
Applied Probability Trust (10 November 2015)

SENSOR ALLOCATION PROBLEMS ON THE REAL LINE

EVANGELOS KRANAKIS,∗ Carleton University,

GENNADY SHAIKHET,∗∗ Carleton University,

Abstract

A large number n of sensors (finite connected intervals) are placed randomly

on the real line so that the distances between the consecutive midpoints are

independent random variables with expectation inversely proportional to n. In

this work we address two fundamental sensor allocation problems. Interference

problem tries to reallocate the sensors from their initial positions to eliminate

overlaps. Coverage problem, on the other hand, allows overlaps, but tries

to eliminate uncovered spaces between the originally placed sensors. Both

problems seek to minimize the total sensor movement while reaching their

respective goals.

Using tools from queueing theory, Skorokhod reflections and weak convergence,

we investigate asymptotic behaviour of optimal costs as n increases to infinity.

The introduced methodology is then used to address a more complicated,

modified coverage problem, in which the overlaps between any two sensors

can not exceed a certain parameter.
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1. Introduction

A large number n of sensors are distributed over the positive half-line. Each sensor is

represented by a finite closed interval of the same length σn, and the distances between

consecutive midpoints are i.i.d. random variables with expectation 1/n. An arbitrary

realization will possibly have some overlapping sensors, as well as sensors with gaps

between them. The coverage and interference problems aim to reallocate the sensors

in an optimal way to either eliminate the overlaps (interference problem) or rather to

remove the gaps, securing uninterrupted coverage starting from the origin (coverage

problem). In both problems the optimality criteria are chosen to be minimization of

the total movement of sensors.

In this paper we consider both problems in the asymptotic setting where the number

of sensors (n) increases to infinity and the length σn becomes infinitely small, roughly

inversely proportional to n. Our main goal at this stage is not to solve the coverage

or interference problems, but to understand orders of magnitude for optimal allocation

costs and their dependence on the limiting behaviour of σn. The results are of particular

importance in computer science, communications and networking; and later may be

used as a starting point for finding an optimal solution. To the best of our knowledge,

such an asymptotic setting has yet to be fully studied. Some initial results appear in the

conference proceedings ([9], coverage) and ([10], interference) treating the special cases

when the i.i.d. distances between sensor midpoints are either uniform [9] or exponential

[10]. Both papers study performance bounds for some allocation algorithms, mostly

using straightforward computations. The methods had their limitations - not all choices

of σn could be treated, and the bounds were mostly one-sided. Besides, no coherent

connection was established between the coverage and interference problems.

In what follows we introduce a unifying methodology to address both problems

simultaneously. The spectrum of all values for the sensor length σn is decomposed

into three different regions (or categories), characterized by whether the length is

asymptotically greater than, less than or equal to the average original distance of

1/n between consecutive sensors’ midpoints. The three categories will be referred to as

overloaded, underloaded or critical; and each will produce distinct two-sided estimates

for both coverage and interference optimal costs. The terminology clearly suggests an
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analogy with queueing theory and, indeed, quite a bit of it will be used. In particular,

we use the so-called potential outflow function (3.1) and related functionals. Our main

findings are summarized in Theorem 2.1. It is shown that the two costs behave quite

the opposite in the underloaded and overloaded cases, while exhibiting the same order

of magnitude in the critical case.

The resulting table may seem intuitive or even simple (we prefer elegant), yet the

situation was far from being that clear before the ‘queueing link’ had been established.

In fact, the orders of O(1) were not expected, for the coverage problem in particular.

There, a certain Skorokhod reflection map (6.3) had to be introduced (the result may

be of separate interest in queueing theory as it can be used for analyzing busy periods

in G/D/∞ models). In addition, to show the almost sure relation we could no longer

rely on the methodology of asymptotic queueing analysis (very valuable to establish

the tightness, for example). Instead we had to bound the reflection map by a certain

discrete-time continuous-space Markov chain in the spirit of [13], making it possible to

apply the classical ‘Law of Large Numbers for Markov chains’.

The new methods are then exploited to study a more complicated, mixed problem

(see (2.5) for the formulation, and Theorem 2.2). Once again, the O(1) estimates were

the hardest to show, requiring a modified version (8.2) of the previously introduced

Skorokhod map. After that, the map (8.2) had to be bounded from both sides by

reflected random walks, amenable to analysis. Overall we believe that our methodology

is robust, and can be applied to various related questions.

Related literature. Both coverage and interference problems have been studied

before. [6] deals with covering of a two-dimensional domain by sensors. A specific

and more efficient type of coverage is called barrier coverage and concerns covering the

perimeter of a two dimensional object. For the barrier coverage problem the authors

of [11] propose efficient algorithms to determine, after deploying the sensors, whether

a region is k-barrier covered. For the problem of coverage on a line, the authors of

[5] consider the complexity of the (total) displacement problem on a line and propose

deterministic algorithms; similarly, the same authors in [4] analyze the complexity of

the maximum displacement problem on a line and propose deterministic algorithms.

Interference in a network may be caused by node transmission power and prox-
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imity and affects the overall communication connectivity. In [2] the authors propose

connectivity-preserving and spanner constructions that are interference-minimal while

in [14] they study the problem of minimizing the average interference while still main-

taining desired network properties, such as connectivity, point-to-point connections, or

multicast trees.

Notation. We use L{[a, b]} = b−a for the length of the interval [a, b] on the real line.

For x, y ∈ R, we use x∧ y = min{x, y} and x∨ y = max{x, y}. We also use x+ = x∨ 0

and x− = −(x ∧ 0) for positive and negative parts of x ∈ R, respectively. For a vector

a ∈ Rn we use ‖a‖ =
∑n
k=1 |ak|. For a function f(·) on R we use f(u−) = limt↑u f(t)

to denote a left-hand limit of f at point u.

For positive sequences {xn, n ≥ 1} and {yn, n ≥ 1} we say that xn ∈ Θ(yn) if there

exist two constants c1 > 0 and c2 > 0, independent of n, such that c1yn ≤ xn ≤ c2yn

for all n large enough. In addition, we say xn ∈ O(yn) (resp., xn ∈ Ω(yn)), if there

exists a constant c > 0 such that xn ≤ cyn (resp., cyn ≤ xn) for n large enough.

2. Setting and the main results

The n sensors are represented by n finite closed intervals [τni , τ
n
i + σn], 1 ≤ i ≤ n,

where we use τni for the left endpoint of the ith sensor; and σn for its length. All

sensors have the same length σn. The model is parameterized by n ∈ N, the number

of sensors under consideration. We start with a basic assumption.

