COMPLEX ANALYSIS NOTES

CHRISTOPHER EUR

Notes taken while reviewing (but closer to relearning) complex analysis through [SSh03] and
[Ahl79]. Some solutions to the exercises in [SSh03] are also written down. I do not claim that the
notes or solutions written here are correct or elegant.

1. PRELIMINARIES TO COMPLEX ANALYSIS

The complex numbers is a field C := {a + ib : a,b € R} that is complete with respect to
the modulus norm |z| = 2Z. Every z € C,z # 0 can be uniquely represented as z = re® for
r > 0,0 €[0,27). A region Q C C is a connected open subset; since C is locally-path connected,
connected+open = path-connected (in fact, PL-path-connected). Denote the open unit disk by
D.

Definition 1.1. A function f : U — C for U C C open is holomorphic/analytic/complex-
differentiable at zg € U if

lim f(z0+h) — f(20)
h—0 h

exists, and we denote the limit value by f'(z0). Equivalently, f is holomorphic at zy iff there erists
a € C and such that f(zo + h) — f(20) — ah = hyp(h) and ¢p(h) — 0 as h — 0, in which case
a = f'(z0). f is holomorphic if it is at zg for all zg € U.

Proposition 1.2. Differentiation rules about f + g, fg, f/g and f o g (chain rule) holds.

Theorem 1.3. For f: U — C, write f = u+ iv where u,v: U — R. f is holomorphic at zo € U if
and only if f as a map R? D U — R? is differentiable at zy and satisfies

Cauchy-Riemann equations: u, = v, and u, = —v, at 2o
Proof. First, note that a + ib € C can identified with the real matrices of the form z _ab} This
also works well with C ~ R? in that the vector in R? for (a + ib)(c + id) is Z _ab CCZ .

Now, as a map in real variables, f is differentiable iff there exists a matrix A such that |f(zg +
h)— f(z0) — Ah| = |h||¢o(h)| with |¢p(h)| — 0 as h — 0. Now, multiplication by A is complex number

=b

multiplication iff A of the form . Thus, if f is differentiable in real sense and satisfies the

a
b
Cauchy-Riemann equations, then f(zo + h) — f(20) — (uz(20) + tv(20))h = ho(h) with |[(h)] — 0
as h — 0, and hence holomorphic at zg. If f is holomorphic, then letting A be the matrix of f’(zo)
works, and thus Cauchy-Riemann equation follows. d

Definition 1.4. Define two differential operators by:

9 _1(0 .0 9 _1
9. 2\0z oy 9z 2
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0
Proposition 1.5. f is holomorphic at zg iff a—{(zo) = 0. Moreover, if holomorphic,
Z

af ou O0v
f(20) = 5, (#0) = 25-(20) = 2i7-(20) and det[Df];, = £ (z0)]?
Power series are good (and really the only) examples of holomorphic functions.

Theorem 1.6. Given a power series Y oo anz", let 1/R := limsup |a,|'/" (with 1/c0 = 0 and
1/0 = 00). Then for |z| < R, the series (uniformly) converges absolutely, and diverges for |z| > R.
Moreover, f(z) ==Y 2 anz" is holomorphic on its disk of convergence with f'(z) = > o7 jna,z"
with the same radius of convergence.

Proof. Compare to geometric series (Weierstrass M-test), and do some computation. O

It is useful to note the relationship between the root-test and the ratio-test; ratio-test is often the
easier option, but root-test is more general. More precisely,

Proposition 1.7. For any sequence {c,} of positive numbers,

. . pC .. . . c
lim inf — <liminf /¢, and limsup /¢, < limsup ntl

Cn Cn

1.8. Exercises.
Exercise 1.A. [SSh03, 1.4] Show that there is no total ordering on C

Proof. Suppose there is a total ordering > on C, and WLOG ¢ > 0. Then —1 = 4% > 0, and so
~1>0,andso 1= (—1)2>0but —1+1> 1. Thus, 1 > 0 and 1 < 0, which is a contradiction. [

Exercise 1.B. [SSh03, 1.7] For z,w € C such that Zw # 1 and |z| < 1,|w| < 1, show that

w—z| _y
1 —wz| —

where the equality occurs exactly when |z| = 1 or |w| = 1. Moreover, for w € D, the mapping

F : 2z — {2== s a bijective holomorphic map F : D — D that interchanges 0 and w, and |F(z)| =1

if |z| = 1. These mappings are called Blaschke factors

Proof. The inequality is equivalent to |w — z|? < |1 — wz|?, which when written out is equivalent to
|22 + Jw|* < 1+ |w|?|2|%, and this inequality holds with equality exactly at |z| = 1 or |w| = 1 since
0 < (1—|w?)(1—]z]?) for |z],|w| < 1. One computes that F' o F(z) = z and the rest of claims
about F' follows immediately from the inequality. O
Exercise 1.C. [SSh03, 1.9] Show that Cauchy-Riemann equations in polar coordinates is

