ε) := [(2m2ε
1/2)−1] ∧ K (where K is as in (3.69)). If k0 = K and τ = ηK

then from (3.62), (3.69) and using Lemma 3.5(2), we have τ = σ, since then
‖X − x∗‖ηK

< ε1/2. Otherwise, if k0 = K and τ = ζK+1, or k0 = [(2m2ε
1/2)−1],

one uses (3.62), (3.69) and Lemma 3.5(2),(3) to obtain

τ ≥ ηk0 ≥
k0(ε)∑

l=1

m3

l
≥ m3

4
| log ε|.

Hence (3.76) follows.
Let K0 = K0(ε) = max{k : ζk ≤ σ∧γ2(ε)}. By Lemma 3.5(3), for sufficiently

small ε,
K0−1∑

k=1

k−1 ≤ m−1
3 γ2(ε) = −1

4
log ε.
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This implies that 1
2
log K0 ≤ −1

4
log ε, hence K0 ≤ ε−1/2, provided that ε is

small.
Now, using (3.74), Lemma 3.5(1) and the estimate on K0, we have

∫ σ∧γ2(ε)

0
1{e·Y (s)>0}ds ≤ (K0(ε) + 1)m1ε ≤ 2m1ε

1/2 ≤ γ1(ε),

where γ1(ε) := 2(m1 ∨ 1)ε1/2, establishing (3.72). As a result of (3.62) and
(3.76) we obtain that

‖X(t)− x∗‖ < ε1/2 for all t < σ ∧ γ2(ε).

As a result, ‖X−x∗‖∗σ∧γ2(ε) ≤ ε1/2+2ε ≤ γ1(ε). This shows (3.73) and completes
the proof of Theorem 3.3.

Proof of Lemma 3.5. By (3.64) and (3.65), the dynamics of X on the
intervals I1

k is given by

X(t) = X(ηk−1) + W (t)−W (ηk−1) + (t− ηk−1)(r + b), (3.77)

where

ri := λi−
∑

j∈J
µijψ

∗
ij−αδ1

∑

j:(i,j)∈E−p
µij+δ1

∑

j:(i,j)∈E+
p

µij+δ2

∑

j:(i,j)∈Ec
p∩Eba

µij, (3.78)

and

bi = bi(µ, β) := − ∑

j:(i,j)∈Ep

µijβij −
∑

j:(i,j)∈Ec
p∩Eba

µijβij.

By (3.9), (3.55), (3.60)–(3.61) and (3.78) we have

∑

i∈I
ri = δ2Σ

0
p + δ1Σ

+
p − αδ1Σ

−
p ≤

1

2
(δ1Σ

+
p − αδ1Σ

−
p ) < 0. (3.79)

Note that by (3.51) and (3.46), |∆Xe| ≤ 2ε. From (3.65) and (3.66), and using
(3.79), we thus obtain for I1

k , k ≥ 1,

−10ε ≤ Xe(ζk)−Xe(ηk−1)

≤ We(ζk)−We(ηk−1) + (e · r + ‖b‖)(ζk − ηk−1)

≤ 2ε + (e · r + c1ε
2)(ζk − ηk−1),
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for c1 =
∑

ij µij, and where we also used (3.51) and (3.63). Therefore for ε
sufficiently small,

|I1
k | = ζk − ηk−1 ≤ m1ε, (3.80)

where m1 = 24/|e· r|. This proves part 1 of the lemma.
From (3.77) and (3.80), for t ∈ I1

k and sufficiently small ε,

‖X(t)−X(ηk−1)‖ ≤ 2ε + c2(t− ηk−1) ≤ (2 + c2m1)ε,

where c2 = 2‖r‖. We therefore have

sup
t∈[ηk−1,ζk]

‖X(t)−X(ηk−1)‖ ≤ (2 + c2m1)ε. (3.81)

By (3.68), ‖X(t) − X(ζk)‖ ≤ 3ε for all t ∈ I2
k , and taking into account a

possible jump at ηk, we have

sup
t∈[ζk,ηk]

‖X(t)−X(ζk)‖ ≤ 5ε. (3.82)

Since by (3.46) and (3.51), ‖X(0)− x∗‖ ≤ ε, part 2 of the lemma follows from
(3.81) and (3.82).

In view of (3.67), (3.74) and (3.75), we have on I2
k





Y (t) = 0,

Z(t) = −(Xe(t)− νe − θe) ej0 ,

Ψij(t) = Gij(X(t), ν + θ − Z(t)).

(3.83)

Define X̃(t) = X(t)− x∗. From the definition of map G (3.56)–(3.58) we have

Gij(X̃(t)+x∗, ν + θ − Z(t))

= Gij(x
∗, ν) + Gij(X̃(t)− θeei0 , −Z(t)) + Gij(θeei0 , θ). (3.84)

Due to (3.9) we have Gij(x
∗, ν) = ψ∗ij. Now consider the second term in (3.84).

Using (3.83)

Gij(X̃(t)− θeei0 , −Z(t)) = Gij(X̃(t)− θeei0 , (Xe(t)− νe − θe) ej0)

= Gij(X̃(t), X̃e(t) ej0) (3.85)

+ Gij(−θeei0 , −θeej0),
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where we used X̃e = Xe − νe due to x∗e = νe (3.9). Finally, from (3.83)–(3.85),
we have

Ψij(t) = ψ∗ij + Gij(X̃(t), X̃e(t) ej0)

+ Gij(−θeei0 , −θeej0) + Gij(θeei0 , θ), t ∈ I2
k . (3.86)

Define the map H by

Hi(x) := −∑

j

µijGij(x, xeej0), x ∈ RI , i ∈ I, (3.87)

and the constant Hθ by

Hθ
i := −∑

j

µij

[
Gij(−θeei0 , −θeej0) + Gij(θeei0 , θ)

]
, i ∈ I. (3.88)

By the heavy traffic conditions,
∑

j∈J µijψ
∗
ij = λi. Hence using (3.46), (3.83)–

(3.88), we have

X̃(t) = X̃(ζk) + W (t)−W (ζk) +
∫ t

ζk

H(X̃(u))du + Hθ(t− ζk), t ∈ I2
k ,

(3.89)

By (3.56)–(3.58) and (3.51), there exist constants cH > 0 and lH > 0, such
that

‖H(x)‖ ≤ cH‖x‖, ‖Hθ‖ ≤ lHε, (3.90)

for ε sufficiently small. Therefore, applying (3.51), (3.90) and Lemma 3.5(2)
to (3.89), we have from (3.68)

3ε ≤ ‖X(ηk)−X(ζk)‖ = ‖X̃(ηk)− X̃(ζk)‖ ≤ 2ε + (cHkm2 + lH)(ηk − ζk)ε.

