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Abstract

The problem of computing periods mords or finite sequences of symbols from a finite alphabet,
has important applications in several areas including data compression, string searching and pattern
matching algorithms. The notion gieriod of a word is central in combinatorics on words. There are
many fundamental results on periods of words. Among them is the well known and basic periodicity
result of Fine and Wilf which intuitively determines how far two periodic events have to match in order
to guarantee a common period. More precisely, any word with length atdeagt— ged(p, ¢) having
periodsp andq has also period the greatest common divisgs ahdg, ged(p, ¢). Moreover, the bound
p+ q — ged(p, ¢) is optimal since counterexamples can be provided for words of smaller length.

Partial words or finite sequences that may contain a number of “do not know” symbdisles
appear in natural ways in several areas of current interest such as molecular biology, data communication,
DNA computing, etc. Any long enough partial word wittholes and having periods ¢ has also period
ged(p, q). In this paper, we give closed formulas for the optimal bouhds, p, ¢) in the case where
p = 2 and also in the case wheges large. In addition, we give upper bounds wheis small and
h = 3,4,5,6 or 7. No closed formulas foL(h, p, ¢) were known except for the cases whére- 0, 1
or 2. Our proofs are based on connectivity in graphs associated with partial words. A World Wide Web
server interface has been established at

www.uncg.edu/mat/research/finewilf3

for automated use of a program which given a number of hokasd two periode andg, computes the
optimal boundL(h, p, ¢) and an optimal word for that bound (a partial wardvith / holes of length
L(h,p,q) — 1is optimal if p andq are periods of: butged(p, ¢) is not a period ot).
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1 Introduction

The problem of computing periods imords or finite sequences of symbols from a finite alphabet, has
important applications in several areas including data compression, string searching and pattern matching
algorithms. The notion operiod of a word is central in combinatorics on words. There are many funda-
mental results on periods of words. Among them is the well known periodicity result of Fine and Wilf [28]
which intuitively determines how far two periodic events have to match in order to guarantee a common
period. More precisely, any word with length at least ¢ — ged(p, ¢) having periodg andq has also
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period the greatest common divisorpéndg, ged(p, ¢). Moreover, the bound + g — ged(p, q) is optimal
since counterexamples can be provided for words of smaller length. This result has been generalized in
many ways. For instance, extension to more than two periods are given in [17, 19, 32, 43]. In particular,
Constantinescu and llie [19] give an extension of Fine and Wilf’s theorem for an arbitrary number of periods
and prove that their bounds are optimal.

Partial words or finite sequences that may contain a number of “do not know” symbaisles appear
in natural ways in several areas of current interest such as molecular biology, data communication, DNA
computing, etc [35]. Partial words are useful in a new generation of pattern matching algorithms that search
for local similarities between sequences. In this area, they are called “spaced seeds” and a lot of work has
been dedicated to their influence on the algorithms’ performance [16, 27, 34, 37, 38, 39]. In the case of
partial words there are two notions of periodicity: one is thgstrbng) periodand the other is that afeak
period The original Fine and Wilf’s result has been generalized to partial words in several ways:

First, any partial word: with h holes and having weak periogsq and length at least the so-denoted
I(h,p,q) has also periogcd(p, q) providedu is not (h, p, q)-special This extension was done for one
hole by Berstel and Boasson in their seminal paper [2] where the clddsof)-special partial words is
empty; for two or three holes by Blanchet-Sadri and Hegstrom [12]; and for an arbitrary number of holes by
Blanchet-Sadri [5]. The boundéh, p, ¢) turn out to be optimal. In [14], Blanchet-Sadri, Oey and Rankin
further extend these results, allowing an arbitrary number of weak periods. In addition to speciality, the
concepts of intractable period sets and interference between periods play a role.

Second, any partial word with i holes and having (strong) periogsq and length at least the so-
denotedL(h, p, q) has also perioded(p, ¢). The study of the bound5(h, p, ¢) was initiated in [40], but no
closed formulas were shown except for the cases whetd), 1 or 2. In this paper, we give closed formulas
for the optimal boundd.(k, p, q) in the case wherg = 2 and also in the case wheges large. We give
upper bounds whepis small andh = 3,4, 5,6 or 7. We obtain results concerning optimal partial words for
the boundL(h, p, q) (a partial wordu with h holes of length.(h, p, ¢) — 1 is optimal if p andq are periods
of u butged(p, ¢) is not a period of:). In addition, we have established a World Wide Web server interface
at

www.uncg.edu/mat/research/finewilf3

for automated use of a program which given a number of hiblaad two periode andq, computes the
optimal boundL(k, p, ¢) and an optimal partial word for that bound. Our proofs are based on connectivity
in graphs associated with bounds and pairs of periods.

Fine and Wilf's extensions in the framework of partial words are summarized in the following figure:

| Periods | Holes | Extended by \
2strong| O Fine and Wilf [28]
1 Berstel and Boasson [2]
2weak | 2-3 Blanchet-Sadri and Hegstrom [12]
h Blanchet-Sadri [5]

Shur and Gamzova [40]
2strong| h Blanchet-Sadri, Bal and Sisodia (this paper)

3strong| O Castelli, Mignosi and Restivo [17]
Justin [32]
nstrong| O TijJdeman and Zamboni [43]
Contantinescu and llie [19]
n weak h Blanchet-Sadri, Oey and Rankin [14]

The contents of our paper are summarized as follows: In Section 2, we review basic concepts on partial
words. In Section 3, we discuss the fundamental property of periodicity. We define thEI3gtcontaining
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optimal words withh holes of lengthL(h, p, ¢) — 1 for some period® andq, and discuss their properties

in the cases wherke = 0, 1 or 2. In Section 4, we describe a way of representing partial words with periods

p andq. There, we discuss connectivity in undirected graphs associated with such partial words. In Section
5, we give closed formulas for the optimal bourld$:, p, ¢) for the case wherg = 2, and in Section 6, for

the case where is large. In Section 7, we obtain upper bounds for smalFinally, Section 8 contains a

few concluding remarks.

2 Preliminaries

In this section, we review basic concepts on partial words.

Fixing a nonempty finite set of letters or afphabetA, finite sequences of letters are callwdrds
over A. The number of letters in a word, or lengthof «, is denoted byu|. The unique word of length
0, denoted by, is called theempty word A word of lengthn over A can be defined by a total function
u:{0,...,n—1} — Aandis usually represented@s= aga...a,—1 With a; € A. For any wordu, ui..j)
is thefactor of u that starts at positiohand ends at position— 1. In particularu[0..5) is theprefixof u of
length;j and we will sometimes denote it lpyref ; (u). Similarly, u[|u| — i..|u|) is thesuffixof « of length
i and we will sometimes denote it byff;(u). The set of all words oved of finite length (greater than or
equal to zero) is denoted bd*. It is a monoid under the associative operation of concatenation or product
of words € serves as the identity) and is referred to asftbe monoidgenerated byl. Similarly, the set
of all nonempty words oved is denoted byA™. It is a semigroup under the operation of concatenation of
words and is referred to as tfree semigrougenerated byl.