1 1

Upr = —Vg, Upr = ——Ug
r r

Proof. With = rcosf,y = rsinf, computing du for u : R? — R in two coordinates (z,y) and
(r,0) gives us (and likewise for dv):

cos 6 sinf | |ug|  |ur cos sinf | |vg| _ |vr
—rsing rcos@| |uy| |ugl|’ —rsing rcosf| |vy|  |vg

and thus we have
rcos —sinf| (u, v|  |up Vs
rsing  cosf | |ug ve| |uy vy

Now, u; = vy and u, = —v, becomes:
(1) : rcos Qu, — sin Qug = rsin fv, + cosvg, (2) : rsinQu, + cos fug = —r cos v, + sin Qv
And from here (1)-cos 0+ (2)-sin @ gives us ru, = vg, and —(1)-sin 0+ (2) - cos 6 gives us rv, = —ug,

as desired. O
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Exercise 1.D. [SSh03, 1.10,11] Show that 4%% = 4%% = A where A is the Laplacian A =

88—;2 + 88—;2. Moreover, show that if f is holomorphic on an open set ), then real and imaginary parts
of f are harmonic, i.e. Laplacian is zero.

Proof. 4%(01 — iﬁy)%(am +1i0y) = A, and f holomorphic means % =0, and so Af =0. O

Exercise 1.E. [SSh03, 1.13] If f is holomorphic on an open set 0, and (i) Re(f), or (ii) Im(f), or
(iii) | f| is constant, then f is constant on §).

Proof. Tt suffices to show that f* = 0 on Q on any of the conditions given. For (i) or (ii), % =

2% = iZ%, so f' = 0. For (iii), u? + v? is constant, and so applying Oy, 0y, to (u? +v?) = C gives
US Ul + Vgz 0 + (U5 +02) = 0, Uyt + vy + (us +v;) = 0. Adding the two and using the fact that
u,v are harmonic, we have that u, = u, = v, = v, = 0. O

Exercise 1.F. [SSh03, 1.14,15] Prove the summation by parts formula (defining By, := 22:1 by
and By :=0),

N N-1
Z anby, = anBy — apbpy—1 — Z (@ns1 —an)Bp
n=M n=M

and use the formula to prove the Abel’s theorem: If > >° | a, converges, then

oo o0
lim g apr™ = g G
=1 n=1

r—1-
n

Proof. For the summation by parts formula, draw the n x n matrix (a;b;)1<i j<n and consider what

each terms in the summation mean. As for Abel’s theorem, | something is weird ‘: since fy(r) =

ZnN:1 anr™ is continuous on 0 < r < 1 and fy — f uniformly (where f := > > a,r"), we can

commute the two limits. O

Exercise 1.G. [SSh03, 1.20] Show that: (1) > nz" diverges for all points on the unit circle, (2)
n%z” converges for all points on the unit circle, (3) %z” converges for all points on the unit
circle except z = 1.
Proof. For (1), each terms don’t go to zero. For (2), absolute convergence. For (3), we need:
Lemma: Suppose partial sums A,, of > a, is a bounded sequence, and by > by > by > -+ with
lim;, 00 by = 0. Then Y a,by, is convergent. (Proof: use summation by parts formula).
This lemma also implies the Alternating Series Test with a,, = (—1)". For (3), we note that
a, = 2" satisfies the condition of the lemma for |z| <1,z # 1. O
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2. CAUCHY’S THEOREM AND BASIC APPLICATIONS

A curve v is assumed piecewise differentiable unless otherwise noted. A curve v is closed if
the initial and end points are the same. A R-path is a curve entirely consisting of horizontal and
vertical segments. Note that any region in C is R-path-connected.

A region ) is simply-connected if w1 (Q) = 0, or equivalently, if any continuous map S* — Q
extends to B? — Q, or equivalently, if complement of  in C is connected.

2.1. Cauchy’s Theorem.
Definition 2.2. For f:Q — C and v : I — Q, we define the integral of f along v by:

L fds = /I F ) ()t

FEquivalently, the integral is the integration of a 1-form as follows: fv(udm —vdy) + i(udy + vdzx).

Proposition 2.3. The defining length(~y) := fﬁ/ |dz| = [, |7/ (t)|dt, one has the following inequality:

Lfdz

Theorem 2.4. For a I-form w = pdx + qdy on an open region €2, f7 pdx + qdy = 0 for any closed

< [ 171es] < (sup|f|> length(y)
vy Y

curve v in Q if and only if w is exact. Moreover, if w = df, then for any v : [a,b] — Q,
o= f60) - fota)
.