The above implies ε ≤ (cHkm2 + lH)(ηk − ζk)ε. Therefore, for k ≥ 1

|I2
k | = ηk − ζk ≥ 1

cHkm2 + lH
≥ m3

k
, m3 :=

1

c3cHm2

< 1, (3.91)

where the constant c3 satisfies (c3− 1)cHm2 ≥ lH . This concludes the proof of
Lemma 3.5.
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3.5. Estimates on the probabilistic model

In this section we prove Theorem 3.1. We begin by introducing a rescaled
version of the processes defined in Section 3.2 as follows. For n ∈ N and t ≥ 0,
let

X̄n
i (t) = n−1Xn

i (t), Ȳ n
i (t) = n−1Y n

i (t), i ∈ I (3.92)

Z̄n
j (t) = n−1Zn

j (t), Ψ̄n
ij(t) = n−1Ψn

ij(t), i ∈ I, j ∈ J . (3.93)

Denote X̄n = (X̄n
i , i ∈ I), and use a similar convention for Ȳ n, Z̄n and Ψ̄n.

Following a straightforward calculation, relations (3.5)–(3.4) can be rewritten
in terms of the rescaled processes, as equations (3.94)–(3.98) below, holding
for n ∈ N and t ≥ 0:

Ψ̄n
ij(t) = 0, (i, j) ∈ Ec

a, (3.94)

X̄n
i (t) = x∗i + W̄ n

i (t) + λit−
∑

j∈J
µij

∫ t

0
Ψ̄n

ij(s)ds, i ∈ I, j ∈ J , (3.95)

Ȳ n
i (t) +

∑

j∈J
Ψ̄n

ij(t) = X̄n
i (t), i ∈ I, (3.96)

Z̄n
j (t) +

∑

i∈I
Ψ̄n

ij(t) = νj + θn
j , j ∈ J , (3.97)

Ȳi(t) ≥ 0, Z̄j(t) ≥ 0, Ψ̄n
ij(t) ≥ 0 i ∈ I, j ∈ J , (3.98)

where we set

W̄ n
i (t) : = n−1[An

i (t)− λn
i t]

− n−1
∑

j∈J

[
Sn

ij

(
n

∫ t

0
Ψ̄n

ij(s)ds
)
− nµn

ij

∫ t

0
Ψ̄n

ij(s)ds
]

+ (n−1X0,n
i − x∗i ) + (n−1λn

i − λi)t−
∑

j∈J
(µn

ij − µij)
∫ t

0
Ψ̄n

ij(s)ds

(3.99)

and

θn
j = n−1Nn

j − νj. (3.100)

The above equations resemble the dynamic fluid model studied in Section 3.4,
and the proof of Theorem 3.1 will rely on the results of this section.
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Lemma 3.6. Under any SCP, for any given T ∈ (0,∞), {n1/2‖W̄ n‖∗T , n ∈ N}
are tight random variables.

Proof. Relations (3.3), (3.4) and (2.8) imply that 0 ≤ Ψ̄n
ij(t) ≤ c1, where c1

is a constant independent of i, j, n and t. Hence by (3.14), the last three terms
in (3.99) are bounded by c2(T +1)n−1/2, where c2 is a constant independent of
i, j, n and t. Denote Ân

i (t) := n−1/2(An
i (t)− λn

i t) and Ŝn
ij(t) := n−1/2(Sn

ij(nt)−
nµn

ijt). Theorem 14.6 of [13] shows that {Ân
i , n ∈ N} converges weakly to a

Brownian motion (with zero mean and variance that depends on i), and that
a similar statement holds for {Ŝn

ij, n ∈ N}. It follows that {|Ân
i |∗T , n ∈ N}

and {|Ŝn
ij|∗cT , n ∈ N} are tight random variables, for each i, j, whenever c is a

constant that is independent of n. By (3.99) we obtain that

n1/2|W̄ n
i |∗T ≤ |Ân

i |∗T + |Ŝn
ij|∗c1T + c2(T + 1). (3.101)

As a result, {n1/2|W̄ n
i |∗T , n ∈ N} are tight random variables, and the lemma

follows.

Proof of Theorem 3.1. For n ∈ N, let εn = n−1/2 log n. By (3.14), for
sufficiently large n,

‖θn‖ ≤ εn. (3.102)

For n ∈ N, let

ψ̃n
ij =





ψ∗ij + αδ1 + βn
ij, (i, j) ∈ E−p ,

ψ∗ij − δ1 + βn
ij, (i, j) ∈ E+

p ,

ψ∗ij − δ2 + βn
ij, (i, j) ∈ Ec

p ∩ Eba ,

0, (i, j) ∈ Ec
p ∩ Ec

ba,

(3.103)

where βn
ij are constants chosen in such a way that, for all sufficiently large n

one has |βn
ij|2 ≤ (εn)2, and nψ̃n

ij has integer values, for each i, j and n. Below,
we write a system of equations for the processes (X̄n, Ȳ n, Z̄n, Ψ̄n) that uniquely
defines them. We then let the processes (Xn, Y n, Zn, Ψn) be defined through
(3.92), (3.93). These processes will then be shown to form a SCP, and to satisfy
the statement of the theorem.
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Fix i0 ∈ I, j0 ∈ J . Set ηn
0 = 0, and consider the system of equations:





X̄n
i (t) = X̄n

i (ηn
k−1) + W̄ n

i (t)− W̄ n
i (ηn

k−1)

+λi(t− ηn
k−1)−

∑
j∈J µij

∫ t
ηn

k−1
Ψ̄n

ij(s)ds, i ∈ I, t ∈ [ηn
k−1, ζ

n
k ),

Ψ̄n(t) = ψ̃n, t ∈ [ηn
k−1, ζ

n
k ),

Ȳ n
i (t) = X̄n

i (t)−∑
j∈J Ψ̄n

ij(t), i ∈ I, t ∈ [ηn
k−1, ζ

n
k ),

Z̄n
j (t) = νj + θn

j −
∑

i∈I Ψ̄n
ij(t), j ∈ J , t ∈ [ηn

k−1, ζ
n
k ),

(3.104)
where W̄ n is given by (3.99),

ζn
k = inf{t ≥ ηn

k−1 : X̄n
e (t)− X̄n

e (ηn
k−1) ≤ −7εn} ∧ τn, (3.105)

and




X̄n
i (t) = X̄n

i (ζn
k ) + W̄ n

i (t)− W̄ n
i (ζn

k )

+λi(t− ζn
k )−∑

j∈J µij

∫ t
ζn
k

Ψ̄n
ij(s)ds, i ∈ I, t ∈ [ζn

k , ηn
k ),

Ȳ n(t) = (X̄n
e (t)− νe − θn

e )+ei0 , t ∈ [ζn
k , ηn

k ),

Z̄n(t) = (X̄n
e (t)− νe − θn

e )−ej0 , t ∈ [ζn
k , ηn

k ),

Ψ̄n(t) = G(X̄n(t)− Ȳ n(t), ν + θn − Z̄n(t)), t ∈ [ζn
k , ηn

k ),

(3.106)
where

ηn
k = inf{t ≥ ζn

k : ‖X̄n(t)− X̄n(ζn
k )‖ ≥ 3εn} ∧ τn, (3.107)

τn = τ̃n ∧ σn, τ̃n = inf{t ≥ 0 : ‖X̄n(t)− x∗‖ ≥ (εn)1/2}, (3.108)

σn = inf{t ≥ 0 : ‖W̄ n(t)‖ ≥ εn}, (3.109)

and finally,




X̄n
i (t) = X̄n

i (τn) + n−1(An
i (t)− An

i (τn)), t ≥ τn,

Ȳ n
i (t) = X̄n

i (t), Z̄n
j (t) = n−1Nn

j , Ψ̄n
ij(t) = 0, i ∈ I, j ∈ J , t ≥ τn.