A partial word u of lengthn over A is a partial functiorw : {0,...,n — 1} — A. For0 < i < n, if
u(7) is defined, then we say thabelongs to thelomainof «, denoted by € D(u), otherwise we say that
belongs to theet of hole®f u, denoted by € H(u). A (full) word overA is a partial word overd with an
empty set of holes.

For convenience, we will refer to a partial word ovéras a word over the enlarged alphabkt =
AU {o}, whereo ¢ A represents a “do not know” symbol. So a partial wardf lengthn over A can be
viewed as a total function : {0,...,n — 1} — A, whereu(i) = ¢ wheneveri € H(u). For example,
u = abbobocbb is a partial word of length 9 wherB(u) = {0,1,2,4,6,7,8} andH (u) = {3,5}. We can
thus define for partial words concepts such as concatenation, etc. in a trivial way.

The length of a partial word over A is denoted byu|, while the set of distinct letters of occurring
in u is denoted byy(u). We denote the reverse afasrev(u). For the set of all partial words ovet with
an arbitrary number of holes we writ¢;. The setA} is a monoid under the operation of concatenation
wheree serves as the identity. K C A%, then thecardinality of X is denoted by X ||. For example,
if w = ababocbea, then|u| =9, a(u) = {a,b,c}, and|| a(u) ||= 3. For partial words, we use the same
notions of prefix, suffix and factor as for full ones.

If » andv are two partial words of equal length, then we say thastcontained inv, denoted by C v,
if all elements inD(u) are inD(v) andu(i) = v(¢) for all i € D(u). Partial words: andv arecompatible
denoted by T v, if there exists a partial word such that: C w andv C w. In other wordsyu(i) = v(7)
for everyi € D(u) N D(v). Note that for full words, the notion of compatibility is simply that of equality.

3 Periodicity

In this section, we discuss the fundamental property of periodicitystdng) periodof a partial wordu
over A is a positive integep such thatu(i) = u(j) wheneveri, j € D(u) andi = j mod p. In such a case,
we call u p-periodic. Another notion of periodicity for partial words is that of weak periodicityweak
period of u is a positive integep such thatu(i) = u(i + p) wheneveri,i + p € D(u). In such a case,



we callu weaklyp-periodic The partial wordzbbobbebb is weakly 3-periodic but is not 3-periodic. In this
paper we deal with periods, not weak periods.

First we introduce the concept of what we refer t@gareralor functional (partial) words These words
will be the ones that we are concerned with throughout this paperpiimary general word: of a certain
length and domain sdb(u) is the word of that length with letters unique to their position/ifu). To
form ageneral word certain periods are imposed onto a primary general word. A periedmposed by
transforming the general word into a matrix with columns. ., p — 1 which represent the congruence
classes modulp. In each column, the letter of the first non-hole position is placed into each of the other
non-hole positions of the column. To impose subsequent periods, every time a letter must be changed, all
other instances of that letter throughout the word must also be changed.

Example 3.1. Suppose we want to impose periods 4 and 7 onto a partial word of length 14 with holes in
positions 2 and 11. We start with the warbbcde f ghijokl, form it into a matrix with 4 columns and make
the necessary changes:

b

Sl e
Sl O
S Q@ o
e 2 &
o~ . O O
Sl O
S Q@ o
e Q &
S oS o
=L O
S @ o
Q@ 2 2 2
S o O O
Y
S Q@ o
e & & &
S S o
- 0
S O 0

e
7
k1l a b

We refer to the columns of these matricestagasses We then take the resulting wotdocab f cab foab
and impose the period 7:

a

abocabf_)aboaabf_)aaoaaaf
c a b f o a b a a b f o a b a a a f o a a
a a ¢ a a a a

—

a a a a < a a

Each of the columns is &class The general word with periods 4 and 7 of length 14 and holes in positions
2 and 11 isasacaaaaaaaacaa (UP to a renaming of letter).

The next remark justifies the results of this paper.

Remark 3.2 ([41]). There exists a smallest integéfh, p, q), or the optimal boundfor periodsp, ¢ and
number of holes:, such that if a partial wordu with ~ holes has periodg,q (1 < p < ¢) and |u| >
L(h,p,q), thenu has periodgcd(p, ¢). In other words L(h, p, q) is alower boundand there exists a partial
word v with h holes of length’.(h, p, ¢) — 1 that has period® andg, butv does not have perioged(p, q).

Note that the notion of optimal bound makes sense onlydfp, ¢) # p.

The essential question is how long the partial warshould be? Fine and Wilf’s theorem [28] states
that length forh = 0 which isp 4+ ¢ — ged(p, ¢). While the bound + ¢ — ged(p, q) is a lower bound, it
has also been proved to be an upper bound and thus the optimal bound, that is, there exists a full word
of lengthp + ¢ — ged(p, ¢) — 1 that has periodp andg, but does not have periagtd(p, ¢) [18, 36]. For
example, the general worthbaaabaa with periods 4 and 7 of length + 7 — ged(4,7) — 1 = 9 does not
have period 1. In the notation of Remark 320, p, q) = p+ q — ged(p, q). We are interested in this paper
in both upper and lower bounds for the lengthuofhenh > 0.

Throughout this paper we generally restrict ourselves to cases where pedodg are co-prime, for if
ged(p, q) > 1, then the problem can be reduced to a case where the two periods are co-prime. Indeed, if
is a partial word with periods andg such thaged(p, ¢) = d > 1, thenu can be replaced by a set of partial

wordsug, . . ., uqg—1 whereu; = u(i)u(i + d)u(i + 2d) ... has co-prime period§ and4. So eachy; has
period 1 if and only ifu has periodi.
Now let



Whp.q = {w | w has period® andg, || H(w) ||= h and|w| = L(h,p,q) — 1}

We call the elements oV, ,, , optimal All words v from Remark 3.2 form a subset ¥V}, , , which we
denote here by}, ,, 4, that is,

Vhpg = {v | v € Wi, andv does not have perioded(p, ¢)}
The setPER,, andVPER,, are defined as follows:

PER, = Ugcd(p,q):l Wh,p,q
VPER;, = Ugcd(p,q)zl Vh,p,q

It turns out thatVPER, has remarkable combinatorial properties [3, 20, 21, 22]. In the next three
sections, we discuss propertiesfRiER;, andVPER,, in the cases wherke = 0,1 or 2.