Assumption 2.1. For a given n ∈ N, the left endpoints {τni }ni=1 satisfy τn1 = ζ1/n

and τni −τni−1 = ζi/n, 2 ≤ i ≤ n, where {ζi}i≥1 are i.i.d. positive, absolutely continuous

random variables with E(ζ1) = 1 and E(ζ2
1 ) <∞.

Figure 1: Sensors (without superscripts, and lifted above each other to clarify the exposition).
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2.1. Interference and Coverage problems

This paper is about allocating (or, better, re-allocating) the sensors along the

positive real half-line to achieve certain properties. A set πn = {πni }ni=1 ∈ Rn will

be called a displacement policy, each πni ∈ R being a displacement of the ith sensor

from its original location [τni , τ
n
i + σn] to a new location [τni − πni , τni − πni + σn]. The

sensors must not exit the half-line, thus requiring πni ≤ τni . For a policy πn we let

‖πn‖ =
∑n
i=1 |πni | represent the total displacement cost.

• Problem 1. (Interference): minimize the total displacement cost needed to

eliminate overlaps between the sensors. That is, find

Cnint = min
πn∈Πn

1

‖πn‖, (2.1)

where πn ∈ Πn
1 , if (τni − πni , τni − πni + σn) ∩ (τnj − πnj , τnj − πnj + σn) = Ø for i 6= j

and, in addition, πni ≤ τni for each i.

• Problem 2. (Coverage): minimize the total displacement cost needed to

eliminate gaps between the sensors, that is, find

Cncov = min
πn∈Πn

2

‖πn‖, (2.2)

where πn ∈ Πn
2 , if

⋃n
i=1[τni − πni , τni − πni + σn] =

[
0,maxi=1,..,n{τni − πni + σn}

]
.

The main objective of the paper is to understand the large n asymptotics of the

cost of total movement. It appears, the results strongly depend on whether the sensor

length σn is greater than, less than or asymptotically (as parameter n ↑ ∞) equal to

the average distance of 1/n between initially placed sensors.

Assumption 2.2. The sensor length σn is deterministic and satisfies

ασ := lim
n→∞

σn

1/n
= lim
n→∞

nσn <∞. (2.3)

Definition 2.1. The set of sensors is of type U (underloaded) if ασ < 1; of type O

(overloaded) if ασ > 1; of type C (critical) if ασ = 1 and lim
n→∞

√
n(nσn − 1) ∈ (−∞,∞).

Theorem 2.1. (Interference and Coverage). Let Assumptions 2.1 and 2.2 hold.

The table below summarizes asymptotics (as n → ∞) of the cost of optimal displace-

ment for problems (2.1) and (2.2), for each type of sensor sets.
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Regime Interference Cnint Coverage Cncov Result holds in

U O(1) Θ(n) Expectation/a.s.

C Θ(n1/2) Θ(n1/2) Expectation

O Θ(n) O(1) Expectation/a.s.

Theorem 2.1 is proven in several stages, over the next five sections. Section 3 deals

with some necessary prerequisites. The interference problem is treated in Sections 4

and 5: we introduce certain lower and upper bounds (Section 4), and analyze them

asymptotically afterwards (Section 5). Similarly, the coverage problem is treated in

Sections 6 and 7. The concluding Section 10 discusses possible alternatives to the

characterization (Definition 2.1) of limiting regimes.

2.2. Mixed problem

We introduce a modification of the coverage problem. Let rn be a deterministic

sequence of positive numbers with rn ≤ σn, and assume the existence of the limit

αr := lim
n→∞

nrn <∞. (2.4)

• Problem 3. (Mixed): minimize the total displacement cost needed to eliminate

gaps between the sensors, with an additional requirement that no two sensors can

overlap by more than rn. That is, we seek

Cnmix = min
Πn

2∩Πn
3

‖πn‖, (2.5)

where πn ∈ Πn
3 , if L

{
[τni −πni , τni −πni +σn]∩ [τnj −πnj , τnj −πnj +σn]

}
≤ rn, i 6= j.

For the mixed problem we will show that the coverage results of Theorem 2.1 remain

the same for underloaded and critical sensor sets. On the other hand, when sensor set

is overloaded, the results will depend on asymptotic behaviour of the difference σn−rn.

Definition 2.2. Recall Definition 2.1. A sensor set of type O (overloaded) is said to

be of type O(u) if ασ−αr < 1; of type O(o) if ασ−αr > 1; of type O(c) if ασ−αr = 1

and lim
n→∞

√
n(nσn − nrn − 1) ∈ (−∞,∞).

Theorem 2.2. (Mixed). Let Assumptions 2.1 and 2.2 hold. The table below sum-

marizes the asymptotics of Cnmix for each type of sensor sets.
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Regimes Mixed Cnmix Result holds in

U, O(o) Θ(n) Expectation/a.s.

C, O(c) Θ(n1/2) Expectation

O(u) O(1) Expectation/a.s.

Since all five categories U, C, O(o), O(u) and O(c) are disjoint, the table actually

says that Θ(n) estimate, for example, holds for both types U and O(o); and so on.

The theorem is treated in Sections 8 and 9. Once again, some bounds are introduced

and then analyzed asymptotically. To some extent the mixed problem resembles the

coverage problem.

3. Preliminary analysis

3.1. Potential outflow. Connection to queueing theory

The potential outflow of a counting process Nn(t) :=
∑n
i=1 1{τn

i ≤t}, for 0 ≤ t ≤ τn,

is defined as

Wn(t) = σnNn(t)− t , 0 ≤ t ≤ τn. (3.1)

The notion comes from the G/D/1 queueing theory: the left endpoints {τni } rep-

resent arrival epochs with Generally distributed inter-arrival times, and the sensor’s

length σn stands for Deterministic service requirement. Nn is an arrival process.

The potential outflow Wn will play a key role in construction and analysis of various

displacement policies. Definition (3.1) implies (pay attention to the left-hand limit):

Wn(τnk−) = (k − 1)σn − τnk , 1 ≤ k ≤ n. (3.2)

3.2. Base coverage policy

Introduce a policy πn = {πnk }nk=1 satisfying πnk = −Wn(τnk−) = τnk − (k − 1)σn,

which trivially places the kth sensor in the interval [(k−1)σn, kσn] for each k = 1, ..., n.

The base coverage policy is clearly admissible for each of the problems (2.1), (2.2) and

(2.5), and can be used as an upper bound for either Cnint, C
n
cov or Cnmix :

Cnint/cov/mix ≤
n∑
k=1

∣∣∣Wn(τnk−)
∣∣∣. (3.3)
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3.3. Ordered policies

In the sequel, we will restrict the policy sets Πn
1 , Πn

2 , Πn
3 to policies satisfying

(3.4), allowing to contain only the ordered (that is, according to their initial order)

displacement of sensors. The claim is justified in Lemma 3.1 below, whose simple

proof is omitted. Such a reduction of the policy sets is indeed crucial and will be used

later to establish a connection to queueing theory. To keep it simple, we will abuse the

notation and retain the letters Πn
1 , Πn

2 , Πn
3 .