(3.110)
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The above equations mimic the deterministic model (3.62)–(3.68), and there-
fore what is established in Section 3.4 can be used here. Notable difference is
the definition of the processes for times t ≥ τn. Note that, by definition of τn,
‖W̄ n(t)‖ ≤ εn holds for all t < τn. This and (3.102) provide a bound that is
similar to (3.51) over [0, τn). As a result, Lemma 3.4 implies that, given the
primitive processes An

i and Sn
ij, the processes X̄n, Ȳ n, Z̄n and Ψ̄n and the ran-

dom times ηn
k , ζn

k and τn are uniquely defined by equations (3.104)–(3.110). It
also follows from Lemma 3.4 that the processes (X̄n, Ȳ n, Z̄n, Ψ̄n) satisfy (3.94)–
(3.98) over [0, τn). In turn, the processes (Xn, Y n, Zn, Ψn) satisfy (3.5)–(3.4)
on this interval. It is also easy to check that these equations are satisfied for
t ≥ τn. We show that the processes (Xn

i , Y n
j , Zn

j , Ψn
ij) take values in Z+. Since

we have proved that (3.5)–(3.4) are satisfied, it suffices to show that Ψn
ij take

integer values. By construction of ψ̃, Ψn
ij take integer values for t ∈ [ηn

k−1, ζ
n
k ).

On the intervals [ζn
k , ηn

k ), by (3.67), Ψn
ij will be the solution of the system of

equations (3.56) with integer right hand sides. In this case, a simple argument
that uses the tree structure of Eba shows that Ψn

ij are all integer valued.
To show that the constructed processes form a SCP, it remains to prove that,

for every t, Ψn(t) is measurable on σ{Xn(s), An(s) : s ≤ t} (cf. Definition 3.1).
Fix t. We will show in steps (a)–(d) below that the value of Ψn(t) is uniquely
determined by the sample path Λ[0, t] := {Xn(s), An(s) : s ∈ [0, t]}.

(a) By (3.1), the sample path Λ[0, t] uniquely determines the sample paths∑
j∈J Sn

ij

(∫ ·
0 Ψn

ij(u)du
)
, i ∈ I on [0, t].

(b) By (3.105), (3.107), Λ[0, t] along with the value τn∧t uniquely determine
the values ηn

k ∧ t, ζn
k ∧ t, k = 1, . . . , K. Thus by (3.104), (3.106) and (3.110),

Λ[0, t] and τn ∧ t uniquely determine Ψn on [0, t]. Equation (3.99), along with
(a) above, shows that the same data, Λ[0, t] and τn ∧ t, uniquely determine
W̄ n on [0, t].

(c) We next show that Λ[0, t] determines Ψn and W̄ n on [0, t). Let (Ψn
1 , W̄ n

1 ),
(Ψn

2 , W̄ n
2 ) be two sample paths that correspond to the same data Λ[0, t]. Argue

by contradiction and assume that on [0, t) they do not agree. It follows from
(b) that the corresponding values of τn, that we denote by τn

1 and τn
2 , do not

agree, and that τn
1 ∧τn

2 < t. Without loss of generality, assume that τn
1 < τn

2 ∧t.
Using (b) again, we have that (Ψn

1 , W̄ n
1 ) = (Ψn

2 , W̄ n
2 ) on [0, τn

1 ]. In particular,

W̄ n
1 (τn

1 ) = W̄ n
2 (τn

1 ). (3.111)

Since τ̃n is defined in terms of Xn,

τ̃n
1 ∧ t = τ̃n

2 ∧ t. (3.112)
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Recall that σn is the time when W̄ n leaves an open set of RI (3.109). Thus
W̄ n

1 (τn
1 ) is either inside the open set, in which case τn

1 = τ̃n
1 < σn

1 ∧ σn
2 and

therefore by (3.112) τn
1 = τn

2 , or it is outside the open set, in which case
τn
1 = σn

1 , and by (3.111), we have that σn
1 = σn

2 and τn
1 = τn

2 . In both cases we
obtain a contradiction to τn

1 < τn
2 . We conclude that statement (c) holds.

(d) By (3.99) and (a) above, W̄ n(t) is uniquely determined by Λ[0, t] along
with the values of Ψn over [0, t). Hence in view of (c), W̄ n(t) is determined by
Λ[0, t]. Thus the right continuity of W̄ n and the definition of σn imply that
σn ∧ t is determined by Λ[0, t]. Hence so is τn ∧ t and, by (a), so is Ψn(t).

Finally, we show that (3.15) and (3.16) hold for any fixed T ∈ (0,∞) and
% > 1/2. To this end, note that

P(σn < T ) ≤ P(‖W̄ n‖∗T ≥ εn) = P(n1/2‖W̄ n‖∗T ≥ log n) → 0,

by Lemma 3.6. On the event σn ≥ T , we can use Theorem 3.3. On this event,
for all n sufficiently large, we have T ≤ γ2(εn) ∧ σn, thus Theorem 3.3 implies
that

∫ T
0 1{e·Y n(s)>0}ds ≤ γ1(ε

n). Since εn → 0 and γ1(0+) = 0, (3.15) follows.
The second and third parts of Lemma 3.5 imply that there is a constant

C(T ) < ∞, independent of n, such that ‖X̄n − x∗‖∗T ≤ C(T )εn on the event
σn ≥ T . On this event we therefore have

n−%‖Xn −X0,n‖∗T ≤ C(T )n
1
2
−% log n + n−%‖n−1X0,n − x∗‖,

where the last term on the above display converges to zero by (3.14). Since
P(σn ≥ T ) → 1, (3.16) follows. This completes the proof of Theorem 3.1.
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Chapter 4

Diffusion models: a reduction to
one dimension

4.1. Introduction

In this chapter we deal with diffusion models under the assumption of pool–
dependent service rates. We find several significant reductions of the corre-
spondent diffusion model, which yield a one–dimensional controlled diffusion.
Given some cost, we formulate a one–dimensional stochastic control problem
with a compact control space. We then identify particular cases, for which an
exact solution is available, and describe how to construct control policies for
the prelimit model, that are conjectured to be asymptotically optimal. The
chapter is based on the paper [9].

There have been other instances when the reduction to a one–dimensional
diffusion model has been discovered in queueing systems with pool–dependent
service rates. Armony [1] treated the model with one class of customers and
several server stations and showed the optimality of a property, similar to our
Statement (ii) of Theorem 4.1. The recent paper of Dai and Tezcan [22] treats
a model with 2 classes and 2 stations. They show a similar reduction and also,
due to a certain condition on abandonment rates, get an exact solution of the
control problem. The working paper of Gurvich and Whitt also treats pool–
dependent queueing models without the abandonments, adapting the approach
from [49].