3.1 The zero-hole case

The following result is a well known property &fER,.
Theorem 3.3 ([18]). The setV) ,, , contains a unique wore (up to a renaming) such thdx(w)|| = 2.
The setYPER has a nice characterization, which is a recurrence relation, stated as follows.
Proposition 3.4. Letw € Vg 4.
o If g —p=1,thenw = a? 'ba?~! (up to a renaming).

o lfg—p>1,thenw = vsuff|v|,q+p+2(v) wherev € Vo, min(p,q—p),max(p,g—p)-

Proof. First, suppose that—p = 1, orq = p+ 1. The wordu, = a?~'baP~! has periodp andp + 1, while
it does not have periotl Also |u| = p + ¢ — 2, and thusw = « (up to a renaming).

Now, suppose thai — p > 1. We induct on the difference between the two peripdend ¢ where
w € Vo pq- Setp =min(p', ¢ —p’) andg = max(p’, ¢’ —p). If p’ < ¢’ —p/, thenp =p’ andg = ¢ — p'.
Here letu = wsuff,, (w) = wsuff,(w) and show that: € Vy v v = Vo ppiq. If 0’ > ¢ —p', thenp = ¢’ —p’
andg = p'. Here letv = wsuff,/ (w) = wsuff,(w) and show that € Vy ,y o = Vo,¢,p+¢-

Sinceged(p, q¢) = 1, we haveged(p, p + ¢) = 1 andged(q,p + q) = 1. We show the membership for
u (the one forv follows much in the same way). Note that = p + (¢ + p) — 2. Also, u does not have
period 1, sincev does not.

We first show that, has periodp. Leti € [p + ¢ — 2..2p + ¢ — 2) be a position inu. Since both
suff,(u) = suff,(w) andpref,,, ,_5(u) = w, u(i) = w(i — p) = u(i — p). Thus, each position ofuff, (u)
belongs to they-class of its corresponding positionin Sincew has period, v has periodp. We now
show thatu has periodh + ¢g. Since|u| = p + (¢ + p) — 2 < 2(p + q), this is equivalent to showing that
fori € [p+q..q+2p —2), u(i) = u(i — (p + ¢)). From above, we see thati) = u(i — p). Also, since
pref,. . o(u) = w andw is ¢g-periodic andi — p € [q..¢ + p — 2), we haveu(i — p) = u(i —p — q) =
u(i — (p+ q)). Thus,u is (p + q)-periodic. O



Example 3.5. Using this relation, we find the word with periods 9 and 13IRER (herewo 4 € Vop.q):

wo,4,9 wo,4,9[2..11)
(9,13) aaabaaabaaaabaaabaaa
| 1
wo,4,5 Ww0,4,5[3..7)
(4,9) aaabaaabaaa
l 1
(4,5) — aaabaaa

The words ofYPER, also have another well known property which will be used later and which we
prove here for sake of completeness.

Proposition 3.6. If v € VPER, thenv is a palindrome.

Proof. This proof is similar to that of Proposition 3.4 in that we induct on the difference between the two
periodsp andq wherev € Vp ;4.

First, if ¢ = p + 1, thenv = a?~'baP~! which is a palindrome.

Now, assume for some periogndg thatv € Vo, 4 is @ palindrome. We must show tha Vo p+4
andw € Vy 4,14 are palindromes.

If w € Voppiq thenu = vsuff,(v). Letw = rev(u) = rev(vsuff,(v)) = rev(suff,(v))rev(v) =
rev(suff,(v))v. Nowrev(suff,(v)) = pref,(u) because is a palindrome angref,,(u) = pref,(v). Also,
v[p..p+q—2) = v[0..¢ — 2) sincev is p-periodic, thusuff, »(v) = pref,_,(v) . Sosuff,_s(v)suff,(v) =
pref,_o(v)suff,(v) = v. Thusu = v’ andu is a palindrome.

Now if w € Vy g p+q, thenw = vsuff, (v). Letw” = rev(w) = rev(vsuff,(v)) = rev(suff,(v))rev(v) =
rev(suffy(v))v. We see thatev(vp — 2..p + ¢ — 2)) = w[0..q) becausev is a palindrome. Also,
vlg..p + q — 2) = v[0..p — 2) sincev is g-periodic, thussuff,_»(v) = pref,_,(v). So

suff, 2 (v)suff,(v) = pref,_,(v)suffy(v) = v
Thusw = w’ andw is a palindrome in this case as well. O

Corollary 3.7. If w is the unique element 8% ;, , of lengthp + ¢ — 2, thenpref,_,(w) is a palindrome.

Proof. Sincew is g-periodic,w[0..p — 2) = w(q..p + ¢ — 2), and sopref,,_,(w) = suff, 2(w). Alsow is
a palindrome by Proposition 3.6, so

pref,_o(w) = rev(suff, 2(w)) = rev(pref,_,(w))

Hencepref,, ,(w) is a palindrome. O

3.2 The one-hole case

We now turn our attention to the case of partial words with one hole. We start off with a theorem which
gives the optimal bound for such partial words.

Theorem 3.8 ([2]). The equalityL(1, p,q) = p + ¢ holds.

Before we give our result concerning partial words with one hole, we need a definition.



Definition 3.9. Letp, ¢, andr be integers satisfying < p < ¢, ged(p,q) = 1, and0 < r < p+q — 1.
Fori # ¢—1and0 < i < p+ ¢ — 1, we define the sequenceiaklative top, ¢, andr asseq,, , (i) =
(i9,01,92, - - -, in—1,1n) Whereig = i and

o ifre{p—1,...,q—1},theni, =q¢—1
o ifi=r, theni, =q¢—1
e ifiZrandré¢ {p—1,...,q— 1}, theni, = rori, = ¢ — 1 (whichever comes first)
eifr¢{p—1,...,g—1},thenforl <j<mn,i; #r
o forl <j<m,ij¢{i,q—1}
o for1 < j <n,i;is defined as
i-:{ij_l—i_p if i1 <qg—1
ijo1—q if ijo1 >q—1
We defineeq,, , (¢ — 1) = (¢ — 1).

The sequenceq,, , (i) gives a way of visiting elements §6, . .., p+q—2} starting ati. For example,
if p=4,q=11,andr = 5, then

sedy115(3) = (3,7,11,0,4,8,12,1,5,9,13,2,6, 10)

Notice thatr € {p—1,...,¢— 1} and we have that all sequences are suffixes of this longest sequence. Now
consider the example whepe= 4, ¢ = 11, andr = 2. Herer ¢ {p — 1,...,q — 1} and we have

SGQ4,11,2(2) = (2,6,10)
Seq4711’2(3) = (3, 7,11,0,4,8, 12,1,5,9, 13,2)

Note thatseq, 1, »(3) is the longest sequence ending with 2 aag, ;, ,(2) is the longest sequence ending
in 10. All other sequences are suffixes of these two.
The following theorem gives a uniqueness result for 8agh, , with co-primep, g.