Lemma 3.1. An optimal displacement policy for each of the problems (2.1), (2.2) and

(2.5) necessarily satisfies

τni − πni ≤ τnj − πnj , for i < j. (3.4)

4. Interference problem

4.1. Characterization of a policy, and a lower bound on performance

For a given initial allocation {τn1 , τn2 , . . .} and a policy πn ∈ Πn
1 , introduce {ξ}ni=1,

recursively defined as ξ1 = τn1 − πn1 and

ξk = τnk − πnk −
k−1∑
i=1

(σn + ξi) , k = 2, ..., n. (4.1)

Clearly ξ1 ≥ 0, and it is the distance from the origin to the 1st shifted sensor. Likewise,

for each k, the quantity ξk ≥ 0 represents the length of the gap between consecutive

shifted sensors k − 1 and k (since
∑k−1
i=1 (σn + ξi) is the right endpoint of the (k − 1)th

shifted sensor). Note that the shifted sensors must be consecutive, as required by (3.4).

Figure 2: Gaps between shifted sensors (interference problem).

Essentially, {ξ}ni=1 uniquely characterize the policy πn due to (see also (3.2))

πnk = −

(
Wn(τnk−) +

k∑
i=1

ξi

)
, 1 ≤ k ≤ n. (4.2)



Sensor Allocation Problems 9

As a result, since ξi ≥ 0, we can deduce the following lower bound

Cnint =

n∑
k=1

∣∣∣∣∣Wn(τnk−) +

k∑
i=1

ξi

∣∣∣∣∣ ≥
n∑
k=1

(
Wn(τnk−)

)+

. (4.3)

4.2. Right-shift policy and an upper bound on performance

right-shift policy: the first sensor remains on its original location. After that,

for k ≥ 1: the (k+1)th sensor remains on its original location if it does not overlap

with already re-allocated kth sensor; otherwise, the (k + 1)th sensor is shifted to

the right by the minimum distance required for that overlap to be eliminated.

Figure 3: An implementation of the right-shift policy: 2nd, 3rd and 4th sensors are shifted

to the right by w2, w3 and w4 units, respectively. The 1st and the 5th sensors do not move.

The corresponding policy {π1, π2, ..} is then given as π1 = π5 = 0, πi = −wi, for i = 2, 3, 4.

Under the right-shift policy, the gaps {ξi} between shifted sensors must satisfy

ξk =

(
k−1∑
i=1

(σn + ξi)− τnk

)−
, 1 ≤ k ≤ n, (4.4)

since
∑k−1
i=1 (σn + ξi) is the right endpoint of the (k − 1)th shifted sensor.

Referring to the queueing model from subsection 3.1 and its terminology, the gap’s

length ξk in (4.4) corresponds to the idling time between serving the (k− 1)th and the

kth customers, in a standard G/D/1 queue under the First-Come-First-Serve discipline.

Moreover, the quantity
∑k−1
i=1 (σn+ξi) now represents the departure time of the (k−1)th

customer after being served. Combining the latter observation with (4.1) and (4.4),

we see that the absolute value of the kth displacement

|πnk | = −πnk =

(
k−1∑
i=1

(σn + ξi)− τnk

)+

, 1 ≤ k ≤ n (4.5)
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represents the waiting time of the kth arriving customer (See Fig. 3 ). As a result, the

total displacement cost equals to the total waiting time among n customers and

Cnint ≤
n∑
k=1

wnk , (4.6)

where wnk stands for the waiting time of the kth customer in a corresponding queue.

5. Asymptotic analysis of Interference Problem

Proposition 5.1. (Overloaded regime). For sensor sets of type O, as n→∞

E(Cnint) = Θ(n) and Cnint = Θ(n) a.s. (5.1)

Proof. Combining (3.3) and (4.3), one gets

n∑
k=1

(
Wn(τnk−)

)+

≤ Cnint ≤
n∑
k=1

∣∣∣Wn(τnk−)
∣∣∣. (5.2)

We start with the lower bound. Since nσn → ασ > 1, there exist constants δ > 0 and

c > 0 so that for n large enough σn− (1 + δ)/n ≥ c/n. From (3.2) and Assumption 2.1

Wn(τnk−) = −σn +

k∑
i=1

(
σn − 1 + δ

n

)
+

k∑
i=1

(
1 + δ

n
− ζi
n

)
.

Since E(ζi) = 1 and δ > 0, the expectation of the last term is positive. In addition, by

the Law of Large Numbers, we almost surely have
∑n
k=1

k
n

[
1
k

∑k
i=1 (1 + δ − ζi)

]
≥ 0

for n large enough. This implies
∑n
k=1W

n(τnk−) ≥ −nσn + (1/2)cn ≥ −(1 + ασ) +

(1/2)cn ≥ (1/3)cn, for n large enough. Since (Wn)+ ≥ Wn, the lower bound in (5.2)

together with the last inequality, imply Cnint = Ω(n) a.s. and in expectation.

For the upper bound we use a crude estimate |Wn(τnk−)| ≤ (k − 1)σn + τnk . By

Definition 2.1, we have
∑n
k=1(k − 1)σn = O(n) so we just need to establish a bound

for
∑n
k=1 τ

n
k . We have (recall Assumption 2.1),

n∑
k=1

τnk =

n∑
k=1

k

n
+

n∑
k=1

(
τnk −

k

n

)
=
n+ 1

2
+

n∑
k=1

k

n

[
1

k

k∑
i=1

(ζi − 1)

]
.

The expectation of the last term above is trivially zero. Now, fix an arbitrary ε > 0.

By the Law of Large Numbers, almost surely we have (1/k)
∑k
i=1 (ζi − 1) ≤ ε for all k

large enough. Therefore,
∑n
k=1 τ

n
k ≤ n(1+ε) for all n large enough. Hence

∑n
k=1 τ

n
k =

O(n) both in expectation and almost surely, concluding the proof. 2
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Proposition 5.2. (Critical regime). For sensor sets of type C, as n→∞

E(Cnint) = Θ(n1/2) (5.3)

Proof. Once again, we analyze the bounds from (5.2). Rewrite

n∑
k=1

(
Wn(τnk−)

)+

=

∫ τn
n

0

(
Wn(t−)

)+

d[Nn(t)− an(t)] +

∫ τn
n

0

(
Wn(t−)

)+

dan(t)

(5.4)

where (see [7], p. 98) an is a compensator of Nn, hence the integrator Nn(t) − an(t)

in the first expression of (5.4) is a martingale. As a result, the process M(·) =∫ ·
0

(
Wn(t−)

)+

d[Nn(t) − an(t)] is a martingale (see Thm. 6.5.8 in [12], p. 88) with

expectation zero, hence by the optional sampling theorem (see Thm. 3.22 in [8], p. 19)

(since τnn is a stopping time), we get that the first term in (5.4) has zero expectation.