Our model is more general than the ones treated by the above works, and as
a result the 1-dimensional diffusion control problem is sometimes more compli-
cated. In particular, it does not in general admit a pathwise solution. However,
a standard control theoretic approach yields a solution via the HJB equation
which, due to the one–dimensionality, can be easily solved, at least numerically.

84



1 2 3 4

1 2 3 4

1 32

Fig 4.1. A queueing model with abandonments and pool–dependent service rates

4.2. Reduction of a pool–dependent diffusion model

Consider the queueing model described in Section 2.2.1 where, in addition,
abandonments are allowed, i.e., customers may abandon the system while wait-
ing to be served, and abandonments arise according to exponential clocks. For
each i ∈ I, let θn

i ≡ θi be the abandonment rate of class–i. The queueing
system is assumed to be in heavy traffic and satisfy the complete resource pool-
ing condition (see also Section 2.2.2 and equations (2.8)–(2.12)). In addition,
the service rates are assumed to be (asymptotically) pool–dependent, i.e., the
quantities {µij} from (2.8) satisfy

µij = µj , i ∈ I, j ∈ J .

The corresponding pool–dependent diffusion model (see e.g., [3]) is given in
terms of the following equations:

Xi(t) = xi + Wi(t)−
∑

j∈J
µj

∫ t

0
Ψij(s)ds− θi

∫ t

0
Yi(s)ds, i ∈ I. (4.1)

∑

j∈J
Ψij(t) = Xi(t)− Yi(t), i ∈ I, (4.2)

∑

i∈I
Ψij(t) = −Zj(t), j ∈ J . (4.3)
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Ψij(t) ≡ 0 if i 6∼ j. (4.4)

Yi(t) ≥ 0, Zj(t) ≥ 0, i ∈ I, j ∈ J , t ≥ 0. (4.5)

The last term in (4.1) is due to the abandonments (see [3]–[7] for a rigorous
introduction of abandonments into the diffusion model). Set µ = (µ1, .., µJ).
In what follows we will impose the assumption that the minimal service rate
is greater than the maximal abandonment rate, i.e.,

µmin ≥ θmax for µmin := min
j∈J

µj, θmax := max
i∈I

θi. (4.6)

By allowing the abandonment rates to exceed the service rates in the prelimit
queueing system, it may be optimal not to route customers to service for some
periods of time. This will result in having queue length of order O(n) and
not just O(

√
n). Therefore, the static fluid model, about which the centering

is performed, is no longer relevant. From that point of view it is natural to
assume (4.6).

Let a complete filtered probability space {Ω, F , (Ft), P}, an (Ft)–Brownian
motion W and a deterministic x ∈ RI be given. A setM of processes (X,Y, Z, Ψ)
is said to be a diffusion model if the following conditions hold:

• X, Y , Z and Ψ are (Ft)– progressively measurable,
• equations (4.1)–(4.5) are satisfied P–a.s..

A subset M̃ of M is called a reduction of M, if for any (X,Y, Z, Ψ) ∈ M
there exists (X̃, Ỹ , Z̃, Ψ̃) ∈ M̃, such that for any constant c ∈ RI

+, P–a.s.

c · Ỹ (t) ≤ c ·Y (t) for all t ≥ 0. We emphasize that the above statement regards
a pathwise property of Y and Ỹ , meaning P{c · Ỹ (t) ≤ c · Y (t),∀t ≥ 0} = 1.

Fix some j0, satisfying µj0 = µmin.

Theorem 4.1. (i) Let M be a diffusion model and let M1 be the subset of
M, that, in addition, satisfies 1.–2. below P–a.s. for all t ≥ 0:

1. Ye(t) ∧ Ze(t) = 0,
2. Ψij(t) = 0 for (i, j) ∈ Enb.

Then M1 is a reduction of M.

(ii) Let M2 be the subset of M1 that, in addition, satisfies Z(t) = Ze(t)ej0

P–a.s. for all t ≥ 0. Then M2 is a reduction of M1.

The proof appears in Section 4.4. We comment that Statement 1 of Theorem
4.1 (i) corresponds to Joint Work Conservation (JWC), while Statement 2 says
that the system uses only basic activities. Both were introduced in [3]–[4] as
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central assumptions. Theorem 4.1 justifies those assumptions in the case of
pool–dependent service rates, at least when we are interested in minimizing
queue lengths (see also [7], pp. 1103–1104, for a discussion about how some
other types of cost, e.g., delay or abandonment costs, can be treated within
the framework of queue–length costs). Therefore, as a consequence of Theorem
4.1, we may restrict the diffusion model M to M2.

Consider the family O of (Ft)–progressively measurable processes (X̆, u) ∈
R× U, where

X̆(t) = xe + We(t) + µmin

∫ t

0
X̆−(s)ds−

∫ t

0
[θ · u(s)]X̆+(s)ds, t ≥ 0; (4.7)

U = {u ∈ RI : ui ≥ 0 , ue = 1}. (4.8)

Recall (2.22)–(2.24) and set

Hi(x, u) = −∑

j

µjGij(x− x+
e u,−x−e ej0)− θix

+
e u, i ∈ I.

The main result of this chapter is the following

Theorem 4.2. Let MO be a set of processes (X,Y, Z, Ψ) such that P–a.s. for
all t ≥ 0 one has

X(t) = x + W (t) +
∫ t

0
H(X(s), u(s))ds. (4.9)

Y (t) = X+
e (t)u(t) (4.10)

Z(t) = X−
e (t)ej0 (4.11)

Ψij(t) = Gij(X(t)−X+
e (t)u(t),−X−

e (t)ej0), i ∈ I, j ∈ J , (4.12)

where u is such that (X̆, u) ∈ O. Then

1. MO = M2.
2. For any (X̆, u) ∈ O and a corresponding (X, Y, Z, Ψ) ∈ MO we have
P–a.s. Xe = X̆.

See Section 4.4 for a proof. This establishes a reduction of the diffusion model
to a one–dimensional model. The steps of reduction are summarized in Fig.
4.2.
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Pool-dependent diffusion  model 

Pool-dependent diffusion  model

+ JWC 

Pool-dependent diffusion  model 

+ JWC +  all  activities  basic 

1 – dim  controlled diffusion 

Theorem 4.1 (i)

Pool-dependent diffusion  model 

+ JWC + all  activities  basic 

+ only one pool  has  idleness 

Theorem 4.2 

Theorem 4.1 (i)

Theorem 4.1 (ii)

Fig 4.2. A scheme of dimensionality reduction for the diffusion model

4.3. Diffusion control problem

As a demonstration of dimension reduction consider the following stochastic
control problem. Let X̆ be a controlled diffusion with a control u, satisfying
(4.7)–(4.8). Assume that we are given deterministic constants γ > 0, c ∈ RI

+.
Let π := (Ω,F , (Ft), u, W ) be an admissible control system system (see [25],
Chapter III.8) and consider the cost functional

C(x, π) = Eπ
x

∫ ∞

0
e−γt[c · u(t)]X̆+(t)dt, x ∈ R. (4.13)

Define a diffusion control problem by optimizing C(x, π) over the set Π of all
admissible control systems:

V (x) = inf
Π

C(x, π), x ∈ R. (4.14)
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As a consequence of Theorem 4.2, the one–dimensional problem (4.7), (4.13),
(4.14) is equivalent to the problem of minimizing the queue lengths cost

Ey

∫ ∞

0
e−γt[c · Y (t)]dt

for the original diffusion model, whenever x+ = e · y. Regarding the stochas-
tic control problems, such a reduction of dimensionality certainly simplifies
the general solution methods and even enables one to get exact solution in
particular cases. We will address those in the subsection below.