Proof. The second part is easy, and it implies one direction of the first part. For the converse, if the
integral along any closed curve is zero, pick an arbitrary point p € Q and define F(z) := fvw for
z € () where v is a curve from p to z. By making v an R-path, with last segment being horizontal
or vertical, one recovers that dF = w. O

Corollary 2.5. If f : Q — C has a primitive, i.e. F': Q — C such that F' = f, then fvf =0 for
all closed v C €.

Proof. If F = U + iV and F' = f = u + iv, then dF = U,dx + Uydy + i(Vydx + Vydy) and
u="U; =V, v=V, =-U, , so that f as a 1-form equals dF. O

Theorem 2.6. [Goursat’s Theorem] If f is analytic on R, a rectangle with horizontal and vertical
sides, then
fdz=20
OR
Proof. Keep subdividing rectangles into fours and pick ones with biggest integral and converge to
zp. At each step, we have |n(Ry)| > 4 "|n(R)|. Now, make n large enough (R,, small enough to z)
so that
|f(2) = f(20) = (2 = 20) f'(20)| < €|z — 2|

Note that [y,dz = 0 = [,,zdz, so integrating both sides of inequality above gives |n(R,)| <

efaRn |z — 20||dz|. Rest is computation. O

Proposition 2.7. Theorem 2.6 still holds if f is holomorphic on R\{z1,..., 2z} (% € int(R)) where
lim (z — z)f(z) =0 Vi

Z2—rZ;

Proof. WLOG let £ = 1 and use Theorem 2.6 to shrink the boundary of rectangle to a very small
square centered at z7. Il
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Theorem 2.8. [Cauchy’s Theorem I] If f is holomorphic on an open disk D (or on D minus finite
points satisfying the condition in Proposition 2.7), then for any closed v C D,

/fdz:(]

Proof. Construct the primitive of f as F(z f fdz where o is an R-path from a pre-fixed point
p to z. F' is well-defined due to Theorem 2 6 (Proposmon 2.7). O

Theorem 2.9. Suppose f is holomorphic on open region Q2. Then if vo,v1 C Q are homotopic (need
be end-point homotopy), then

fdz = fdz
Yo o)

Proof. Let vs(t) : I x I — Q be the homotopy. Since Im(~,(t)) C Q is compact, there exists € > 0
such that any 3e-ball around a point in Im(7,(¢)) is contained in Q. Also, there exist 6 > 0 such that
sup |vso (t) — vs, (t)| < € whenever |sgp — s1| < d. Use these to make disks {Dy, ..., Dy} of radius 2e,
and consecutive points {zo, ..., 2n+1} C Vsg» {W0, - -+, Wnt1} C Vs, With 20 = wo, 2nt1 = Wyt such
that z;, 241, wi, w41 € D;j. Now Theorem 2.8 integrals implies that integrals along closed curves
raigh s straigh s

Zi st a8 ' w; 7—% Wit1 *t 28 ¢ Zit1 LO z; is zero, and adding these up we have f—v oy fdz=10. To

S0 S1
finish the proof, divide interval I into many pieces all of length less than 4. O
Theorem 2.10 (Cauchy’s Theorem II). If f is holomorphic on an simply-connected region ), then
for any closed v C ,

fi-r
v

Proof. Homotope « to a constant map and use Theorem 2.9 O

Proposition 2.11. Let a € C and v a closed curve not going through a. Then the index of a
point a with respect to v (or, the winding number of v around a), defined as

1 1
n(y,a) =

2mri
is an integer. In fact, if C(C\{a}) is the group of chains of closed curves in C\{a}, then the map
C(C\{a}) = Z given by v — n(y,a) is the map C(C\{a}) — H1(C\{a}) = Z.

dz
N Z—a

Proof. Homotope « to lie on a circle centered at a and compute. For the second statement, note
that H; is the abelianization of . O

Proposition 2.12. Given a closed curve v, define the regions determined by v as the connected
open components of C —~. Then the number n(v,a) only depends on the region determined by -y
that a belongs to.

Proposition 2.13. Let C(Q2) be the group of chains of closed curves on open region Q. Given
v € C(2), we have that [y] =0 € Hi(Q) if and only if n(v,a) =0 for any a € C — Q.

Theorem 2.14 (General Cauchy’s Theorem). If f is holomorphic on an open region S, then

/fdz =0
for all v € C(Q) such that [y] =0 € H1(£2).

