
ERRATUM TO “POLYHEDRAL AND TROPICAL GEOMETRY OF FLAG POSITROIDS”

JONATHAN BORETSKY, CHRISTOPHER EUR, LAUREN WILLIAMS

All section/theorem numbers refer to the published version of the paper [BEW24]. We thank
Jidong Wang for pointing out an error in the proof of Theorem 6.1, which renders the theorem
invalid. This also invalidates the implication (e) =⇒ (b) in Theorem A. No other statements
are affected, and the error is local in the sense that we describe the following revisions in this
document:

• Instead of proving the implications (d) =⇒ (e) =⇒ (b) in Theorem A, as was originally
done, we prove the implication (d) =⇒ (b) without passing through (e).

• We establish a modified version of Theorem 6.1 and a correspondingly modified state-
ment (e’) of (e), and prove the equivalence (b)⇐⇒ (e’).

1. THE ERROR

The error in the proof of Theorem 6.1 arises in the last two bullet points at the end of Section 6.
The two cases considered by the two bullet points are duals of each other, so let us just address
the last one, which reads:

• (n+1) /∈ S ∪ ijk`. In this case, considering the minor µ̃|S ∪ ijk`(n+1)/S and then applying
Lemma 6.2 implies that the three-term Grassmann-Plücker relation is satisfied.

However, Lemma 6.2 does not always apply here. The element (n + 1) can be a loop in the
matroid µ̃|S ∪ ijk`(n+1)/S, whereas the lemma requires that the “extra element” (labelled 5 in
the lemma, and corresponding to (n+ 1) here) is not a loop. Concretely, let us consider the flag
matroid (µ

1
, µ

2
) on [5] whose sets of bases are

(†) ({12, 13, 14, 23, 24, 34}, {125, 135, 145, 235, 245, 345}).

Note that µ
1

is a matroid in which 5 is a loop, while µ
2

is a matroid in which 5 is a coloop. Setting
S = {5} and {i, j, k, `} = {1, 2, 3, 4}, we find that the positive-tropical three-term Grassmann–
Plücker relations can fail to hold for µ1 and µ2 even if the positive-tropical three-term incidence-
Plücker relations hold for (µ1, µ2).

For instance, define (µ1, µ2), with support (µ
1
, µ

2
), by assigning the non-infinity values as

follows, with the bases ordered as in (†):

({0, 1, 0, 0, 1, 0}, {0, 1, 0, 0, 1, 0}).

One verifies that (µ1, µ2) satisfies every positive-tropical three-term incidence relations, but µ1

and µ2 both do not satisfy the positive-tropical three-term Grassmann–Plücker relations.
1
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2. PROOF OF (d) =⇒ (b)

The proof of (d) =⇒ (b) given below is largely identical to the proof of (d) =⇒ (e) in [BEW24].
The portion that is substantially new is enclosed in symbols ♦♦♦.

Proof. First, assumption (d) implies that every edge of the subdivision Dµ of P (µ) is a flag
matroid polytope, i.e. it is parallel to ei − ej for some i 6= j ∈ [n] and its two vertices are
equidistant from the origin. Hence the edges of P (µ) have the same property, so µ is a flag
matroid. By Proposition 3.9, to show (b) it now suffices to show that every positive-tropical
three-term Plücker relation is satisfied.

We start with the case a = b, where µ is just (µ). We need check the validity of the three-
term positive-tropical Grassmann-Plücker relations, say for an arbitrary choice of S ∈

(
[n]
a−2
)

and {i < j < k < `} ⊆ [n] \ S. If S is not independent in the matroid µ, then every term in
the three-term relation involving S and ijk` is ∞, so we may assume S is independent. Let
S be a maximal chain S1 ( · · · ( Sm of subsets of [n] with the property that Sa−2 = S and
Sa−1 = S ∪ {ijk`}. Then, Proposition 5.3 implies that for a vector vS in the relative interior of
the cone R≥0{eS1

, . . . , eSm
}, we have

face(P (µ),vS ) = P (µS ) ' P (µ|S ∪ ijk`/S).

For the second identification, we have used that

(1) the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;
(2) with the exception of (Sa−2, Sa−1) = (S, S ∪ ijk`), all other minors of the matroid µ

corresponding to (Sc, Sc+1) in the chain have their polytopes being a point because
|Sc+1 \ Sc| = 1.

Since S is assumed to be independent, the rank of the matroid minor µ|S ∪ ijk`/S is at most 2.
If it is less than 2, then every term in the three-term relation involving S and ijk` is∞, so let us
now treat the case when the rank is exactly 2. For a basis B̂ of µ|S ∪ ijk`/S, let B be the basis
of µ such that the vertex eB of P (µ) corresponds to the vertex eB̂ of P (µ|S ∪ ijk`/S) under the
identification above. Identifying [4] = {1 < 2 < 3 < 4} with {i < j < k < `}, we may thus
consider “restricting” µ to the face P (µ|S∪ijk`/S) to obtain an element µ̂ = µ|S∪ijk`/S ∈ Dr2;4

defined by

µ̂(B̂) =

µ(B) if B̂ a basis of µ|S ∪ ijk`/S

∞ otherwise
for B̂ ∈

(
[4]
2

)
.