Exact solutions and connection to the prelimit queueing system

Solving (4.7), (4.13), (4.14) requires standard methods of stochastic control
(see also our discussion in directions for future work, Section 5.2). However,
there are particular cases in which the optimal control policy can be obtained
explicitly.

Lemma 4.1. Assume there exists a pair of indices i, j ∈ I, such that ci ≥ cj

and θi < θj. Then, necessarily the optimal control will satisfy ui ≡ 0.

The proof appears at the end of Section 4.4. As a consequence, it enables one
to get an optimal control policy in the special cases below, which provide a
generalization of the models without abandonments treated in [22].

Corollary 4.1. (i) Assume that θi = θ for all i. Then following is an optimal
control: uopt(t) ≡ ei0, for some fixed i0, satisfying ci0 = mini ci.

(ii) Assume that 



θ1 ≤ θ2 ≤ ... ≤ θI

c1 ≥ c2 ≥ ... ≥ cI

Then the control uopt(t) ≡ eI is optimal.

Remark 4.1. We introduce a problem of minimizing convex queueing costs,
for which an exact solution is also obtainable. Assume that θi = θ for all i. Let
the optimization goal be given as

V (x) = inf
Π

Eπ
x

∫ ∞

0
e−γt

∑

i

Ci

(
ui(t)X

+
e (t)

)
dt, x ∈ RI . (4.15)

Note that uiX
+
e represents queue length of class i. Here Ci(·) are strictly in-

creasing continuously differentiable convex functions. Then optimal controls
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are characterized by

C ′
1(u

o
1(t)X

+
e (t)) = C ′

2(u
o
2(t)X

+
e (t)) = ... = C ′

I(u
o
I(t)X

+
e (t)), t ≥ 0. (4.16)

Indeed, when all θ′s are equal, the scalar product θ·u in (4.7) equals to constant
θ, hence the control u does not influence the dynamics of the system in (4.7).
Therefore, one just needs to solve the following minimization problem:

min
∑

i

Ci(yi), s.t. y1 + .. + yI = x,

The solution y∗ satisfies C ′
1(y

∗
1) = ... = C ′

I(y
∗
I ) and e · y∗ = x.

Although the focus of this chapter is on diffusion models, we would like to
comment on their relation with routing and scheduling policies for the prelimit
queueing models. Given the optimal policy of the diffusion control problem, [4]
provides a scheme of constructing an asymptotically optimal policy for the pre-
limit model. Due to the simplicity of the diffusion optimal policies in Corollary
4.1 and Remark 4.1, the construction of analogous policies is straightforward.
Indeed, we conjecture that the following are asymptotically optimal for the
prelimit model. We consider here the harder case of non-preemptive policies.

For Corollary 4.1 (case (ii) follows from (i), by taking i0 = I):

• Routing: each arriving customer, if not queued, is routed to the fastest
server available, otherwise stays in queue. The system ”tends” to have
idle servers only in station j0 (recall Zj0 = Ze)

• Scheduling: a newly available agent, that can serve class i0, will ac-
cept a waiting i0–class customer, only if no other classes are waiting for
him. All other situations are resolved arbitrarily. In other words, class
i0 always has the lowest priority, and thus the system will seek to have
waiting customers only in class i0 (recall Yi0 = Ye). Note that this setting
generalizes that of Dai and Tezcan [22] to multi–dimensional models.

Consider the scheduling policy that satisfies the above. A newly available agent,
among all the waiting customers, will accept a customer with the largest hold-
ing cost c. Since the service rates do not depend on the class, this scheduling
policy is related to the cµ rule (see e.g., [54]).

Regarding Remark 4.1:

• Routing: the same as in Corollary 4.1.
• Scheduling: at any time t, among all the waiting customers that are

available for him, a newly available agent at station j will serve a cus-
tomer from class i∗ = arg maxi∼j{C ′

i(Y
n
i (t))}. The system will seek to

achieve approximate equality in (4.16).
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Similarly to our cµ comment from above, this scheduling policy is related to the
generalized cµ rule (see [53] and [49]). Note, however that we do not claim that
a similarity to the cµ rule holds in a more general setting, where a customer
is to be chosen from a number of classes having class–dependent service rates,
as the results of [4] show. In fact, the relation to the cµ rule is very limited to
the current setting.

4.4. Proofs

Proof of Theorem 4.1 (i): We show that each (X, Y, Z, Ψ) ∈ M defines
(X̃, Ỹ , Z̃, Ψ̃) ∈ M1 such that for any c ∈ RI

+ and all t ≥ 0 P–a.s. holds

c · Ỹ (t) ≤ c · Y (t).
Consider an arbitrary (X,Y, Z, Ψ) ∈ M. By summing equations (4.1) over

all i’s, we obtain

Xe(t) = xe + We(t) +
∑

j∈J
µj

∫ t

0
Zj(s)ds−∑

i∈I
θi

∫ t

0
Yi(s)ds. (4.17)

Define a process M as

M(t) = Ye(t) ∧ Ze(t), t ≥ 0. (4.18)

Observe that M is Ft–progressively measurable, since both Y and Z are. Also
M(t) ≥ 0, which follows from (4.5). From (4.2), (4.3) we have Xe = Ye − Ze.
Now rewrite (4.18) as (Ye − M) ∧ (Ze − M) = 0 to get Ye = X+

e + M and
Ze = X−

e + M . Therefore, we can define an Ft–measurable process U = (u, v)
taking values in

A = {(u, v) ∈ RI × RJ : ui, vj ≥ 0 , ue = ve = 1}, (4.19)

such that for all t ≥ 0, Yi(t) = ui(t) (X+
e (t) + M(t)), Zj(t) = vj(t) (X−

e (t) +
M(t)). Recall µ = (µ1, ..., µJ) and rewrite (4.17) as

Xe(t) = xe + We(t)+
∫ t

0
[µ · v(s)]X−

e (s)ds−
∫ t

0
[θ · u(s)]X+

e (s)ds (4.20)

+
∫ t

0

(
µ · v(s)− θ · u(s)

)
M(s)ds (4.21)

The new processes (X̃, Ỹ , Z̃, Ψ̃) will be constructed as follows. For any t ≥ 0
set

Ỹi(t) = ui(t)X̃
+
e (t), i ∈ I (4.22)

Z̃j(t) = vj(t)X̃
−
e (t), j ∈ J (4.23)