Proof. O



6 CHRISTOPHER EUR

2.15. Basic Applications of Cauchy’s Theorem.

Remark 2.16. Even before touching upon calculus of residues, one can compute many real integrals
using toy-contours and Cauchy’s Theorem. (Examples in the Exercises)

Theorem 2.17 (Cauchy integral formulas). Let f be holomorphic on a region Q, and D C § be a
closed disk and C := dD. Then for any z € D,

IR EG
fe) = 5 /C —

Furthermore, one has that
)y = / Q)
e =5n (S Z)”Hdc

Proof. Fix zg € D. By Theorem 2.8 on fC Mdc = 0, and linearity of integral gives fC /) d¢ =

¢—zo ¢—20
n(C, z9) - f(z0). The second part of the theorem follows from the following more general lemma:

Lemma 2.18. [Ahl79, 4.2.3] If ¢({) is continuous on an arc v, then F,(z) := f7 (qu(i))n d¢ is holo-

morphic in each region determined by v and F(z) = nF,11(2).
(|

Theorem 2.19 (General Cauchy’s formula). Let f be holomorphic on a region €2, and v be a cycle
such that v ~ 0 € Hi1(Q). Then for any z € Q2 not on vy, we have

ntr2)f) = 5 [
2l

Corollary 2.20 (Cauchy’s inequality). If f holomorphic on open € and Dg(z) C ), then

n!|[flle
Rn

1" (z0)] <

where || fllc = sup.ec | f(2)]-

Theorem 2.21 (Morera’s Theorem). If f is continuous on open Q and f7 fdz =0 for all closed
v C Q, then f is holomorphic on €.

Proof. Can define a primitive of f by F(z) := fg fdz, and Theorem 2.17 implies that F’' = f is
holomorphic as well. O

Remark 2.22. In the above statement, since any open set can be covered by open disks, it suffices
to check |, or fdz = 0 for every rectangle R C €.

Theorem 2.23 (Taylor’s Theorem 1). Suppose f is holomorphic on a region 2, and Dg(z) C Q.
Then for all z € D, f has a power series expansion

f(”)(zo)

n!

f(z) = Zan(z —29)" where a,, =
n=0

Proof. Let C' = 0D and by Theorem 2.17 write f(z) = o fc gdc Now, note that for any

2mi
|z — 20| < r with r < R, we have a uniformly convergence series

> Z— 20 n_ 1 _ 1
Z(c—m) BEET="I

n=0 ¢—20
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Uniform convergence means that we can interchange integral and the summation, and hence

9= o [ T o = e

O

Corollary 2.24. Suppose f is holomorphic on Dgr(zo). Then in the power series expansion y .- an(z—
20)" of f at zy, the coefficients a,, are given by

1 n 0\ —inf
an = oo f(zo +re™)e " db
for any 0 <r < R.
Proof. Combine Theorem 2.17 and Theorem 2.23. g
Corollary 2.25 (Mean-value property). If f is holomorphic on Dg(zy), and Re(f) = u, then
1 2w ) 1 2 .
fo) = 5= [ SGo+re?)ad anduz0) = 5 /0 u(zo + rei?)do

Theorem 2.26 (Analytic continuation). If f, g are analytic on a region ) and agrees on a set with
a limit point in Q, then f =g. (If f = g on some open subset of 0, then f =g).

Proof. One shows that zeroes of non-zero analytic functions are isolated by using Theorem 2.23 as
follows: let F; be points where all derivatives vanish, and Es be points where at least one derivative
is nonzero; both are open. O

Theorem 2.27 (Liouville’s Theorem). If f is entire and bounded, then f is constant.
Proof. Show f/ =0 on any zg € C by Cauchy’s inequality. O
Corollary 2.28 (Fundamental Theorem of Algebra). A polynomial P(z) has a root in C.

Theorem 2.29. If {f,} is holomorphic on a region Q and f, — [ uniformly on every compact

subset of Q, then f is holomorphic on Q. Moreover, f; — f' uniformly on every compact subset of
Q.

Proof. Use uniform convergence to interchange limit and integral to find that f satisfies Morera’s
Theorem. For the second part, prove for every closed disk. O

Often a holomorphic function is thus built as Y2, fn(2). (e.g. Zeta function). The following is
the continuous version:

Proposition 2.30. For an open 2, suppose F : Q x [0,1] — C be continuous and F(z,s) is
1

holomorphic for each s € [0,1]. Then f(z) ::/ F(z,s)ds is holomorphic.
0

Let © be a symmetric open subset, in the sense that z € Q < z € Q (i.e. symmetric across the
real-axis). In this case ) partitions into Q7,Q~ I, the upper, lower, real-line parts of 2. The next
two theorems are in this setting.

Theorem 2.31 (Symmetry principle). If f* and f~ are holomorphic on Q,Q~, and extends
continuously to I with f*(z) = f~(z) for all x € I, then f defined piecewise accordingly on € is
holomorphic.

Proof. At each open disk in €2 centered on a point on I, use Morera with e-shifting and partitions
of rectangles under consideration. O
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Theorem 2.32 (Schwarz reflection principle). Suppose f is holomorphic on Q and extends con-
tinuously to I with f(I) C R. Then there exist F' holomorphic on Q such that F = f on QF.

Proof. Define the lower half to be F(z) = f(Z), and use the symmetry principle. O
2.33. Exercises.