Theorem 3.10. 1. Given a singleton setf satisfyingH C {0,....p+q¢—2}\{p—1,...,q — 1},
Wi p.q CONtains a unique general word(up to a renaming) such thgiv(u)|| = 2 and H (u) = H.

2. Given a singleton sé{ satisfyingd C {p —1,...,q¢— 1}, Wi, , contains a unique general word
such that|a(u)|| = 1andH(u) = H.

Proof. The proof is similar to the one of a result in [4]. Lete a partial word with one hole of length
p + ¢ — 1 having period® andq. Setq = mp + r where0 < r < p andp = nr 4+ s where0 < s < r. Let
ip+ 7 where0 < j < p be the hole. The proof is divided into six cases:f{H 1andj =p—1;(2)r =1
and0<j<p—-1;3)r#landj=p—-1,@4)r#1land0<j<p-—1landj —r=-1;(5)r # 1and
0<j<p-—-landj—r>—-l;and(@B)r#1land0<j<p—landj—r < —1.



We treat here the fifth case, the others being handled similarly. Note #hat(otherwiseged(p, q) # 1
sincep = nr andq = mnr + r). Also, ged(r, s) = 1 andi < m. In addition, ifs # 1, thens is not a factor
of r. Setj = n'r + s' where0 < s’ < r. Thenseq,, , ;,;(ip + j) =

j—rp+j—r,...,(m=Up+j—r,q+j—2r...,
j—n'r,p+s,....mp+s,q+p+s —r,

p+s —r2p+s —r,....mp+s —rqg+p+s —2r...,
p+s —(n—-1r2p+s —(n—1r,...

mp+s —(n—1r,qg+s+s,s+s,...,
(s+s)modr,...,p+(s+s)modr—r,...,
(2s+s)modr,...,p+ (N=1)s+s)modr—r,...,
(Ns+s)Ymodr,p+r—1,....(m—p+r—1,4q—1)

where(Ns+s') mod r = r—1forsomed < N < r. Ifip+j € {p—1,...,q—1},thenseq,, , ;,  ;(p—1) =
sedy, g.ip+; (P + (Ns+s") mod r —r) =

(p+(Ns+s)modr—r,...,

(N+1)s+s)modr,....p+ (N+1)s+s)modr—r,...,

(r—=2)s+s)modr,....,p+ ((r—2)s+s)modr—r,...,

(r—1)s+s)modr,..

+(n—n)rp+]+(n—n)r ,
—1)p+3+(n—”)T7Q+]+(n—”/—1)7%

j+m—n"—1)r

j+rptitr...,(m—1p+j+rq+y,

G+ ip+g,...)

(
(
(
j
(m

Here, we have that is unary. Ifip +j ¢ {p — 1,...,q — 1}, thenseq,, , ,,,. ;(p — 1) ends atp + j. So we
can set all the letters of the first sequence (exéept;) to say,e’s and all the letters of the second sequence
(exceptip + j) to say,b's and see that is binary. O

Corollary 3.11. If uw € Vy ,, 4, thenH (u) C {0,...,p+q¢—2}\{p—1,...,¢q — 1}. Thus, the seV, ,,
contains2(p — 1) partial words (up to a renaming).

In other words, there ar&(p — 1) partial words (up to a renaming) with one hole of length ¢ — 1
having period® andgq but not perioded(p, q).
3.3 The two-hole case
The case of two holes is stated in the following result.
Theorem 3.12 ([40]). The equalityL(2, p, q) = 2p + q — ged(p, q) holds.
The following is a conjecture aboWtPER;.
Conijecture 3.13. The membership € V,,, , holds if and only if

Hu)={p—-2,p—1}orHu) ={q+p—1,g+p—2}or H(u) = {p—2,¢+p— 1} when
qg—p=1.

H(u) ={p—-2,p—1}orH(u) = {¢g+p—1,q+p—2}or Hu) = {p—2,g+p— 1} or
H(u)={p—1,9+p—2} wheng —p > 1.



Figure 1: A graph representing a word

4 Representation of partial words

A representation of a partial word with periodsp andq is as an undirected graph,, ,(u) = (V, E)
defined as follows:

e The vertex set is {0, ..., |u| — 1}, each vertex representing a positioruof

e The edge sel is £, U E, where

E, = {{i,i+np}|n>0andi,i+npecV}
E, = {{i,i+ng}|n>0andi,i+ngeV}

When we refer to theé” p-class(respectively;i” ¢-clasg, we mean the complete subgraph@f, ;(u)
consisting of exactly the members of tifé residual class modulp (respectivelyg). We refer to ag-
connectionshe edges due to the peripdandg-connectionshe edges due to the perigdAn edge is both
ap-connection and a-connection if the positions in the word corresponding to the vertices that it connects
are a common multiple qf, ¢ apart.

Example 4.1. The graph pictured in Figure 1 represents a word of length 13 with peniogs3 andq = 7.
Thep-connections are pictured in thinner lines than fheonnections.

We say a graph is-connectear hask-connectivityif it can be disconnected with a suitable choicesof
vertex removals, but cannot be disconnected by any choige-of vertex removals. The graph of Figure 1
is 4-connected.

We are interested in these associated graphs because they provide a way to rephrase our problem in terms
of the connectedness of a graph: a word has period 1 if its graph is connected. Similarly, if the removal of
vertices corresponding to hole positions results in a graph with multiple connected components, then the
graph does not have period 1.

We end this section with a generalization@f, ;) (u). We give a few definitions that help us formalize
some of the graph theoretical arguments that will appear in some of our proofs.

Definition 4.2. The(p, q)-periodic graph of sizé is the graphGG = (V, E) with bijectionf : {0,1,...,] —
1} — V such that

{f@@), f(j)} € Eifand only ifi = j mod pori = j mod ¢

9



For a vertexv in V, f~1(v) will be referred to as the index af and f as the indexing function «f.

Thus, the(p, q)-periodic graph of sizé can be thought to represent a word of lengthith periodsp
andg, with the vertices corresponding to positions of the word, and the edges corresponding to equalities
between indices’ letters of the word forced by one of the periods. Therefore, (i theperiodic graph of
sizel is connected, then a word of lengtlvith periodsp andg is 1-periodic (whenged(p, ¢) = 1). Indeed,
there exists a path (a chain of equalities) between every pair of vertices, thus each position’s letter in the
word must be equal to every other position’s letter.

Definition 4.3. A vertex cut ofZ = (V, E) is a subset of/, V/, such that the removal df’ disconnects
G. A k-vertex cut is a vertex cut of size If G has at least one pair of distinct nonadjacent vertices, the
connectivitys(G) of G is the minimunk such that& has ak-vertex cut; otherwise;(G) =|| V || —1.