Regarding the second term of (5.4), the compensator must satisfy

dan(t)

dt
= n

fζ(nt− nτnNn(t−))

1− Fζ(nt− nτnNn(t−))
= n hζ(nt− nτnNn(t−)), (5.5)

where hζ is a hazard rate of random variable ζ. We claim that∫ τn
n

0

(
Wn(t−)

)+

dan(t) ≥ c1 n
∫ τn

n

0

(
Wn(t−)

)+

dt− c2, (5.6)

for some constants c1 > 0 and c2 > 0. Indeed, take some c1 > 0 and let D be the set

on which hζ(·) ≥ 2c1. Due to the ”triangular” shape of Wn, we can ensure that c1 is

small enough to guarantee
∫ τn

n

0

(
Wn(t−)

)+

IDc(t) dt ≤ 1
2

∫ τn
n

0

(
Wn(t−)

)+

dt+n (σn)2

2 .

Then n
∫ τn

n

0

(
Wn(t−)

)+

hζ(nt − nτnNn(t−))dt ≥ 2c1n
∫ τn

n

0

(
Wn(t−)

)+

ID(t) dt =

2c1n
∫ τn

n

0

(
Wn(t−)

)+

dt−2c1n
∫ τn

n

0

(
Wn(t−)

)+

IDc(t) dt ≥ c1n
∫ τn

n

0

(
Wn(t−)

)+

dt−c2
for some c2 > 0, because (nσn)2 = Θ(1); and (5.6) follows. Combining (5.4) - (5.6),

E

[
n∑
k=1

(
Wn(τnk−)

)+
]
≥ c1 n E

[∫ τn
n

0

(
Wn(t−)

)+

dt

]
− c2. (5.7)

Introduce Bn(t) := n−1/2(Nn(t)− nt) and rewrite Wn(t) as

Wn(t) = n−1/2
[
(nσn)Bn(t) + n1/2(nσn − 1)t

]
(5.8)

It is well known that Bn converges to a standard Brownian motion (see Thm. 5.11

in [3], p. 110). In addition, we have E(τnn ) = 1. Next, we combine (5.8) and (5.7)
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with the lower bound inequality in (5.2), and use Fatou’s Lemma, to get E(Cnint) =

Ω(n1/2). For the upper bound, we use Lemma 2 from ([1], page p.1102) that claims

E (|Bn(t)|) ≤ c1(1 + tc2), n ∈ N, t ∈ R for some constants c1 and c2 independent of

n and t. Applied to both (5.8) and the upper bound in (5.2), this yields E(Cnint) =

O(n1/2) and (5.3). 2

Proposition 5.3. (Underloaded regime). For sensor sets of type U, as n→∞

E(Cnint) = O(1) and Cnint = O(1) a.s. (5.9)

Proof. Consider (4.6) with wnk - the waiting time of the kth customer in a G/D/1

queue. Recall that the times between arrivals are i.i.d. random variables, distributed

as ζ/n, and the service is deterministic σn. From Lindley’s relations (Sec. 4.20 in

[16]) we have w1 = 0 and wnk+1 =
(
wnk + σn − ζk+1/n

)+

for k ≥ 1. Introduce

φnk = nwnk+1 and ζ̃k = ζk+1 for k ≥ 0. The sequence {φnk}k≥0 satisfies φn0 = 0 and

φnk+1 =
(
φnk + (nσn − ζ̃k+1)

)+

, defining a random walk on a positive half-plane, as

introduced in Appendix A, with the increment xnk = nσn−ζ̃k. To eliminate dependence

on the parameter n in the increment, take some σ̊ satisfying nσn < σ̊ < 1, (the existence

of such σ̊ for n large enough is guaranteed by having nσn → ασ < 1). Let yk = σ̊− ζ̃k,

and define a sequence {φyk, k ≥ 0} as φy0 = 0 and φyk+1 =
(
φyk + yk+1

)+

, k ≥ 0. By

the choice of σ̊, we must have xnk ≤ yk. Next, we use the comparison Lemma A.2 to

get φnk ≤ φ
y
k for all k ≥ 0. Finally, by applying φnk = nwnk+1 ≤ φ

y
k to (4.6)

Cnint ≤
1

n

n−1∑
k=1

φnk ≤ 1

n

n∑
k=1

φyk, (5.10)

and we are ready to apply Lemma A.1 to Φ := {φyk, k ≥ 0}, with i.i.d. increments

{y1, y2, ...}, satisfying E(y1) < 0, to get (5.9). This completes the proof. 2

We point out the clear advantage of the queueing bound (4.6) over the upper

workload bound (5.2), which would still be at least Ω(
√
n) (see (5.3)). At the same

time, the lower bound in (5.2) will undergo a change in the regime and become O(1),

since in the underloaded case Wn tends to be negative.
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6. Coverage problem

6.1. A trivial lower bound on performance

Let πn ∈ Πn
2 (also satisfying (3.4)). If τnk ≥ (k−1)σn for some k ≥ 1 then, obviously,

πnk must satisfy πnk ≥ τnk − (k − 1)σn. This implies |πnk | ≥ (τnk − (k − 1)σn)+ =

(−Wn(τnk−))+ = (Wn(τnk−))−. And we have a lower bound in terms of

Cncov ≥
n∑
k=1

(
Wn(τnk−)

)−
. (6.1)

6.2. Left-shift policy and an upper bound on performance

Left-shift policy: the first sensor is shifted left to the origin. After that, for

k > 1: the (k + 1)th sensor remains on its original location if it overlaps with

already re-allocated (possibly shifted) kth sensor; otherwise, the (k + 1)th sensor

shifts left to close the gap with the re-allocated kth sensor, without overlapping it.

Figure 4: An implementation of the left-shift policy: 1st, 4th and 5th sensors are shifted left

by π1, π4 and π5 units respectively. The 2nd and the 3rd sensors do not move.

Lemma 6.1. The left-shift policy is characterized by the displacement

πnk =
(
Ln(τnk−)

)−
, k = 1, .., n, (6.2)

where

Ln(t) = Wn(t)− sup
s∈[0,t]

(Wn(s)− σn)+ (6.3)

is a Skorokhod map (see Fig. 5 below), reflecting Wn to (−∞, σn].
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Figure 5: Realization of the left-shift policy, governed by the map L. The length σ = 1 and

the original left endpoints are given as τ1 = 0.5, τ2 = 0.8, τ3 = 1.2, τ4 = 4.4, τ5 = 4.7 and

τ6 = 4.9. The function L is a Skorokhod reflection of the potential outflow W to (−∞, 1]. The

left shifts are given as πk = L(τk−)−, implying π1 = L(0.5−)− = 0.5, π2 = π3 = 0, (because

L(0.8−) > 0 and L(1.2−) > 0), π4 = 2.2, π5 = 1.5 and π6 = 0.7.