Exercise 2.A. [SSh03, 2.1,2] Evaluate the following integrals:

[e.e] o0 /2
Fresnel integrals : / sin(z?)dx = / cos(z?)dx = Tﬁ
0 0

0o -
ST i
dr = —

0 X 2

Proof. Follow the hint. O

Exercise 2.B. [SSh03, 2.7] Suppose f : D — C is holomorphic, and let d := diam(f(D)) =
sup, wen | f(2) = f(w)]. Then
2f'(0)| < d

and equality holds precisely when f is linear.

Proof. For any 0 < r < 1, we have that 2f(0) = 5 faD HO=F=D g¢ . and thus 2| f/(0)| <
L 4 (2rr) = d/r for any 0 < r < 1. Hence, 2|f'(0 )| < d, as desired. That equality holds when f is

1217;1g2ar is clear. For converse, we first consider the following lemma:

Lemma: If f is holomorphic on D and non-constant, then 3z € D such that | f(0)| < |f(2)|. (Proof:
If f£(0) = 0 where is nothing to prove. So assume not can let R > 0 be such that f(z) # 0 on |z| < R.
Note that for by Cauchy integral formula we have [f(0)] < 5- f oD, L/ (C |\d§ | for any 0 < r < R. If
| £(0)] = supc|=, [ f(Q)], then |f(C)] = |f(0)] constant, so that fis constant by [SSh03, 2.15]. Thus,
1 (0)] < supyi= [£(C)].

Back to the main proof: now, use power series expansion and consider f(z) — f(—z) to conclude

that if ’ reserved for later. turns out this is a hard problem‘ O

Exercise 2.C. [SSh03, 2.12] Let v : D — R be C? and harmonic (i.e. Au = 0). Then show that
there exists holomorphic f on D such that Re(f) = u. Moreover, the imaginary part of f is unique
upto a (real) additive constant.

Proof. First, let g(z) := 2‘9“ Note that g is holomorphic on D since gg = 28z U= 1Au = 0. By
Cauchy’s Theorem there ex1sts F', unique upto (complex) additive constant, such that F' = g. So,
writing F' = U + iV + ¢ (where ¢ € C), that (F —u)’ = 0 implies that (U — u), = (Uy)y = 0, and
thus U — u = « for some o € R. Absorbing this into ¢, we have constructed f = F =u+ iV + ¢
where c is imaginary. O

Exercise 2.D. [SSh03, 2.13] If f is holomorphic on a region  and for each zy € Q at least one
coefficient in the power series expansion f(z) =Y oo cn(z — 20)" is zero. Then show that f is a
polynomial.

Proof. Define S, = {z € Q : f™W(z) = 0}. Since U,cySn = Q, there is N such that Sy is
uncountable. Thus, f(N) (z) has zeroes that accumulate, and hence is identically zero. U

Exercise 2.E. [SSh03, 2.15] Suppose f is continuous and non-zero on D and holomorphic on D
such that |f(2)| =1 for all |z| = 1. Show that f is then constant.
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Proof. Note that for any g holomorphic on U C C open, if ¢ : C — C is the conjugation map, then
G(2) := f(2) is holomorphic on ¢~1(U). Thus, we can extend f to |z| > 1 by defining f(z) := f(11)
(that |f| = 1 at |z| = 1 condition implies that the two f’s match at |z| = 1). Now, using Morera’s
theorem with rectangles (and continuity of f), we have that f is entire, and since f was non-zero

on D, f is bounded. By Liouville’s theorem, f is thus constant. O
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3. MEROMORPHIC FUNCTIONS AND THE LOGARITHM
3.1. Zeroes, singularities, meromorphic functions.

Definition 3.2. A point zy € C is a (point/isolated singularity of f if f is defined in a neigh-
borhood of zg but not at zg.

There are three types of point singularities: removable, poles, and essential singularities.

Theorem 3.3. Suppose f is analytic on Q\{zo}. Then f can be extended to analytic function on
if and only if lim,_,,,(z — 20) f(2) = 0 (i.e. f is bounded on a neighborhood of zy), and the extension
1S unique.

Proof. By Proposition 2.7, we have that f(z) = 5= fc %dg is valid for z # 2y for a circle C' C Q2

2mi
centered at zg, but the RHS expression is analytic inside the circle by Lemma 2.18, so extend f as
the integral formula expresses. O

As a result of this theorem, isolated singularities that satisfy the condition in Theorem 3.3 are
called removable singularities.

Theorem 3.4 (Taylor’s Theorem II). If f is analytic on a region Q > zy, then it is possible to write

n—1 (k)

f(z) = (Z fk(‘zo)(z - zo)k> + fu(2)(z — 20)"
k=0

where f, is analytic on €.