Note that a hole in a partial word of length/ with periodsp andq corresponds to the removal of the
associated vertex from thg, ¢)-periodic graph of sizé Thus our search fak(h, p, ¢) (whenged(p, ¢) =
1) can be restated in terms of connectivify(h, p, ¢) is the smallest such that thep, ¢)-periodic graph of
lengthi has connectivity at leagt+ 1. Referring to Figure 1L(3, 3,7) = 13 sincel3 is the smallest such
that the(3, 7)-periodic graph of length has connectivity at least 4.

Definition 4.4. LetG = (V, E) be the(p, q)-periodic graph of sizé with indexing functionf. Then the
p-class of vertexf (i) is the subset o', V;, such thatV; = {v € V : f~1(v) =i mod p}. Ap-connection
is an edge{vy, v} € E such thatf~!(v1) = f~!(v2) mod p. If an edge{vy, v} is a p-connection, then
v1 andwvs are considereg-connected. Similar statements hold §eclasses ang-connections.

To illustrate the above definitions, take= 3, = 7 andl = 13. Then the(3, 7)-periodic graph of
size 13 isG = (V,E) whereV = {uy,...,ui2} and where the indexing functiofi of G is given by
the bijectionf : {0,1,...,12} — V with ¢ — u;. Here{u;,u;} € E if and only if i = j mod 3 or
i = 7 mod 7. For example{us,u7} € E since4 = 7 mod 3. The3-class of vertexus is {ug, us, us, u11}.
The edge{us, us} € E is an example of a 3-connection singe! (us) = 5 = 8 = f~!(ug) mod 3, and
sous andug are 3-connected. The sBt = {uy, u4, ug, u12} is a 4-vertex cut of7. It can be checked that
G has no vertex cut of size smaller than 4, and so the connectiity of G is 4. Note thafl”’ does not
contain a vertex with only 3-connections.

We end this section with a lemma that proves the intuitive idea that a minimum vertex cgpof)a
periodic graph does not contain a vertex with opfgonnections. Using this lemma, we can give a new
proof of Corollary 3.11.

Lemma 4.5. Assume that thép, ¢)-periodic graph of sizd, denotedG = (V, E), has ak-vertex cut
V' C V. If v € V' has no g-connections, théf \ {v} is a(k — 1)-vertex cut of5.

Proof. Supposéd’’ is ak-vertex cut ofG as stated in the lemma. Théh= V' U V; U V, whereV; andV;
are disjoint and nonempty sets, ande V; andvy € V, imply {vi,v2} ¢ E. Thusifv; € V4 andvy € Vs,
thenv; andwv, are notp- or g-connected.

Suppose there exist € V; andv, € V5 such that{vy,v} € F and{v,v2} € E. Sincev has no
g-connectionsy; andwv arep-connected, and andwv, arep-connected. Them; andv, arep-connected,
and{v;,v2} € E which is a contradiction. Thus if for; € Vi, {v1,v} € E, then{vy,v} ¢ FE for all
vy € V5, and vice versa.

If neither {vy,v} € E nor{uvy,v} € E foranyv, € Vi, vy € Vo, or {vy,v} € E for somev; € V7,
thenV = (V' \ {v}) U (Vi U {v}) U V2 whereV; U {v} and V> are disjoint and nonempty sets, and
wy € Vi U{v} andwy € Vo imply {wi,wy} ¢ E. If, on the other hand{vq, v} € E for somevy € Vs,
thenV = (V' \ {v}) UV; U (V2 U {v}) whereV; andV> U {v} are disjoint and nonempty sets, and € V;
andws € Vo U {v} imply {w1, w2} ¢ E. Either way,V’\ {v} is a(k — 1)-vertex cut of G. O
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Other proof of Corollary 3.11.

Proof. Supposew € V,,,. LetG = (V, E) be the(p, q)-periodic graph of siz¢u| = p + ¢ — 1 with
indexing functionf whose domain i§0,...,p + ¢ — 2}. We can show that the-classes of vertices in
{f(0), f(1),..., f(p—2)} each have 2 elements, and thelasses of vertices ifif (p — 1),..., f(¢— 1)}
each have 1 element. Thus the set of verticek d@fiat have;-connections is the union gfclasses with 2
elements, which i§/(0), f(¢)} U{f(1), flg+ D} U---U{f(p—2), f(p+q-2)} = F{O,...,p+q~
23\ {p—1,...,9—1}). Then, by Lemma 4.5 (u) C {0,...,p+q—2}\{p—1,...,¢—1}. O

5 Optimal bounds forp = 2

We now give the optimal bound for the case where 2.
Theorem 5.1. L(h,2,q) = (2n+ 1)g + m + 1 for h = ng + m, where0 < m < q.

Proof. Throughout the proofy = 2. First, let us show tha2n + 1)q + m + 1 is a lower bound. Let be a
word of length(2n + 1)g + m + 1 with periods 2 and and number of holed = ng + m. We must show
that« has periodl (note thatged(p,q) = 1). Thus, this is equivalent to showing that the ¢)-periodic
graph of sizg2n + 1)q + m + 1 has connectivity at least+ 1, or that a vertex cut of such graph must have
at leasth + 1 elements.

LetG = (V, E) denote such a graph. Note tifahas a particular structure. Indeed, each vertex belongs
to one of two complete subgraphs representingpticasses of;, namely the subgraph with vertex set the
p-class of vertex) (the vertices with even indices) and the subgraph with vertex setttess of vertext
(the vertices with odd indices). Eaghconnection is contained within one of these subgraphs. However,
there are a number g@fconnections (not all) across theselasses. Note that in order to disconnégtall
such interp-classg-connections must be broken.

Thus a lower bound on the vertex connectivity(dfs the sum of the least number of vertex removals
required to break all intep-classg-connections within g-class over all-classes. Let us then consider a
singleg-class, denoted’. We can think ofX as being the union of two sets, namély= X N (p-class of
vertex 0), andZ = X N (p-class of vertex 1). Each elementlnis g-connected to every other element in
X. However, theg-connections withirt” or Z are alsgp-connections; thus the interclassg-connections
of X are exactly those connections betwé&éandZ. Since every element &f is g-connected with every
element ofZ, either all ofY" or all of Z must be removed fronds in order to break all intep-classg-
connections withinX. Also, if all of Y or all of Z is removed from7, then all interp-classg-connections
within X are broken. Note thak = {f(i), f(i + q), f(i + 2q),...} wherei € {0,1,..,q — 1} is the
smallest index inX, and f is the indexing function of7. Sinceq is odd, the terms of the sequenice + g,

i + 2gq,...alternate between odd and even for integefhus, sinceY” contains only vertices with even
indices andZ contains only vertices with odd indices, the sizes'ond Z are at most one apart. Then
L@J < ||Y|l and {@J < || Z]] and at Ieast{@J vertices must be removed from eagitlassX in
order to disconnect the gragh