It is straightforward to check that for Dr2;4, the three-term positive-tropical Grassmann-Plücker
relations are satisfied if and only if all 2-dimensional faces in the corresponding subdivision are
positroid polytopes. Since the faces of the subdivision Dµ̂ of P (µ|S ∪ ijk`/S) are a subset of the
faces of the subdivisionDµ, we have that µ satisfies the three-term tropical-positive Grassmann-
Plücker relation involving ijk` and S.

Let us now treat the case a < b.
♦♦♦ That the three-term Grassmann-Plücker relations are satisfied for every µi where i =

a, . . . , b follows from our previous case of a = b once we show the following claim:
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For a flag matroid µ with consecutive rank sequence (a, . . . , b), if every face of
P (µ) of dimension at most 2 is a flag positroid polytope, then the same holds
for every constituent matroid, i.e. for every c = a, . . . , b, every face of P (µ

c
) of

dimension at most 2 is a positroid polytope .

To prove the claim, suppose for some a ≤ c ≤ b that a 2-dimensional face Q of P (µ
c
) is not a

positroid polytope. Our goal is to use Q to find a 2-dimensional face of P (µ) that is not a flag
positroid polytope. By [ŁPW23, Theorem 3.9], a 2-dimensional matroid polytope which is not a
positroid polytope has vertices of the form eSij , eSk`, eSi`, eSjk, where S ⊂ [n] with |S| = c − 2

and {i < j < k < `} ⊂ [n] \ S; thus Q = conv(eSij , eSk`, eSi`, eSjk) for such {S, i, j, k, l}1. Note
that this 2-face Q is the Minkowski sum of eS with the product conv(ei, ek)× conv(ej , e`).

Let S be a maximal chain S1 ( · · · ( Sm of subsets of [n] with the property that Sc−1 = S,
Sc = S ∪ ik, and Sc+1 = S ∪ ijk`. Then, Proposition 5.3 implies that for a vector vS in the
relative interior of the cone R≥0{eS1

, . . . , eSm
}, we have

face(P (µ),vS ) = P (µS ) ' P (µ|Sc+1/Sc)× P (µ|Sc/Sc−1).

For the second identification, we have used that

(1) the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;
(2) with the exception of (Sc−1, Sc) = (S, S ∪ ik) and (Sc, Sc+1) = (S ∪ ik, S ∪ ijkl), all other

minors of the constituent matroids of µ corresponding to (Sd, Sd+1) in the chain have
their polytopes being a point because |Sd+1 \ Sd| = 1.

Note that the polytope P (µ|Sc+1/Sc)× P (µ|Sc/Sc−1) is at most 2-dimensional since µ|Sc+1/Sc

and µ|Sc/Sc−1 are flag matroids on ground sets {j, `} and {i, k}, respectively. The polytope has
Q as a Minkowski summand, and thus in particular is not a flag positroid polytope. ♦♦♦

Lastly, we check the validity of the three-term positive-tropical incidence-Plücker relations,
say for an arbitrary choice of S ⊂ [n] with a− 1 ≤ |S| ≤ b− 2 and {i < j < k} ⊆ [n] \S. We may
assume that S has rank |S| in the matroid µ|S|+1, since otherwise every term in the three-term
positive-tropical incidence relation is∞, so that the relation is vacuously satisfied. Let S be a
maximal chain S1 ( · · · ( Sm of subsets of [n] with the property that Sc = S and Sc+1 = S ∪ ijk
for c = |S|. Then, Proposition 5.3 implies that for a vector vS in the relative interior of the cone
R≥0{eS1 , . . . , eSm}, we have

face(P (µ),vS ) = P (µS ) ' P (µ|S ∪ ijk/S).

For the second identification, we have used that

(1) the matroid polytope of a direct sum of matroids is the product of the matroid polytopes;
(2) with the exception of (Sc, Sc+1) = (S, S ∪ ijk), all other minors of the constituent

matroids of µ corresponding to (Sd, Sd+1) in the chain have their polytopes being a
point because |Sd+1 \ Sd| = 1.