Proof. Apply Theorem 3.3 to F(z) = FR=1G0) g1 case n = 1, and induct using the same idea. [

z—20

Theorem 3.5. If f is analytic on a region 2, does not vanish identically on Q, and f(z9) =0, then
there exists g(z) analytic on Q and nonzero in a neighborhood of zy, and a unique n, such that

f(2) = (2 = 20)"9(2)
(in which case, we say zy is a zero of order n).

Definition 3.6. A function f has a pole at zy if 1/f, defined to be 0 at zp, is analytic in a
neighborhood of zy. Equivalently, zo is a pole of f if lim,_,,, f(z) = oco.

Theorem 3.7. If f has a pole at 2y, then there exists h holomorphic and nonzero on a neighborhood
of 2o, and a unique n, such that

f(2) = (z = 20)"h(2)

(in which case, zy is a pole of order/multiplicity n).
Corollary 3.8. If f has a pole of order n at zy, then
a—n

(z — zo)" z— 2

a—1

+G(z)

where G(z) is holomorphic on a neighborhood of zy.

Theorem 3.9 (Casorati-Weierstrass). Suppose f is holomorphic on a neighborhood of zy but not
on zp, which is an essential singularity (point singularity that is neither removable or a pole).
Then the image of any (punctured) neighborhood of zy under f is dense in C.

Proof. Let D be a small disk around zy, and suppose there exists w with r > 0 such that D, (w) N
f(D) = 0. Now, consider the function g(z) := f(z)%w Note that g(z) is bounded on D, and hence
has a removable singularity at zg. If g(z9) # 0, then f has removable singularity at zp, and if
g(z0) = 0, then f(z) —w has a pole at zy, which means f(z) has a pole at zp. Either case, we get a

contradiction. O
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Definition 3.10. If f is holomorphic on an unbounded region, we say that f has a remov-
able/pole/essential singularity at oo if F(z) := f(1/z) has the corresponding singularity at
z=0.

Definition 3.11. A function f is meromorphic on an open set € if it is holomorphic on Q) except
for a discrete set of points which are poles of f.

Theorem 3.12. The meromorphic functions on C are the rational functions.

Proof. Given f meromorphic on @, subtract off principal part of f at each poles to get a bounded
holomorphic function on C, which must be constant. O

3.13. The calculus of residues.

Definition 3.14. Suppose f has a pole of order n at zg, so that by Corollary 3.8 we can write
 a-qp a”q _
f(Z)—m—f“i‘z_izo—i‘G(Z) Wecallthe(zz)n—i-”-

of f at pole zy, and define the residue of f at pole zy as Res,, f :=a_;.

Proposition 3.15. If f has a pole of order n at zg, then

n—1
Res,, f = lim b (8) (z —20)"f(2)

z—z0 (n— 1) \ 0z

Theorem 3.16 (Residue formula). Let f be analytic on a region Q except for poles z1,...,zy € ).
Then, for any cycle v ~ 0 € Hi(§2) and not passing through any of z;’s, we have

5 /fdz = n(v, zj) Res;, f
In particular, if v is a toy-contour in 2 containing z1,...,2n, then we have
/ fdz =2mi ZRGSZJ
7j=1

Proof. Note that v ~ 0 in € implies that v ~ Zjvzl n(v, z;)Cj in Q\z1,...,zy for some circles Cj;
centered at z;. For each C; use Corollary 3.8. U

Example 3.17. [Ahl79, 4.5.3] One can show (in increasing generalities) that for a rational function
R(x) such that R(oco) = 0 and poles on the real line are simple, we get

oo
/ R(z)e'™ = 2mi Z Res, R(2)e"* + mi Z Resy R
> y>0
3.18. The argument principle & applications.

Theorem 3.19 (Argument principle). Suppose f is meromorphic on an open 2 with zeroes {a;}
and poles {b,} (repeated to each order), and v is a cycle such that v ~ 0 € H1(Q2) and does not go
through zeroes or poles of f. Then

TG N e ST
2mi J, Ok —; (7: ;) Zk: (7, bx)

Proof. Apply the residue formula (Theorem 3.16) to f'/f. O
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Corollary 3.20. If f is meromorphic on an open set containing a circle C and its interior, and f
has no zeroes or poles on C, then

1P
2ri Jo f(z)

where the zeros and poles are counted with multiplicity.

dz = (number of zeroes inside C') — (number of poles inside C)

Theorem 3.21 (Rouche’s theorem). If f and g are holomorphic on an open set containing a circle
C and its interior, and |f(2)| > |g(2)| for all z € C, then f and f + g have the same number of
zeros in C'.

Proof. Define fi(z) = f(z) + tg(z) for t € [0,1], which is continuous jointly in ¢,z. Note that
|f(2)] > |g(2)| implies that fi(z) # 0 for all ¢ in a neighborhood of C. Thus, we can define

1 /(2
ng = — ft( )d
2mi Jo fi(z)
Since n; is continuous in ¢, it must be constant, and hence ng = nq, as desired. O

Theorem 3.22 (open mapping theorem). If f is holomorphic and non-constant on 2, then f is
open.