Lemma 6.1 implies the following upper bound for problem (2.2)

Cncov ≤
n∑
k=1

(
Ln(τnk−)

)−
. (6.4)

Proof of Lemma 6.1. For k = 2, ..., n, define ηk to be the length of the overlap

between the (k − 1)th and kth sensors, after the left-shift policy had been performed.

Assume η1 = 0.
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Figure 6: Overlaps between shifted sensors (coverage by the left-shift policy).

It is easy to see that the quantities {ηk} satisfy the following recursive relation

ηk =

(
k−1∑
i=1

(σn − ηi)− τnk

)+

=

(
Wn(τnk−)−

k−1∑
i=1

ηi

)+

, (6.5)

where we use the convention
∑0

1 = 0. Indeed, the relation (6.5) is true because∑k−1
i=1 (σn − ηi) is the coordinate of the right endpoint of the (k − 1)th sensor after the

left-shift allocation. Consequently, we have

πnk =

(
τnk −

k−1∑
i=1

(σn − ηi)

)+

=

(
Wn(τnk−)−

k−1∑
i=1

ηi

)−
. (6.6)

From (6.3), since Wn is decreasing on [τnk−1, τ
n
k ), we have Ln(τnk−) = Wn(τnk−) −

sups∈[0,τn
k−1](W

n(s)− σn)+, and (6.2) will follow from (6.6) once we show that

k−1∑
i=1

ηi = sup
s∈[0,τn

k−1]

(Wn(s)− σn)+. (6.7)

Introduce R(t) = sups∈[0,t](W
n(s)−σn)+. The function R is non-decreasing, piecewise

constant function, with jumps possible only at the points {τnk }nk=1:

R(t) =
∑

k : τn
k ≤t

∆R(τnk ), t ≥ 0, (6.8)

where ∆R(τnk ) := R(τnk )−R(τnk−) is a jump of R at the point τnk . Next we show that

ηk = ∆R(τnk ), 1 ≤ k ≤ n, (6.9)

which will in turn imply (6.7) and conclude the lemma. For k = 1 the relation (6.9)

holds by the definition, since sups∈[0,τn
1 ](W

n(s)− σn)+ = 0 (see (3.1)). At the same

time, the quantities {∆R(τnk )} satisfy, for k ≥ 2

∆R(τnk ) = sup
s∈[0,τn

k ]

(Wn(s)− σn)+ − sup
s∈[0,τn

k−1]

(Wn(s)− σn)+

=
(
Wn(τnk )− σn − sup

s∈[0,τn
k−1]

(Wn(s)− σn)+
)+

=
(
Wn(τnk−)−

k−1∑
i=1

∆R(τni )
)+

,
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which is the same recursive relation as (6.5) for quantities {ηk}. Together with η1 =

∆R(τn1 ), the recursion implies (6.9), concluding the lemma. 2

7. Asymptotic analysis of Coverage Problem

Proposition 7.1. (Underloaded regime). For sensor sets of type U, as n→∞

E(Cncov) = Θ(n) and Cncov = Θ(n) a.s. (7.1)

Proof. Apply the lower bound (6.1) together with the upper bound (3.3) to get

n∑
k=1

(
Wn(τnk−)

)−
≤ Cncov ≤

n∑
k=1

∣∣∣Wn(τnk−)
∣∣∣. (7.2)

We follow the proof of Proposition 5.1. The upper bound treatment is identical. As

for the lower bound, there must exist constants δ > 0 and c > 0 so that for n large

enough (1− δ)/n− σn ≥ c/n. Next, consider

−Wn(τnk−) = σn +

k∑
i=1

(
1− δ
n
− σn

)
+

k∑
i=1

(
ζi
n
− 1− δ

n

)
. (7.3)

Since E(ζi) = 1 and δ > 0, the expectation of the last term is trivially positive. Then

proceed as in the lower bound treatment in Proposition 5.1. 2

Proposition 7.2. (Critical Regime). For sensor sets of type C, as n→∞

E(Cncov) = Θ(n1/2) (7.4)

Proof. We use bounds (7.2) together with similar analysis from Proposition 5.2. 2

Proposition 7.3. (Overloaded Regime). For sensor sets of type O, as n→∞

E(Cncov) = O(1) and Cncov = O(1) a.s. (7.5)

Proof. Our job will be to show the boundedness (in expectation and almost surely)

of (6.4). It would be easier to operate with τnk instead of τnk−; and the definition (6.3)

and Fig. 5 suggest an obvious inequality

(Ln(τnk−))− ≤ (Ln(τnk ))− + σn. (7.6)

Since nσn <∞, the boundedness of (6.4) will follow once we can show the boundedness

of
∑n
k=1(Ln(τnk ))−. To simplify the notation, let Ln0 = 0, Wn

0 = 0 and Lnk = Ln(τnk ),
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Wn
k = Wn(τnk ) for k ≥ 1. Since Wn(·) can only increase at points {τnk }, we can rewrite

(6.3) as

Lnk = Wn
k − max

r∈{0,..,k}
(Wn

r − σn)+ , k ≥ 1,

Define Mn
k = Wn

k − maxr∈{0,..,k}W
n
r . Since Wn

0 = 0, we have maxr∈{0,..,k}W
n
r =

maxr∈{0,..,k}(W
n
r )+ ≥ maxr∈{0,..,k}(W

n
r − σn)+, yielding Lnk ≥Mn

k and, in particular,

due to non-positivity of Mn,

(Lnk )− ≤ (Mn
k )−. (7.7)

Let ψnk = nMn
k . Together, the relations (6.2), (6.4), (7.6) and (7.7) imply

Cncov ≤ nσn +
1

n

n∑
k=1

(ψnk )−. (7.8)

From the definition of Mn, we have ψn0 = 0 and

ψnk = nWn
k − max

r∈{0,..,k}
nWn

r , k ≥ 1, (7.9)

where, using (3.1) and Assumption 2.1,

nWn
k =

k∑
i=1

(nσn − n[τni − τni−1]) =

k∑
i=1

(nσn − ζi). (7.10)

The relations (7.9) - (7.10) define Ψn = {ψnk , k ≥ 0} - a random walk on the negative

half-plane, as described in Appendix B, with i.i.d. increments {nσn − ζk , k ≥ 1}.