Ψ̃ij(t) = Gij(X̃(t)− Ỹ (t),−Z̃(t)). (4.24)
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and X̃ is constructed by substituting (4.22)–(4.24) into (4.1). By the construc-
tion, (X̃, Ỹ , Z̃, Ψ̃) are Ft–progressively measurable and satisfy (4.1)–(4.5) for
all t ≥ 0 P–a.s.. By (4.22)–(4.23) Ỹe ∧ Z̃e = 0 and by the properties of G (see
(2.22)–(2.24)), we also have Ψij ≡ 0 for (i, j) ∈ Enb. Hence (X̃, Ỹ , Z̃, Ψ̃) ∈M1.
Consequently,

X̃e(t) = xe + We(t) +
∫ t

0
[µ · v(s)]X̃−

e (s)ds−
∫ t

0
[θ · u(s)]X̃+

e (s)ds. (4.25)

By (4.6) we have µ · v(s) ≥ θ · u(s). Therefore, from (4.20) and (4.25),

d

dt

(
X̃e(t)−Xe(t)

)
≤ [µ · v(t)]

(
X̃−

e (t)−X−
e (t)

)
+ [θ · u(t)]

(
X+

e (t)− X̃+
e (t)

)

≤ [µ · v(t)]
(
X̃e(t)−Xe(t)

)−
+ [θ · u(t)]

(
Xe(t)− X̃e(t)

)+

,

where we used the simple inequalities a−−b− ≤ (a−b)− and a+−b+ ≤ (a+b)+.
By the comparison principle for one dimensional ordinary differential equation
(Theorem 7, p. 29, [14]), we get X̃e(t) ≤ Xe(t) and, as a result, for any c ∈ RI

+

and all t ≥ 0 P–a.s. we have Ỹi(t) = ui(t)X̃
+
e (t) ≤ ui(t)(X

+
e (t)+M(t)) = Yi(t),

i ∈ I. This proves part (i) of the theorem.

Proof of Theorem 4.1 (ii): Again, we show that each (X, Y, Z, Ψ) ∈ M1

defines (X̃, Ỹ , Z̃, Ψ̃) ∈M2 such that for any c ∈ RI
+ and all t ≥ 0 P–a.s. holds

c · Ỹ (t) ≤ c · Y (t).
Consider an arbitrary (X, Y, Z, Ψ) ∈M1. By summing equations (4.1) over

all i’s, and using U(t) from the proof of part (i),

Xe(t) = xe + We(t)+
∫ t

0
[µ · v(s)]X−

e (s)ds−
∫ t

0
[θ · u(s)]X+

e (s)ds. (4.26)

Fix some arbitrary j0 satisfying µj0 = µmin and consider a new Ft–measurable
process Ũ := (ũ, ṽ), defined for all t ≥ 0 as ũ(t) = u(t) and ṽ(t) ≡ ej0 . Using
a similar argument as in the proof of part (i), by substituting Ũ into (4.22)–
(4.24), we get a new (X̃, Ỹ , Z̃, Ψ̃) ∈ M1. By the choice of ṽ and using (4.23),
we also have that (X̃, Ỹ , Z̃, Ψ̃) ∈M2. Since µ · v(t) ≥ µ · ṽ(t) = µmin,

d

dt

(
X̃e(t)−Xe(t)

)
≤ [µ · v(s)]

(
X̃−

e (t)−X−
e (t)

)
+ [θ · u(t)]

(
X̃+

e (t)− x+
e (t)

)

≤ [µ · v(t)]
(
X̃e(t)−Xe(t)

)−
+ [θ · u(t)]

(
X̃e(t)−Xe(t)

)+

,
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and, again, by using the standard comparison principle, we get X̃e(t) ≤ Xe(t).
As a result, similarly to the proof of part (i), for any c ∈ RI

+ and all t ≥ 0

P–a.s. holds Ỹi(t) = ui(t)X̃
+
e (t) ≤ ui(t)X

+
e (t) = Yi(t), i ∈ I. This proves the

theorem.

Proof of Theorem 4.2(1). We first prove the inclusion M2 ⊆ MO. Con-
sider an arbitrary (X, Y, Z, Ψ) ∈ M2 The proof of Theorem 4.1 suggests the
existence of an Ft–measurable process u = u(t) with values in U, such that
(X, Y, Z, Ψ) satisfy (4.10)–(4.12) and the inclusion (X,Y, Z, Ψ) ∈ MO follows
by substituting (4.10)–(4.12) into (4.1). The opposite inclusion is obvious.

Proof of Theorem 4.2(2). We need to show that, after substituting (4.10)–
(4.12) into (4.1), the resulting X for all t ≥ 0 P–a.s. satisfies Xe(t) = X̆(t).
Indeed, by the properties of G, we have

∑
i∈I Ψij(t) = Zj(t) and, therefore, by

(4.9)–(4.12),

Xe(t) = xe + We(t) + µmin

∫ t

0
X−

e (s)ds−
∫ t

0
[θ · u(s)]X+

e (s)ds.

Since the process u above is the same as in (4.7), the statement of the theorem
follows.

Proof of lemma 4.1. Assume there exists a control u(t), such that ui(t) is
not identically equal to zero. The corresponding controlled process will be Xe.
Now consider another control ũ, such that ũi(t) ≡ 0 and ũj(t) = ui(t) + uj(t).

Denote the corresponding controlled process X̃e. Using the relation θ · ũ(t) ≥
θ ·u(t) and repeating the comparison argument from the proof of Theorem 4.1
(ii), we get that X̃e(t) ≤ Xe(t). Moreover, since c · ũ(t) ≤ c · u(t), trivially for
all t ≥ 0 P–a.s. we have [c · ũ(t)]X̃+

e (t) ≤ [c · u(t)]X+
e (t).
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Chapter 5

Future work

5.1. Extending the existing control–theoretic framework

Adding a singular component. In addition to the heavy traffic and complete
resource pooling conditions (see Section 2.2.2), the theory developed in Atar,
Mandelbaum and Reiman [7] and Atar [3, 4] relied on two key assumptions:
(a) the absence of non–basic activities and (b) joint work conservation. As a
result, the diffusion model for these formulations was the following controlled
Markov diffusion:

X(t) = X(0) + σW (t) +
∫ t

0
b(X(s), u(s))ds, (5.1)

where u ∈ U is a control term and the control space U is compact. One of the
key points discovered in Chapter 2, is that when one drops either one of the
two assumptions, a term is added to the diffusion model:

X(t) = X(0) + σW (t) +
∫ t

0
b(X(s), u(s))ds + ηt. (5.2)