From the size of7, |V| = (2n + 1)¢ + m + 1, we see that there areg-classesn + 1 of which
have2n + 2 elements ang — (m + 1) of which have2n + 1 elements. Each of theclasses witten + 2
elements require at Iea§?”2—+2j = n + 1 vertex removals to break all intgrclassg-connections within
the g-class, and each of theclasses witl2n + 1 elements require at Iea?f”Q—“J = n vertex removals to
break all interp-classg-connections within the-class. Thus, inallgm +1)(n+ 1) + (¢ — (m + 1))n =
mn+m+n+1+ng—nm-—n=ng+m+1=h+ 1vertex removals are required to disconnggt
thus the connectivity of7 is at leasth + 1.
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Now, let us show that2n + 1)q + m + 1 is an upper bound and thus the optimal bound. Consider
the wordu = o™w(o%w)™ wherew is the unique element ity , of lengthg. We will show thatu is an
optimal word. Note thatu| = (2n + 1)q + m, u hash holes, and since is not 1-periodic, we also have
thatw is not 1-periodic. It is easy to show thais 2- andg-periodic. O

6 Optimal bounds for large g

In this section, we present our main result which provides a formula for the optimal dging, ¢) when
q is large enough.
Define
p(%) ifhiseven
z(p, h 2
(p.h) = {p (1) if his odd

and
(h,p,q) = p(%52) +q—ged(p,q) if hiseven
’ p (") + 4 if 1 is odd

Theorem 6.1.1f ¢ > x(p, h), thenL(h,p, q) = y(h,p, q).

The proof of Theorem 6.1 is split into two parts: the part th@t, p, ¢) is indeed a lower bound, and the
part that this bound is optimal. The former is provided first.

Lemma 6.2. If ¢ > z(p, h), theny(h, p, q) is a lower bound.

Proof. We want to show that a partial wordwith periodsp, ¢ andh holes of length greater than or equal
to! = y(h, p,q) also has periodcd(p, q).

Suppose thated(p, ¢) = 1. First leth be odd. Then we have thatp, h) = p (“L). Soq > 2(p, h)
implies thatg = p (“+!) + k for somek > 0. It is enough to show that ifu| = {, thenu has periodl
because ifu| > [, then all factors of of length! would have period 1, and soitself would. To see this,
supposeu| = [ + 1. The prefix ofu of length! has period® andg, and so it has periotl. The same holds
for the suffix ofu of lengthl. If « starts or ends witk, then the result trivially holds. Otherwise,= au’b
for someu’ of length! — 1 and somes,b € A. There exists an occurrence of the letien ' because
D(u') # () by the way! is defined. The equality = a hence holds. Thus, by induction, any wardf
length> [ satisfying our assumptions isperiodic. Now, sinceu| = p (%) +qgandqg =p (%) + k,
we have thatu| = (h+ 1)p+ k = 2q — k.

Consider the graph af. Since|u| = 2¢—k, positions ofu within {¢—k,q—k+1,...,¢—2,¢q—1} have
nog-connections, and all other elements within. . . , g— k— 1} have exactly one-connection. Therefore,
the number of positions af which have exactly ong-connection igu| — k = (h+ 1)p. Thus, eaclp-class
has exactlyh + 1 elements with exactly ong-connection and all other elements of fhelass have ng-
connections. In eact” p-class, h“ elements have-connections with elements in tlig + ¢) mod p)"p-
class ancﬁ elements have—connections with elements in tlig — ¢) mod p)*"p-class. Thus, there are at
Ieast% disjoint cycles in the graph that visit aliclasses and contain all the vertices wjthonnections. In
order to buiIdthl such disjoint cycles, pick the smallest vert@xin the0?" = i p-class that has not been
visited and that has @&connection with an eIememh of thez p-class. Then VISI'[ the vertex; followed
by the smallest nonvisited vertex of thati}" p-class. Go on like this visiting vertices until you visif, in
the0*" p-class. Then return tey. Such cycle has the formy, wi, vi, w2, va, . .., Wp_1, Vp—1, Wy, vo. AlSO,
for each such cycle, every element of the graph either belongs to the cycl@,—mﬁmected to a member of
the cycle. There are two types of disconnections possible: one that isolates a set of vertices with elements
in different p-classes, and one that isolates a set of vertices withmtlass. Thus in order to disconnect
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the graph, either aﬁg—l cycles must be disconnected or &al- 1 g-connections of a single-class must be
removed. The latter case clearly takes more thdwles, and since two holes are required to disconnect a
cycle, we see that at ledstt 1 holes are required to disconnect the graph in the former case. Thus the graph
of u is connected and is 1-periodic.

Now, leth be even. The idea of the proof in this case is similar to that of an odd numbers of holes. When
h is even, we must disconne@tcycles that each requires two holes to break and one path that requires one
hole to break. Hence we requiket 1 holes to disconnect the graph of length, p, q).

Supposescd(p, ¢) = d # 1. Also suppose thdt is even; the odd case follows in much the same way.
Thus|u| = p (£2) + ¢ — d. Consider the set of partial words, . . ., ug—1 Whereu; = u(i)u(i + d)u(i +
2d) . ... Each of these words has perioflsind 2 which are co-prime. So if eachy had period 1, then the
word u has periodi. Eachu; has length (%) + 2 — 1 and at most holes. Thus, by the proof given of
this theorem for the casgd(p, q) = 1, eachu; has period 1, thereforeis d-periodic. O

Lemma 6.3. If ¢ > z(p, h), theny(h, p, q) is optimal.

Proof. We will prove this in the case wherged(p,q) = 1 by giving a word withh holes of length
y(h,p,q) — 1 which isp-periodic and;-periodic but nogcd(p, ¢)-periodic.
First, supposé is even. Consider the word = (prefp,z(w)oo)gw wherew is the unique element in

Vo,p.q Of lengthp + ¢ — 2. We will show thatu is an optimal word. First, note that| = 2 +p 4+ ¢ — 2 =
y(h,p,q) — 1, u hash holes, and since is not 1-periodic, we also have thais not 1-periodic. Now, note

thatw is p-periodic. Also,pref, _,(w)oo has lengthp and sincepref,, ,(w)oo C pref,(w), we see that

is p-periodic. Since; > x(p,h) = %, w is of lengthg +p — 2 > % + p — 2. In order to show that is

g-periodic, it is enough to show that
pref%pﬂ)iz(u) 1 suﬁ";%ﬂ)iz(u)

h
2

Now, pref%pﬂgﬂ(u) = (pref,_s(w)oo)2pref, ,(w), and

Suﬁ‘%+p_2(u) = suff%+p_2(w) = pref%ﬂ_?(w)

sincew is a palindrome by Proposition 3.6. Sineés p-periodic,pref s, o (w) = (prefp(w))%prefp,z(w).
2
The desired compatibility relationship follows.
h—

Now, supposé: is odd. We can verify that an optimal word in this case is (prefp_Q(w)oo)leo.
[

In the case of no hole, we see thdp,0) = 0 and the formula presented in Theorem 6.1 agrees with
L(0,p,q) = p+ q — ged(p, q). The case of one hole yieldgp, 1) = p and once again, our formula gives
L(1,p,q) = p + q which corresponds to the expression given in Theorem 3.8.