To properly analyze (7.8) we first need to eliminate dependence on n in the increment

nσn − ζk. Take some σ̊, satisfying 1 < σ̊ < nσn (the existence of such σ̊ for n large

enough is guaranteed by having nσn → ασ > 1). Define zk = σ̊ − ζk and introduce

Ψz = {ψzk , k ≥ 0} defined as ψz0 = 0 and ψzk+1 = −(ψzk + zk+1)− , k ≥ 0. Once again,

as described in Appendix B, Ψz is a random walk on the negative half-plane, with

i.i.d. increments {zk , k ≥ 1}. By the choice of σ̊, we must have zk ≤ nσn − ζk, hence

one can apply a comparison result of Lemma B.2 to get (Ψn)− ≤ (Ψz)−. Applying

the latter to (7.8), together with Lemma B.1 (valid due to E(z1) > 0), we get

Cncov ≤ nσn +
1

n

n∑
k=1

(ψnz )− <∞, (7.11)

in expectation and almost surely. This concludes the proposition. 2
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8. Mixed Problem

Mixed policy (MP): the first sensor is shifted left to the origin. After that, for

every k ≥ 1: the (k + 1)th sensor remains on its original location if it overlaps

with already re-allocated kth sensor by no more than rn; in the case the overlap

is greater than rn, the (k + 1)th sensor shifts right to make the overlap equal rn.

Lastly, if there is no overlap between the (k+ 1)th sensor and the re-allocated kth,

the (k+ 1)th sensor shifts left until it touches the kth sensor, without overlapping.

Figure 7: An implementation of the mixed policy: the 1st and the 4th sensors are shifted to

the left to close the gap; the 2nd and the 5th sensors (and it is the main difference from the

left-shift policy) are shifted to the right, to ensure that the overlap does not exceed r; the 3rd

sensor stays on its original location, since the overlap is already smaller than r.

Lemma 8.1. The MP policy is characterized by the displacement

πnk =
(
Pn(τnk−)

)−
−
(
Pn(τnk−)− rn

)+

, (8.1)

where P is a modified Skorokhod reflection map

Pn(t) = Wn(t)−
∑

k: τn
k ≤t

(
Pn(τnk−)

)+

∧ rn. (8.2)
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Figure 8: Mixed mapping for sensors displacement. Here we have the same set of original

sensors as in Fig. 5. Both functions P and L (reflected mapping from Fig. 5) behave

identically up to the jump at the point 0.8, and this is due to the fact that P (0.8−) = 0.2 < 0.3,

in which case P can not jump above the level σ = 1. On the other hand, at the jump point 1.2

the function P does go above the level σ = 1, (since P (1.2−) = 0.6 > 0.3) although its jump

is now shortened by r = 0.3, and equals to 1− 0.3 = 0.7.

Discussion of Lemma 8.1. The policy says that (recall Section 2.1), the kth sensor

moves right if Pn(τnk−) > rn; moves left if Pn(τnk−) < 0; and remains in its original

place if 0 ≤ Pn(τnk−) < rn (see Fig. 8).

Looking closer, we can see that (8.2) has quite a lot of similarities with (6.3). Indeed,

from its definition and Fig. 5 it is easy to see that Ln(t) = Wn(t)−
∑
k: τn

k ≤t
(Ln(τnk−))+.

Therefore, the processes Ln and Pn would be identical if not for the rn - restriction.
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Naturally, the MP policy produces an upper bound

Cnmix ≤
n∑
k=1

[(
Pn(τnk−)

)−
+
(
Pn(τnk−)− rn

)+
]
. (8.3)

Proof of Lemma 8.1. Similarly to the proof of Lemma 6.1 (see Fig. 6), let {η̃k}nk=2

be the overlaps between (k − 1)th and kth sensors in the final placement according to

the MP policy. Assume η̃1 = 0. One can show that the MP policy implies the following

recursive relation

η̃k =

(
k−1∑
i=1

(σn − η̃i)− τnk

)+

∧ rn =

(
Wn(τnk−)−

k−1∑
i=1

η̃i

)+

∧ rn. (8.4)

Again, relation (8.4) is true because
∑k−1
i=1 (σn − η̃i) is the coordinate of the right

endpoint of the (k − 1)th sensor after the left-shift allocation. Consequently, we have

πnk =

(
τnk −

k−1∑
i=1

(σn − η̃i)

)+

−

(
k−1∑
i=1

(σn − η̃i)− τnk − rn
)+

(8.5)

=

(
Wn(τnk−)−

k−1∑
i=1

η̃i

)−
−

(
Wn(τnk−)−

k−1∑
i=1

η̃i − rn
)+

. (8.6)

From (8.2), Pn(τnk−) = Wn(τnk−) −
∑k−1
i=1

(
Pn(τni −)

)+

∧ rn and the relation (8.1)

will follow once we show that

η̃k =
(
Pn(τnk−)

)+

∧ rn , 1 ≤ k ≤ n. (8.7)

Since Pn(τn1 −) < 0, the relation (8.7) holds trivially for k = 1. Next, proceed by

induction. For k ≥ 2, assume that (8.7) holds for 1, 2, . . . , k − 1. From (8.4)

η̃k =

(
Wn(τnk−)−

k−1∑
i=1

(
Pn(τni −)

)+

∧ rn
)+

∧ rn =
(
Pn(τnk−)

)+

∧ rn, (8.8)

as desired. The proof is now complete. 2

9. Asymptotic analysis of Mixed Problem

We shall need the following simple consequence of the definitions in (2.2) and (2.5)

Cnmix ≥ Cncov (9.1)
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Proposition 9.1. (Underloaded regime). For sensor sets of type U, as n→∞

E(Cnmix) = Θ(n). (9.2)

Proof. Due to (9.1), (7.2) and an upper bound (3.3) from the base coverage policy

n∑
k=1

(
Wn(τnk−)

)−
≤ Cnmix ≤

n∑
k=1

∣∣∣Wn(τnk−)
∣∣∣ (9.3)

and the arguments from the proof of Proposition 7.1 for nσn → ασ < 1 imply (9.2). 2

Proposition 9.2. (Critical regime). For sensor sets of type C, as n→∞

E(Cnmix) = Θ(n1/2) (9.4)

Proof. We use the bounds (9.3) and the considerations from Proposition 5.2. 2

Note that in obtaining both estimates (9.2) and (9.4) we did not use any information

about rn. It comes into play in the last, considerably more involved, asymptotic regime

for this problem. Each of the three different sub-regimes will be treated separately.