The term η is of bounded variation, but not necessarily absolutely continu-
ous with respect to the Lebesgue measure and, in the literature, is sometimes
referred to as ”singular”. Theorem 2.2 of Chapter 2 states that, under some
conditions, the singular term can result in the null–controllability of the con-
trolled diffusion. However, in general, it is natural to consider a stochastic con-
trol problem, with both drift and singular controls, for minimizing expected
discounted costs, associated with queue lengths, delays or abandonments. Ex-
tending the theory from [3, 4, 7], regarding the HJB equations and its use, to
such problems seems an interesting and challenging research direction.
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Queueing systems with relatively ”small” service stations. Besides the system-
atic study of a diffusion control problem, [4, 7] construct scheduling policies
for the prelimit control problem. The policies are based on diffusion optimal
controls and are shown to be asymptotically optimal for both the preemptive
and non–preemptive regimes. The asymptotical equivalence was possible due
to the following property of the heavy traffic regime: the population in each
station and the arrival rates are of order O(n), with possible fluctuations of
O(
√

n). The control is applied only to diffusive fluctuations of order O(
√

n).
As n grows to infinity, service completion or arrival of O(

√
n) customers takes

time of O(1/
√

n), which is short.
The cases when some service station has O(

√
n) servers, or an arrival rate

of some class is of order O(
√

n) are not covered by the existing theory. As a
simple demonstration, consider a queueing system with a single class and two
different pools, where the arrival rate and stations’ populations are assumed
to satisfy

λn = λn + λ̂
√

n, Nn
1 = n, Nn

2 =
√

n, (5.3)

and the service rates µ1 and µ2 are constant (see Fig 5.1).

n n

Fig 5.1. A queueing model with a relatively small service station

Let Ψn
i (t), i = 1, 2, represent the number of customers being served in each

station at time t ≥ 0. For simplicity, we assume Ψn
1 = (Xn−Ψn

2 )∧Nn
1 , namely,

each customer, if not routed to the ”small” (with
√

n servers) station, joins the
queue only if the ”large” station is fully occupied. As n increases, by applying
formal weak limits to appropriate centered and rescaled processes, one can
derive the following diffusion model, which is different from (4.1)–(4.5):

X(t) = X(0) + W (t) + µ1

∫ t

0
(X(s)− Ψ2(s))

−ds− µ2

∫ t

0
Ψ2(s)ds (5.4)
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0 ≤ Ψ2(t) ≤ 1, t ≥ 0. (5.5)

The last condition is due to the fact that no centering is applied to Ψn
2 (recall

the last condition in (5.3)). The relations (5.4)–(5.5) suggest to consider the
process Ψ2 as a control process, and X as a controlled diffusion. Given a cost,
we can then formulate a one–dimensional control problem, the study of which is
not expected to be complex, especially given the theory from [3, 7]. However, we
believe that this diffusion control problem is not the right problem to generate
asymptotically optimal policies for the prelimit system in the non–preemptive
scheduling regime! A rough explanation is as follows. Assume that the diffusion
policy suggests to immediately decrease Ψ2. Translated to the prelimit model,
this suggests to decrease Ψn

2 by an amount of O(
√

n) in a short time, which is
impossible due to Nn

2 =
√

n.
On the other hand, due to a much higher arrival rate of the order O(n), it

is indeed possible to increase Ψn
2 by an amount of O(

√
n) almost immediately.

Therefore, the right approach seems to introduce a non-decreasing process
B, with B(0) = 0, as a control process, and to consider (X, Ψ2) as a two–
dimensional controlled diffusion which, in addition to (5.4)–(5.5), satisfies

Ψ2(t) = Ψ2(0)− µ2

∫ t

0
Ψ2(s)ds + B(t). (5.6)

Here B(t) represents the ”input flow” to station 2. Since B is not necessarily
absolutely continuous, one should treat it as a singular control. Finally, given
some cost, we have a singular control problem with B as control.

Unfortunately, unlike the one–dimensional singular control problems, the
structure of the optimal solution for such problems in high dimensions is gen-
erally unknown. Shreve and Soner [52], for example, studied a very particular
2–dimensional singular control problem and showed that it is optimal to keep
a diffusion inside a certain region, that is given in terms of an HJB equa-
tion (note that singular controls make it possible to do so). The extension of
their result to higher dimension or to weaker conditions on the diffusion model
(in dimension 2 and higher) are hard open problems. However, see Atar and
Budhiraja [5] and Atar, Budhiraja and Williams [6] for recent developments.

It is possible, however, that there is some structural property in the current
problem that makes it treatable. Thus a better understanding of this setting
will be the subject of future study.

Non–exponential service times. Exponential distribution of service times is a
key assumption in most of the works (including ours) that deal with many-
server queues in heavy traffic. The reason for this is the memoryless property,
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which results in some remarkable simplifications in representation of processes.
As of today, there are only few papers dealing with convergence of scaled queue-
ing processes in the QED regime, where the service duration is not exponential.
[40] and [47] study the limiting behaviour of the virtual waiting time in queues
where the service duration is deterministic or has a finite support; [50] studies
single pool model with service times distributed as phase–type, which can be
thought of as a relative of the exponential one (see Section 1.1.2 for the litera-
ture background). For general service time distributions, the queueing models
are believed to be infinite dimensional. The recent paper of Kaspi and Ra-
manan [42] studies measure-valued processes arising as fluid limits for general
service time distribution.

To the best of our knowledge, there is no research dealing with stochastic
control of queueing systems in heavy traffic in the non-exponential setting.
Extending the existing ”exponential” control framework to the case of generally
distributed service time is an interesting challenge. To start with, one may
consider phase–type distributions. Regarding the current work, we believe that
the null–controllability phenomenon can be extended to the non–exponential
setting.

5.2. Further study of pool-dependent diffusion models

In Chapter 4 we studied pool–dependent diffusion models and showed that they
can be reduced to one–dimensional controlled diffusions. We also identified
some cases when the control problem (4.7), (4.13), (4.14) has explicit solution.
However, the most interesting cases are yet to be solved analytically. Consider,
for example the simplest case with two customer classes, where the service and
abandonment rates satisfy

c1 > c2 and θ1 > θ2.

Translated into the language of queues, the administrator must make a trade–
off: either to maintain the waiting population in class 1 and get a higher total
abandonment rate, but also higher cost rate; or to move waiting customers
into queue 2 and get lower cost rate, but also low abandonment rate. The
results of Chapter 4 show that this 2–dimensional model can be reduced to a
1–dimensional one, with value and dynamics as follows (assume µmin = 1):

V (x) = inf
π

Eπ
x

∫ ∞

0
e−γt

(
c1u + c2(1− u)

)
X+dt, (5.7)
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dX = dW + X−dt−
(
θ1u + θ2(1− u)

)
X+dt. (5.8)

The corresponding HJB equation is

1

2
Vxx + inf

u∈[0,1]

[
(c1 − c2)ux+ − (θ1 − θ2)ux+Vx

]
+ (x− − θ2x

+)Vx + c2x
+ − γV = 0.

(5.9)

A significant advantage of the reduction to a one–dimensional model is that
the corresponding HJB equation is one–dimensional as well, and thus amenable
to numerical schemes. Moreover, initial calculations suggest that the optimal
policy is ”bang–bang”: the control u(t) takes only two different values: 0 or 1,
depending on the relation between Vx(X(t)) and c1−c2

θ1−θ2
. To be precise, u(t) = 1

if Vx(X(t)) ≥ c1−c2
θ1−θ2

and u(t) = 0 otherwise. Trying to solve this problem and
then to generalize it to models with more customer classes will be the subject
of future work.