Proof. Fix arbitrary zop and let wg := f(zp). Choose 6 > 0 such that Bs(zp) C 2 and f(z) # wp on
|z — 20| = d, and € > 0 such that |f(z) — wp| > € on |z — 29| = 6. Now, note that for any w such
that |w — wp| < €, by Rouche’s theorem we have that g(z) := f(z) —w = (f(2) — wo) + (wo —w) =
F(z) + G(z) has a root in |z — 2p| < 0. O

Theorem 3.23 (maximum modulus principle). If f is holomorphic and non-constant on a region
Q, then f cannot attain a mazimum (i.e. mazimum in modulus |f(z)]) in Q.

Proof. If | f(20)| is max, then consider f(D) where D is a small disk around zp, which is open. [

Corollary 3.24. Suppose () is a region with compact closure Q. If f is holomorphic on  and
continuous on €2, then

sup [f(z)| < sup | f(2)]
z€Q Q-0

3.25. Complex logarithm.

Proposition 3.26. Suppose Q is simply connected with 1 € Q and 0 ¢ Q. Then in Q there is a
branch of the logarithm F(z) = log z such that F is holomorphic on €, ef®) = = for all z € Q, and
F(r) =logr whenever r is real number near 1.

Example 3.27. In the split plane Q@ = C — {(—o00,0]}, we have the principal branch logz =
log r + 0 where 0] < 7. For a € C, 2% is defined as 2® := e*1°8% on

Theorem 3.28. If f is nowhere vanishing holomorphic on simply connected region §2, then there
exists g holomorphic on  such that

() = )
fice. g(=) = log £(2)).
Proof. Fixing zg € €, define g(z) = f7 %d( + ¢o for  path from zp to z and e® = f(zp). O
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3.29. Exercises.

Exercise 3.A. [SSh03, 3.1] Show that the complex zeros of sinmz are exactly at the integers, and
are each of order 1. Calculate the residue of 1/sinwz are z =n € Z.

. . . Mz __,—iTZ
Solution. Since sinTz = “—7

one obtains e?™e~2™ = 1, so that y = 0 and x = n € Z. Power series expanding sin7z at n € Z
gives > oo m(z —n) — g—?(z —n)3 4 --- if n is even, and the opposite if n is odd. Hence, the zeros
are of order 1, and the residues for 1/sinmz are 1/7 for n even and —1/x for n odd. g

Exercise 3.B. [SSh03, 3.6] Show that for n > 1,

o0 dx _ (2n)!
[t = e

, we have that sin7z =0 = €™ = 1, and writing z = z + iy,

Proof. Note that f(z) := W has poles i and —i of order n 4+ 1. So, [above integral equals
. . . _s\n+1 . | _1\n |
27i Res; f = lim,_,; %(%)”7((11;2))%1 = 2mi Ei?)); (Q(i)QIT)LH = 4£L2(7:3;2 . O

Exercise 3.C. [SSh03, 3.8] Prove that

/2” o or
0 a+bcost a2 — b2

Proof. Letting z = €, we can rewrite the integral as (where C' is unit circle)
1 dz
— = 2mi Res
/C’(I—Fb'é(z—i—i)lz ZOG]D)f
which gives us the desired result. O

Exercise 3.D. [SSh03, 3.10] Show that for a > 0,

/OO log x d ™
———dr = —loga
0 2+ a? 2a %

Proof. Define log z on C — {(0,y) : y < 0} by log z = log |z| + i# where 0 € (—7/2,37/2). Using the

dented semicircle v as the contour, and noting that :le_ga L —0asr — 0orr— oo, one computes
that 0
. log(ia log z log(—x) + ¢ > logz
27 - g( ):/ 2g de:/ 7g(2 >27de+/ 2g sdx
2ia 25+ a oo TTHa 0o T°ta
and thus we have % + % =2/ xlf B+ %, and the desired equality follows. O

Exercise 3.E. [SSh03, 3.14] Prove that all entire functions that are also injective take the form
f(z) =az+b with a,b € C and a # 0.

Proof. If f is meromorphic on @, then f is a rational function, but since f entire, it is a polynomial
and injectivity implies that f is then linear. If f has essential singularity at infinity, then f(C\D)
must be dense in C, but then since f is an open map, f(C\D) N f(D) # (), and hence injectivity
implies that f cannot have essential singularity at infinity. O

Exercise 3.F. [SSh03, 3.15] Prove the following statements:
(1) If f is an entire function satisfying sup|,—g |f(2)| < ARF + B for some A,B >0 and k € N,
then f is polynomial of degree < k.
(2) If f is holomorphic on D, is bounded, and converges uniformly to zero in the sector § <
argz < ¢ as |z| — 1, then f = 0.
(3) Let wn,...,wy be on the unit circle C. Then 3z € C such that |z —wi|--- |z —wy| = 1.
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(4) If the real part of an entire function f is bounded, then f is constant.