Proposition 9.3. (O(o) regime). For sensor sets of type O(o), as n→∞

E(Cnmix) = Θ(n) and Cnmix = Θ(n) a.s. (9.5)

Proof. Start with the lower bound. Due to Lemma 3.1, a policy in Πn
3 must satisfy

τni − πni + σn − rn ≤ τni+1 − πni+1, for each 1 ≤ i ≤ n− 1. (9.6)

The above condition can be interpreted as that, once “shortened” by rn from the right,

the modified sensors no longer interfere. That is, by allocating original sensors to satisfy

(9.6), we automatically allocate “shortened” sensors to avoid interference. Naturally,

the relation does not work in another direction, since one still needs to achieve coverage

- that is, a policy must satisfy the requirements of Πn
2 . As a result,

Cnmix ≥ C
n,σn−rn
int , (9.7)

with C n,σn−rn
int being the analog of Cnint from (2.1) for the case when all sensors are

shortened by rn from the right. Hence, applying to (9.7) the modified version of (4.3),

Cnmix ≥
n∑
k=1

(
Wn
σn−rn(τnk−)

)+

, (9.8)
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with Wn
σn−rn being the analog of (3.1)-(3.2), accommodating the shortened length of

σn − rn, that is Wn
σn−rn(t) = (σn − rn)Nn(t)− t. For the upper bound we follow the

previous discussion and use the base coverage (3.3) but for sensors shortened by rn

from the right (obviously, such base coverage satisfies the requirements of the mixed

problem). Combined with (9.8), we now have

n∑
k=1

(
Wn
σn−rn(τnk−)

)+

≤ Cnmix ≤
n∑
k=1

∣∣∣Wn
σn−rn(τnk−)

∣∣∣, (9.9)

and the assertion (9.5) can be shown as in Proposition 5.1. 2

Proposition 9.4. (O(c) regime). For sensor sets of type O(c), as n→∞

E(Cnmix) = Θ(n1/2) (9.10)

Proof. Follows from (9.9) and Proposition 5.2 after replacing σn by σn − rn. 2

Proposition 9.5. (O(u) regime). For sensor sets of type O(u), as n→∞

E(Cnmix) = O(1) and Cnmix = O(1) a.s. (9.11)

Proof. Let πn be the MP policy from (8.1). The statement of the proposition will

follow once we show that

sup
n
‖πn‖ <∞ , a.s. sup

n
E (‖πn‖) <∞ (9.12)

Define Pnk := Pn(τnk−) , Znk = σn−ζk/n ,1 ≤ k ≤ n. From (8.2), (3.2) and Assumption

2.1 we have Pn1 = −ζ1/n < 0 and

Pnk+1 = Pnk + Znk+1 − (Pnk )+ ∧ rn , 1 ≤ k ≤ n− 1. (9.13)

Lemma 9.1. For the sequence {Pnk } from (9.13) and a random walk {Xn
k , k ≥ 1},

defined as Xn
1 = Pn1 and Xn

k+1 = −(Xn
k + Znk+1)−, we have

(Pnk )− ≤ (Xn
k )− , 1 ≤ k ≤ n. (9.14)

Proof of Lemma 9.1. Consider an auxiliary sequence {Mn
k , k ≥ 1}, defined

recursively as Mn
1 = Pn1 and Mn

k+1 = Mn
k + Znk+1 − (Mn

k )+. It is easy to see that

Mn
k ≤ Pnk for all k ≥ 1. The next step is to show that Xn

k ≤ Mn
k , by induction.

Indeed, the relation holds for k = 1. Assume now it holds for k. Consider three
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cases. If 0 ≤ Xn
k ≤ Mn

k then Xn
k = 0 and Xn

k+1 = −(Znk+1)−. On the other hand

Mn
k+1 = Znk+1 ≥ −(Znk+1)− = Xn

k+1. Next, if Xn
k ≤ 0 ≤ Mn

k , then Mn
k+1 = Znk+1

and the relation Xn
k+1 ≤Mn

k+1 trivially holds for Znk+1 ≤ 0 since in that case Xn
k+1 =

Xn
k +Znk+1. If Znk+1 > 0 then Xn

k+1 ≤Mn
k+1 = Znk+1 is obvious since Xn

k+1 ≤ 0. Lastly,

if Xn
k ≤ Mn

k ≤ 0 then Mn
k+1 = Mn

k + Znk+1 ≥ Xn
k + Znk+1 ≥ −(Xn

k + Znk+1)− = Xn
k+1.

Combining Xn
k ≤Mn

k and Mn
k ≤ Pnk , we have Xn

k ≤ Pnk and (9.14) as a result. 2

Lemma 9.2. Let Unk = Znk −rn for 1 ≤ k ≤ n and define a random walk {Y nk , k ≥ 1},

as follows: Y n1 = 0 and Y nk+1 = (Y nk + Unk+1)+. Then

(Pnk − rn)+ ≤ Y nk , 1 ≤ k ≤ n. (9.15)

Proof of Lemma 9.2. Since Y nk ≥ 0, it would be enough to show Pnk −rn ≤ Y nk for all

k ≥ 1. We will use the induction argument. The relation clearly holds for k = 1. Now,

assume that Pnk − rn ≤ Y nk holds for some k ≥ 1, and show that Pnk+1 − rn ≤ Y nk+1.

Case 1: Pnk − rn ≤ Y nk = 0. Then Y nk+1 = (Unk+1)+. At the same time

Pnk+1 − rn =

 Znk+1 − rn , if 0 ≤ Pnk ≤ rn,

Pnk + Znk+1 − rn , if Pnk < 0,

(9.16)

and we have Pnk+1 − rn ≤ (Znk+1 − rn)+ = (Unk+1)+ = Y nk+1.

Case 2: Pnk − rn ≤ 0 ≤ Y nk . In this case the relation follows once again from

(9.16) since Pnk+1 − rn ≤ (Znk+1 − rn)+ = (Unk+1)+ ≤ (Y nk + Unk+1)+ = Y nk+1.

Case 3: 0 ≤ Pnk − rn ≤ Y nk . In this case (recall (9.13))

Pnk+1 − rn = Pnk − rn + Znk+1 − rn ≤ Y nk + Znk+1 − rn (9.17)

≤ (Y nk + Znk+1 − rn)+ = (Y nk + Unk+1)+ = Y nk+1. 2

We are about to finalize the statement (9.12). From (8.3), (9.14) and (9.15)

‖πn‖ =

n∑
k=1

|πnk | ≤
n∑
k=1

(Xn
k )− +

n∑
k=1

Y nk =
1

n

n∑
k=1

[
(ψnk )− + φnk

]
, (9.18)

where ψnk = nXn
k and φnk = nY nk satisfy ψn1 = −ζ1, φn1 = 0, and ψnk+1 = −(ψnk +nσn−

ζk+1)− , φnk+1 = (φnk +n(σn− rn)− ζk+1)+ for k ≥ 2. The last step would be to apply

Lemma A.1 for {φyn , k ≥ 1} and Lemma B.1 for {ψnk , k ≥ 1}, but not before both

sequences are modified to eliminate dependence on the parameter n (as was done in

Propositions 5.3 and 7.3). We omit the details. 2
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10. Concluding remarks

The paper presents a new queueing approach to study asymptotic behaviour of

sensor allocation problems. The method is robust and can be expanded in different

directions - we can introduce new allocation costs, allow sensor length to be random,

or try to find asymptotically optical solutions. In addition, one can further investigate

the reflection mappings (6.3), (8.2) and their applicability in related generalizations.