To begin with, one may be interested in the properties of V from (5.7).
Computer simulations suggest that V is concave, which implies the existence
of a point x∗ ≥ 0, such that u(X(t)) = 0 once X(t) ≥ x∗ and u(X(t)) = 1
otherwise.

In the future work we will also address diffusion models for queueing systems
with class–dependent service rates:

µij = µi , i ∈ I, j ∈ J .

Several reductions are also available in this setting, although one does not
expect a reduction to one–dimensional controlled diffusion.

5.3. Staffing in throughput sub–optimal systems

This is a question that is important for further understanding of the through-
put sub–optimality property. As a motivating example consider a static fluid
model with the following arrival and service rates:

λ =

(
8
4

)
, µ =

(
3 10 1
1 4 2

)
. (5.10)

Assume that the staffing vector is given by ν = (0.3, 0.3, 6.1)′. The resulting
optimal static allocation matrix is as follows

ξ∗ =

(
1 1 0.6721
0 0 0.3279

)
.
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The resulting graph of activities is depicted in Fig 5.2(left). The fluid model
is throughput optimal, as can be easily checked.

p

Fig 5.2. The resulting graph of activities. The left graph corresponds to throughput optimal
fluid model, the right graph - to sub–optimal, with the corresponding closed simple path

Now assume that the staffing vector equals to ν̃ = (1, 1, 1)′ and the arrival and
service rates remain the same (5.10). The resulting optimal static allocation is
as follows

ξ̃∗ =

(
1 0.5 0
0 0.5 1

)
.

The fluid model now appears to be throughput sub–optimal, though the total
staffing was decreased from νe = 6.7 to ν̃e = 3. In Figure 5.2(right) we see
the graph of activities together with a corresponding closed simple path. An
interesting question is to identify the set of ν ′s that result in throughput sub–
optimality.
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[33] Harrison J. M. and López M. J. (1999). Heavy traffic resource
pooling in parallel-server systems. Queueing Systems, 33: 339-368.

[34] Harrison J. M. and Reiman M. (1981). Reflected Brownian motion
on an orthant. Ann. Probab. 9, 302-308.

[35] Harrison J. M. and Van Mieghem J. A. (1997). Dynamic con-
trol of Brownian networks: state space collapse and equivalent workload
formulations. Ann. Appl. Probab. 7, No. 3, 747–771.

[36] Harrison J. M. and Williams R.J. (1987). Brownian models of open
queueing networks with homogeneous customer populations. Stochastics
22, 77-15.

[37] Harrison J. M., Williams R.J. and Chen H. (1990). Brownian
models of closed queueing networks. Stochastics and Stochastics Reports
29, 37-74.

[38] Harrison J. M. and Zeevi A. (2004). Dynamic scheduling of a mul-
ticlass queue in the Halfin-Whitt heavy traffic regime. Oper. Res. 52, 243–
257.

[39] Iglehart D.L. and Whitt W. (1970). Multiple channel queues in
heavy traffic. Adv. Appl. Probab. 2, 150-177.

[40] Jelenkovic P., Mandelbaum A. and Momcilovic P. (2004).
Heavyt traffic limits for queues with many deterministic servers. Queueing
Systems, 47, pp. 53-69.

[41] Karatzas I. and Shreve S. E. (1991). Brownian Motion and Sto-
chastic Calculus. 2nd ed. Springer-Verlag, New York.

[42] Kaspi H. and Ramanan K. (2007). Fluid limits for the GI/GI/N
queueu. Working paper.

[43] Kingman J.F.C. (1961). The single server queue in heavy traffic. Proc.
of Cambridge Philosophical Society, 57, 902-904.

[44] Kushner H. J. and Dupuis P. (2001). Numerical Methods for Sto-
chastic Control Problems in Continuous Time. 2nd ed. Springer-Verlag,

102



New York.
[45] Lions P. L. and Sznitman A. S. (1984). Stochastic differential equa-

tions with reflecting boundary conditions. Comm. Pure appl. Math. 37,
511–537.

[46] Mandelbaum A., Massey W. A. and Reiman M.I. (1998). Strong
approximations for markovian service networks. Queueing Systems, 30,
149-201.

[47] Mandelbaum, A. and Momcilovic P. (2007). Queues with Many
Servers: The Virtual Waiting-Time Process in the QED Regime. Preprint

[48] Mandelbaum A. and Pats G. (1998). State–dependent stochastic
networks: approximations and applications with continuous diffusion lim-
its. Ann. Appl. Probab. 8, No. 2, 569-646.

[49] Mandelbaum A. and Stolyar A. (2004). Scheduling flexible servers
with convex delay costs: heavy–traffic optimality of the generalized c-rule.
Oper. Res. 52, No. 6, 836–855.

[50] Puhalskii A. A. and Reiman M. I. (2000). The multiclass GI/PH/N
queue in the Halfin-Whitt regime. Adv. in Appl. Probab. 32, No. 2, 564–
595.

[51] Reiman M. I. (1984). Some diffusion approximations with state space
collapse. Proc. of the Internat. Seminar on Modeling and Performance
Evaluation Methodology, Lecture Notes in Control and Informational Sci-
ence, eds. Baccelli, F. and Fayolle G., Springer NY., pp 209-240.

[52] Shreve, S., and Soner M. (1994). Optimal investment and consump-
tion with transaction costs. Ann. Appl. Probab. 4, 609–692.

[53] Van Mieghem J.A. (1995). Dynamic scheduling with convex delay
costs: the generalized cµ rule. Ann. Appl. Probab. 5, 809–833.

[54] Walrand J. (1988). An Introduction to Queueing Networks, Imprint,
Englewood Cliffs, N.J. : Prentice-Hall.

[55] Whitt W. (1974). Heavy traffic limit theorems for queues: a survey.
Math. Methods in Queueing Theory, Proceedings of a Conference at West-
ern Michigan University, Lecture Notes in Economica and Mathematical
Systems, No 98, Springer-Verlag, New-York, pp. 307-350.

[56] Whitt W. (2002). Stochastic–Process Limits: an Introduction to
Stochastic–Process Limits and Their Application to Queues, Springer,
2002.

[57] Whitt W. (2004). A diffusion approximation for the G/GI/n/m queue.
Oper. Res. Vol. 52, No. 6, pp. 922-941.

[58] Whitt W. (2005). Heavy-traffic limits for the G/H2/n/m queue. Math.
Oper. Res., Vol. 30, No. 1, pp. 1-27.

103



[59] Whitt W. (2007). Martingale proofs of many–server heavy–traffic limits
for markovian queues. Working paper.

[60] Williams R. J. (1987). Reflected Brownian motion with skew symmet-
ric data in a polyhedral domain, Prob. Theory Related Fields, 75, 459-485.

[61] Williams R. J. (1998). Diffusion appproximations for open multiclass
queueing networks: sufficient conditions involving state space collapse,
Queueing Systems, 30, 27-88.

[62] Williams R. J. (2000). On dynamic scheduling of a parallel server sys-
tem with complete resource pooling. Analysis of communication networks:
call centres, traffic and performance (Toronto, ON, 1998), 49–71, Fields
Inst. Commun., 28, Amer. Math. Soc., Providence, RI.

104