1One may also deduce this independently of [ŁPW23] by using the argument given in the first third of this proof of
(d) =⇒ (b) concerning the a = b case.
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Note that the polytope P (µ|S∪ijk/S) is at most 2-dimensional since it is a flag matroid polytope
on 3 elements. Similarly to the a = b case, we may “restrict” µ to the face P (µ|S ∪ ijk/S)
to obtain an element µ̂ = µ|S ∪ ijk/S ∈ FlDrr̂;3. We may assume that r̂ = (1, 2) since
otherwise every term in the three-term incidence relation of the pair (S, ijk) is ∞. For FlDr3,
it is straightforward to verify that the unique three-term positive-tropical incidence relation
involving S and ijk is satisfied if and only if the subdivision Dµ̂ consists only of flag positroid
polytopes. Since the faces of the subdivision Dµ̂ are a subset of the faces of the subdivision Dµ,
we have that µ satisfies the three-term incidence relation involving S and {i, j, k}. �

3. MODIFICATION OF THEOREM 6.1 AND STATEMENT (E)

We now state a revised version of Theorem 6.1.

Theorem 6.1rev. Suppose µ = (µ1, µ2) ∈ P
(
T(

[n]
r )
)
× P

(
T(

[n]
r+1)

)
satisfies every three-term

positive-tropical incidence relation, and suppose that the support µ is a flag matroid. Then,
we have µ ∈ FlDr≥0r,r+1;n if either of the following (incomparable) conditions hold:

(i) The support µ consists of uniform matroids.
(ii) Either µ1 ∈ Dr≥0r;n or µ2 ∈ Dr≥0r+1;n.

Correspondingly, we modify the statement (e) in Theorem A to the following

(e’) The support µ of µ is a flag matroid, µ satisfies every three-term positive-tropical inci-
dence relation, and either µ consists of uniform matroids or µi ∈ Dr≥0i;n for at least one
a ≤ i ≤ b.

Proof of (b)⇐⇒ (e’). By Proposition 3.9, the implication (b) =⇒ (e’) is immediate. The converse
follows from Theorem 6.1rev and Proposition 3.9. �

Proof of Theorem 6.1rev. The proof is identical to the original proof of Theorem 6.1 in [BEW24],
with the difference that we need to use hypotheses (i) and (ii) to justify the conclusions of the
last two bullet points in the proof of Theorem 6.1, reproduced below:

• (n + 1) ∈ S. In this case, considering the minor µ̃|S ∪ ijk`/(S \ (n + 1)) and then applying
Corollary 6.4 implies that the three-term Grassmann-Plücker relation is satisfied.

• (n+1) /∈ S ∪ ijk`. In this case, considering the minor µ̃|S ∪ ijk`(n+1)/S and then applying
Lemma 6.2 implies that the three-term Grassmann-Plücker relation is satisfied.

Under condition (i), i.e. when the support µ consists of uniform matroids, the element (n+1)

is not a coloop in the minor µ̃|S∪ ijk`/(S \ (n+1)), and is not a loop in the minor µ̃|S∪ ijk`(n+
1)/S. Hence, both Corollary 6.4 and Lemma 6.2 apply respectively.

Now suppose condition (ii) holds. We verify that in the cases where Corollary 6.4 and
Lemma 6.2 do not apply, the theorem still holds. Let us consider the second bullet point, and
suppose that (n+ 1) is a loop in the minor µ̃|S ∪ ijk`(n+ 1)/S, i.e. where Lemma 6.2 does not
apply; the argument for the first bullet point is similar by matroid duality. In this case, since
(n+ 1) is not a loop in the matroid µ̃, (n+ 1) belongs to the closure (also called span) in µ̃ of S.
Since S is also independent, there is an element s ∈ S such that (S \ s) ∪ (n+ 1) is independent
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and has the same closure as S in µ̃. Let S′ = S \ s. For any a, b ∈ {i, j, k, `}, by our choice of
s ∈ S, we have that Sab is a basis of µ̃ if and only if S′ab(n + 1) is a basis of µ̃. Moreover, for
any a, b, c ∈ {i, j, k, `} such that the values involved below are finite, we claim

µ̃(Sab)− µ̃(Sac) = µ̃(S′ab(n+ 1))− µ̃(S′ac(n+ 1)).

Note that using the definition of µ̃, the above claim can be equivalently written as

µ2(Sab)− µ2(Sac) = µ1(S
′ab)− µ1(S

′ac).

From the claim, we conclude as follows. Let µ1 be the projection of µ1 to the coordinates labelled
by S′xy where x 6= y ∈ {i, j, k, `}, and let µ2 be the projection of µ2 to the coordinates labelled
by Sxy where x 6= y ∈ {i, j, k, `}. Then, as elements of P(T(

{i,j,k,`}
2 )), the two tropical vectors

µ1 and µ2 are equal. Hence, the claim implies that if one of µ1 or µ2 satisfies the three-term
Grassmann-Plücker relations on these coordinates, then so does the other.

The claim follows from the validity of three-term tropical incidence relations, which is im-
plied by the validity of three-term positive-tropical incidence relations. Namely, we have that
the minimum is achieved at least twice in

{µ1(S
′ab) + µ2(S

′asc), µ1(S
′as) + µ2(S

′abc), µ1(S
′ac) + µ2(S

′asb)},

from which the claim follows because Sa(n+ 1) is not a basis of µ̃, forcing µ1(S
′as) =∞. �
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