We lastly comment that Assumption 2.2 and Definition 2.1 can be relaxed. In

fact, the results of Theorem 2.1 will still hold for underloaded regime U characterized

by 0 ≤ lim inf nσn ≤ lim supnσn < 1, or overloaded regime O characterized by

1 < lim inf nσn. For the critical C case when nσn → 1, one can introduce a lower

intermediate regime nσn ≈ 1 − δn−β for δ > 0 and β ∈ (0, 1/2), bridging the critical

regime (corresponding to β = 1/2) down to the underloaded (β = 0); as well as the

upper intermediate regime nσn ≈ 1 + δn−β for δ > 0 and β ∈ (0, 1/2), connecting the

critical (β = 1/2) and overloaded (β = 0) regimes. The estimates for the interference

problem can be easily adjusted to include Θ(nβ) for the lower intermediate, and

Θ(n1−β) for the upper intermediate regimes. A similar situation, but with Θ(nβ)

and Θ(n1−β) interchanged, we believe holds for the coverage problem. In addition, a

super-overloaded regime nσn ≈ γn for some sequence γn ↑ ∞ will imply the estimate

of Θ(nγn) for the interference problem; the coverage problem will remain O(1).
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Appendix A. Random walk on a positive half-plane

For a sequence of real numbers {xk , k ≥ 1} define a new sequence {φk , k ≥ 0} as

φ0 = 0 , φk+1 = (φk + xk+1)+ , n ≥ 0. (A.1)

By induction (Lemma B1, p.197, [15]), φk satisfies for k ≥ 1

φk = sk − min
0≤r≤k

sr , where s0 = 0 , sk = x1 + · · ·+ xk. (A.2)

In fact, both representations (A.1) and (A.2) are equivalent.

Lemma A.1. Assume {x1, . . .} are i.i.d. random variables with E(x1) < 0 and E(x2
1) <

∞. Then the random process Φ = {φn , n ≥ 0} satisfies

sup
n

(
1

n

n∑
k=1

φk

)
<∞ , a.s. sup

n
E

(
1

n

n∑
k=1

φk

)
<∞ (A.3)

Proof. The first statement would follow from Theorem 17.0.1 of ([13], p. 422)

showing the result for a positive Harris recurrent chain with finite invariant probability

that has at least one moment. Let us make sure that all the conditions hold. The

recurrence of Φ has been established in Prop. 8.5.1. of ([13], p. 193), the Harris

recurrence (see the definition in [13], p. 199) follows from ψ-irreducibility of Φ (see

[13], Prop. 4.3.1 and the last paragraph of p. 87), and the Harris recurrence of the

petite set / atom at {0} ([13], Prop. 9.1.7 on p. 205), since, with probability one,

the chain visits {0} infinitely often. The latter claim, though very intuitive, follows

from the boundedness of the expected busy period -time between successive visits to

{0}, which can be found in ([15], Thm. 7 on p. 27, using their notation E(N̄) < ∞

if α < 0). This last reference also implies the existence of a finite invariant measure

(see [13], Thm. 10.2.1.(iii), p. 234). The properly normalized invariant measure then

becomes a stationary probability measure. Finally, the existence of moments for the

stationary probability is guaranteed by ([13], Prop 14.4.1, p. 352).
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For the second statement in (A.3), since φ0 = 0, we can almost surely (path-wise)

bound Φ from above by stationary Φ∞ = {φ∞k , k ≥ 0}, such that φ∞0 is already

stationary distributed. As a result, for each k ≥ 1 we have E(φk) ≤ E(φ∞k ) <∞ (since

the stationary distribution has at least one moment), completing (A.3). 2

Lemma A.2. (comparison) Assume we are given two sets of numbers {xk , k ≥ 1}

and {yk , k ≥ 1} satisfying xk ≤ yk for all k ≥ 1. Let Φx = {φxk , n ≥ 0} be defined as

in (A.1) and Φy = {φyn , k ≥ 0} be defined as φy0 = 0 , φyk+1 = (φyk + yk+1)+ , k ≥ 0.

Then Φx ≤ Φy, that is φxk ≤ φ
y
k for all k ≥ 0.

Proof. The case k = 0 is trivial. After that we apply the induction argument,

because having φxk−1 ≤ φyk−1 for a certain k ≥ 1 will necessarily imply φxk−1 + xk ≤

φyk−1 + yk, which immediately yields φxk = (φxk−1 + xk)+ ≤ (φyk−1 + yk)+ = φyk. 2

Appendix B. Random walk on a negative half-plane

Alternatively, for {xk , k ≥ 1} define Ψ = {ψk , k ≥ 0} as follows

ψ0 = 0 , ψk+1 = −(ψk + xk+1)− , k ≥ 0. (B.1)

Note that ψk ≤ 0 for all k ≥ 0. The above representation is equivalent to (see (A.2))

ψk = sk − max
0≤r≤k

sr , k ≥ 0. (B.2)

Lemma B.1. Assume {x1, . . .} are i.i.d. random variables with E(x1) > 0 and E(x2
1) <

∞. Then the relations (A.3) hold for Φ = −Ψ = (Ψ)−. 2

Proof. Note that −Ψ = (Ψ)− due to non-positivity of Ψ. Now, let Φ = −Ψ. Then

φk = −ψk = −sk + max
0≤r≤k

sr = s̃k − min
0≤r≤k

{s̃r}, (B.3)

where s̃k = −sk = (−x1) + · · · + (−xk). Relation (B.3) defines a random walk on the

positive half-plane, as described in Appendix A, with the i.i.d. increments {−xi, i =

1, . . .}. Since E(−x1) < 0, the statement of the lemma follows from Lemma A.1. 2

Lemma B.2. (comparison) For two sets {xk , k ≥ 1} and {zk , k ≥ 1} assume

zk ≤ xk for all k ≥ 1. Let Ψx = {ψxk , n ≥ 0} be defined as in (B.1) and Ψz =

{ψzk , n ≥ 0} be defined as ψz0 = 0 , ψzk+1 = −(ψzk + zk+1)− , k ≥ 0. Then Ψz ≤ Ψx

or (Ψx)− ≤ (Ψz)−. 2