We end this section with the following result.

Theorem 6.4.1f u € V}, ;, , andq > z(p, h), then
H(U) - {0,,x(p,h) —1}U{|U| _$(p7h)77|u‘ _1}

Proof. This proof is similar to the one provided for Lemma 4.5. In that proof we mentioned that the way to
disconnect a graph was to place holes in positions gritbnnections. The same idea holds here. [

7 Upper bounds for smallg

In this section, we investigate the bounbi§h, p, q) whenh > 2 andq < z(p, h). The wordwy, , will
denote the unique element¥y ;, , of lengthp + ¢ — 2 over the alphabefa, b} starting witha.
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7.1 The case of three holes

Define
2g+p fqg—p<¥§

2(3,p,q) = | 4p iff<qg—p<p
2p+q fp<qg—p

Theorem 7.1. The bouna:(3, p, ¢) is an upper bound.

Proof. Consider the word given by

’ v ‘ if
a2(@=P)~1oqp=1-(aP)oq (=P ~Toqp~Tper—1 [ ¢ — p < 2
aP~LoaP~1=(a=P)oq(a—P)—Toqp—Tpap—1 bcg-p<p
pref,, o (wo,p,q) 00W0,p,q© p<gqg-—p

The case wherg < ¢ — p was proved earlier. For the other two cases, we can show featptimal or that
v has three holes, has lengitB, p, ¢) — 1, is p-periodic, isg-periodic, and is not-periodic. For instance,
if £ < ¢—p < p, then thep-periodicity of v can be checked by noticing that thés aligned with the
underlinede’s when we build rows of length:

aP~loaP—1=(a=P)oqla-P)~1oqp—1pgr—1
Note that the factor between these underlined positions has lpngth and that the factos?—'—(4—?) s

defined since — 1 — (¢ — p) > 0 due to the restrictiog — p < p. Similarly, theg-periodicity ofv comes
from the fact that thé is aligned with the following underlined when we build rows of length:

Note that the factor preceding this underlinetias lengtt8p — ¢ — 1 which is smaller thary due to the
restrictiong — p > £. O
7.2 The case of four holes

Define
q+3p—ged(p,q) ifg—p<§
z(4,p,q) = { ¢+ 3p ifS<qg—p<p
q+3p—ged(p,q) fp<qg-—p
Theorem 7.2. The bouna:(4, p, ¢) is an upper bound.

Proof. Consider the following words:

’ v ‘ if
Wo,q—p,p—(g—p) *CW0,p,q*°W0,9—p,p—(q—p) q—p<}
(prefp,2(w07p,q)<><>)2wo7p,q P<qg—p

Using Proposition 3.4, we can show that the first item-periodic and;-periodic. Moreover, it hag holes,
has lengthy + 3p — 2, and does not have peridd It is therefore optimal when — p < §. Similarly to the
proof of Theorem 7.1, the other two items can be shown to be optimal. O
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7.3 The case of five holes

Define

Theorem 7.3. The bouna:(5, p, ¢) is an upper bound.

Proof. The words given below are optimal:

3g+p ifqg-p<¥t
5p ff<qg-—p<?t
5 if2<qg—p<?2
Gopg) =9 21T
3q if 5 <qg-p<p
6p fp<qg—p<2p
g+3p f2p<qg—0p
’ v ‘ if
a3(@—P)—1oqp—1-2(a—p) 5 q2(a—p)—1,,
aP~1=(a-p) o q(a—P)—1oaqp—1pgr—1 g—p<?

aP~LoaP—1720a-p) 5q2(a—p) -1
aP~17(a=P) o q(a-P)—1oqp—1pp—1

aP~1=(a=P) o qa—P—LoqP—Tpap—1s

a?P—leqp—1-(a—p) 5qP—1

aP—17200=(a=P)) o qP—LoqP—1-(a-p)
al@—p)—1gqp—1pp—154(a—p)—1

aP~Loq@p—D—(¢-D)oq(a—P)—p—Tqp—1
oaP~lbaP~loaP~!

7.4 The case of six holes

Define

(Pl“‘?fpfz(wO,p,q)<><>)2U’0,1D,q<> 2p<q—p
5p ifqg—p<f
4q fe<qg—p<?t
6p fE<qg—p<p

Z(Gap7Q): . 2 3p
2q + 2p fp<qg—p<=
D if%p <qg—p<2p
q+4p—ged(p,q) if2p<q—p

Theorem 7.4. The bouna:(6, p, ¢) is an upper bound.

Proof. The words given by
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can be checked to be optimal.

7.5 The case of seven holes

Define

’ v ‘ if
aP—17-3(a=D) ,¢3(a—P) 1 qp—1-2(q—P)
a2a=P)~loqp=1=(4-P)6q(a=P)~Logp—1pgr=1 | g — p < 2
a2(@=pP)—1oqp—1=(a-P) o0 (a—P)—Lqp—1
aP~LogP—1=(a=D) o qa—P—Lyqp—1pap—1
0a? P~ logP~1-(a7P)oqp—1 E<q—p<p
a2((a=p)—pP)—15p—Toqp—1-((a—P)—D),
ald=P) =P logP—logP— 1 paP—LogP~1 p<q-p<?®
aP~LoaPLogP—1-((a=P)—P) oq(a—p)—p—1
oaP~toaP~1baP~toaP~! 3717 <qg—p<2p
(prefpfz(wO,p,q)OO)ng,p,q 2p<q-p

dg+p fqg-—p<¥h
6p fe<qg—p<?t
: 2
4q fl<qg—p<?
q+5p if2§p<q—p<p
2(7,p,q) = Tp ifp<q—p<
e 4 3
3q ifF<qg-—p<?
£ 3
q+5p ifF <q—p<2p
8p if2p<q—p<3p
g+4p f3p<qg—p

Theorem 7.5. The bouna:(7, p, ¢) is an upper bound.

Proof. The words given by
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’v ‘if

a2(@—P)—Lqp—1-3(0—P) ,3(0—P)— L qP—1-2(¢—D) o, 2(a—P)— 1
aP~17(2=P) oq(a—P) 1 qp—1pp—1 qg—p<?
aP~LogP—1730a=p) q3(a—P)—1qp—1-2(¢—D) o 2(¢—P) -1
aP~17(2-P) 5q(4—P)—Lqp—1pp—1 b<g-p<?
aP~LogP~172(0=D) o 2(a—p) =1 p—1-(q=P) 5 (a—P)— 1,
aP~1paP~logla—P)—1oqp—1—-(a—p) b<g—p<?
a—P)~LoqP—TpaP—loq(@—P)—1oqp—1-(a-p)
aP—Log20—30—1 4P —20—1 o 3g—4p—1 P<gop< %p
a0 P)—1oqp—1pap—1oq(a—p)—15,p—1-(a-D),
aP~loa?d73PlogtP=24—1oqr—1 P <qg-p<p
aP—172((a=P)—P) ¢ 2((a=P)—P)— Ly P~ L qp—1-((a—P) D)y,
al1=P) =P LogP—LogP—1pgP—LogP—1 p<qg-p<P
a2((a=p)—p)—15 p—1p—1-((a—P)-P)
a(@=P)—P—LloqP—1loaqP—1paP—LlogP—Lloq(a—P)—p—1 %P <qg-p< 371’
aP~LogP~LogP—1-(la—P)-DP)
al1=P)=P=LogP—logP~1haP~loaP~Loqla—P)—p—1 377’ <g—p<2p
aP~LoaBP—D—=(4-P)oq(4—P) =201 qp—Toqp—1
oaP~ baPLoaP Lol 2p < q—p<3p
(pref,_o(wo,p,q)00) wo,pq© 3p<q—p

can be checked to be optimal. O

Referring to Sections 7.1, 7.2, 7.3, 7.4 and 7.5, we conjecture that our bounds are optimakfor
3,4,5,6 and".

Conjecture 7.6. The equalityL(h, p, q) = z(h,p, q) holds forh = 3,4, 5,6 and?7.

Figure 2 summarizes our conjectures wied(p, ¢) = 1.

From Figure 2, some bounds can be generalized. Indeed, from Cases 1, 3, 5 and 7, we provide in the
following theorem a general form far(h, p, q) in caseh is odd andg — p < hQ—fl. The optimal words for
that bound turm out to be rather elegant.

Theorem 7.7. For i > 1 odd, define:(h, p, q) = (“51)q + pif ¢ — p < ;2. Then the bound(h, p, q) is
an upper bound in that case.

Proof. Defineu; = a(%P)~loq?~1paP~1, and forh > 0 define

th+1 — a(h+1)(q_p)_1<>ap_1_h(q_p)<>U2h_1

By induction onh, we can show thatyy, 1 has2h + 1 holes, has lengtth + 1)q + p — 1, is p-periodic, is
g-periodic, and is not 1-periodic. Theperiodicity can be checked by noticing that this aligned witho's
when we build rows of lengtp. Indeed, thé is aligned with every othes starting with thec preceding it
and ending with the first. Note that the factor preceding the fitshas length(h + 1)(¢ — p) — 1 which

is smaller tharp — 1 due to the restrictiog — p < h%l. In addition, theg-periodicity can be checked by
noticing that the is aligned withe’s when we build rows of length. Indeed, the is aligned with every
othere starting with the secondpreceding it and ending with the secondr he factor preceding the second
¢ has lengthy — 1. O
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Figure 2: Bounds(h, p, q) whereged(p, q) =1

Conjecture 7.8.If h > 1isodd andy — p < hQ—fl, thenL(h,p,q) = (%)q + p.

From Figure 2, we can conjecture the following across the number of holes.

Conjecture 7.9. If h > 3 is odd and}f—f1 <qg—-p< h‘%, thenL(h,p,q) = (%)p.

Finding general optimal words for Conjecture 7.9 is challenging due in part to the fact that the optimal
words take different shapes in subintervals (see for instance the dase divhere the interva} < ¢—p <
£ gets split into the two subintervals< ¢ —p < £ andf < ¢ —p < §).

8 Conclusion

In this paper, we connected the problem of finding optimal bounds for Fine and Wilf’s generalizations
to partial words with that of finding the vertex connectivity of certain graphs. Many algorithms for the
computation of vertex connectivity in graphs have been developed over the years [1, 23, 24, 25, 26, 29, 30,
31, 33, 42]. While such computation can often be reduced to solving a number of max-flow problems, it can
also be computed using other methods such as randomised algorithms. Algorithms have also been developed
for deciding whether a graph isvertex connected, some of which are max-flow based while some are not.

An algorithm that computes the minimum of maximum flows between all non-adjacent vertices of an
associated digraph can be described as follows. The justification is based on Menger’s Theorem and the
Maximum Flow-Minimum Cut Theorem, and the algorithm for finding the maximum flow is due to Ford
and Fulkerson (See Reference [15] where Menger’s theorem is on page 46, and a detailed description of the
algorithm by Ford and Fulkerson is given on pages 198-202).

We have shown thak(h, p, ¢) is the smallest such that thep, ¢)-periodic graph of sizé has connec-
tivity at leasth + 1. This leads to an efficient algorithm for determinihg@h, p, ¢q). To find the smallest
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such thatG, the (p, ¢)-periodic graph of sizé, has connectivity at least+ 1, we iterate ovet (note that
p+q—1 < L(h,p,q)), checking the connectivity of each. Suppose we wish to find the connectivity of
G = (V, E) for a certain sizé. By Menger’s Theorem, this is equivalent to finding the minimum of the
maximum number of vertex-disjoint paths between pairs of non-adjacent verti¢ésTo find the maxi-
mum number of vertex-disjoint paths between a pair of non-adjacent vesticese V', we first produce a
digraphD = (V', A") from G as follows:

1. Addv; andwvy to V7,
2. For each vertex € V' \ {v1,v2}, add two vertices’ andv” to V' and arg(v’, v") to A’, and
3. For each edgév, u) € E, add the two arc&”, ') and(u”,v") to A’.

We see that directed paths betwagrandwv, in D correspond directly to paths betweenandwvs in
G. Furthermore, two directed paths betwegrandv, in D are arc-disjoint if and only if the corresponding
paths inG are vertex-disjoint. We mak® a network by giving each arc unit capacity and settingo be
the source and. to be the sink. Then from Lemma 11.4 (see page 203 of Reference [15]), the maximum
number of arc-disjoint directed paths framto v- is equal to the value of a maximum flow in. To find
a maximum flow inD, we use the algorithm of Ford and Fulkerson known as the labelling method, which
starts with a known flow o (say, the zero flow), and recursively increments the flow, terminating with the
maximum flow.

Vertex connectivity in thép, ¢)-periodic graphs needs to be further studied in order to prove the conjec-
tures of Section 7 and to give bounds for any humber of holes. This becomes complicated as the number of
holes increases, since the number of cases increases as well.
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