Proof.

(1) Cauchy inequality implies that f((0) = 0 for all n > k.

(2)

(3) Note that C'— R given by z +— |z — wi| - -+ |z — wy| is continuous, so it suffices to show that
for some z € C, |z —wi| -+ |z —w,| > 1. Well, (z —wy)--- (2 — wy,) is holomorphic on D,
then achieves modulus 1 when z = 0, so the maximum principle gives us the desired z € C.

(4) If f has essential singularity at infinity, then the real part is not bounded by Casorati-
Weierstrass. But if f is meromorphic, then f is a polynomial and hence is constant.

O

Exercise 3.G. [SSh03, 3.16] Suppose f and g are holomorphic on a region containing D, and
suppose f has a simple zero at z = 0 with no other zeroes on . Then fc(z) = f(2) + eg(2) has a
unique zero in D for e sufficiently small, and if z. is the zero of fe, then € — z. is continuous.

Proof. For a small enough € > 0, we have inf|;_; |f| > esupj,—; |g], so that by Rouche’s theorem
fe has a unique zero in D. Moreover, let {§,} sequence of numbers converging to § < e. We need
show that z5, — zs. Well, if {25,} C D does not converge to zs then it has a subsequence that
converges to some w # zs. But since F': D x R — C defined as F(z,¢) := f.(2) is continuous, and
(On, 2s,,) — (6, w), we have fs(w) = F(w,d) = 0, which contradicts uniqueness of the zero of f5. O

Exercise 3.H. [SSh03, 3.17] Let f be non-constant and holomorphic on an open set containing D.
Iff |f(z)|=1on|z| =1, orif |f(2)| > 1 on |z| = 1 and there exists zcD such that |f(z0)| < 1, then
the image of f contains the unit disk.

Proof. In both cases, by Rouche’s theorem f(z) = w has a root for every w € D if f(z) =0 has a
root. But if f(z) = 0 has no root, then 1/f defined on D achieves its maximum in the interior D
(by maximum principle for the first case, obvious in the second case). O

Exercise 3.1. [SSh03, 3.19] Prove the maximum principle for harmonic functions.

Proof. Suppose an harmonic function v defined on an open set {2 achieves a local maximum M at
2o € Q. We know that there exists a holomorphic function f on € such that Re(f) = u. Then f
is not open since f(z9) = M + ib, and no neighborhood of M + ib is contained in the image f(D)
where D is a small neighborhood of z. O

Exercise 3.J (Laurent Series Expansion). [SSh03, Problem 3.3] Suppose f is analytic on a region
containing the annulus {r1 < |z — zo| < reo}. Then, we can write (uniquely)

o)

f(z) = Z an(z — zp)"

n=—oo

where the series converges absolutely in the interior of the annulus.

Proof. By Theorem 2.14, one can write

1 f(Q) 1 f(©)
CRE— e M

1

and use the series expansion of 1/(¢ — z) = 1 1 appropriately in each case. O

¢—20)—(2—20)
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4. CONFORMAL MAPs
4.1. Conformal equivalence and examples.

Proposition 4.2. If f : U — V for U,V C C open is holomorphic and injective, then f'(zg) # 0
for all zg € U. Moreover, as a result the inverse of f defined on its image is holomorphic.

Proof. Write f(2) — f(z0) = ar(z — 20)* + [(z — 20)**1] and use Rouche’s theorem to conclude that
f(2) — f(20) is not injective. Second part follows: (f~1)'(f(z0)) = % O

Definition 4.3. A map holomorphic map f : U — V with f'(29) # 0 Vzo € U is called con-
formal map. If f is bijective, then it is called a biholomorphism (note that its inverse is also
holomorphic), in which we say U,V are conformally equivalent.

Example 4.4. Translations z — z4a and rotation+dilation given by z — cz, (¢ € C) are conformal
equivalences C = C.

Example 4.5. Let H := {z € C : Im(z) > 0} be the upper half-plane. H and the unit disk D are
conformally equivalent. One equivalence is given by F': H — D, G : D — H where

11—z 1—w
F = s G =1
(2) 1+ z (w) =i 14w
Example 4.6. For 0 < a < 2, the map f(z) = z“ defined in terms of the principal branch is a
biholomorphic map from H to the sector S = {w € C: 0 < arg(w) < ar}.

Example 4.7. The map f(z) = log z is a biholomorphism from H to a region {a + bi: a € R,0 <
b < m}. It also biholomorphically maps upper unit disk to {a +bi:a < 0,0 <b < 7}

4.8. The Mobius transformations.

Definition 4.9. We call maps of the following form a Mobius transformation / (fractional)
linear map:
az+b

1) = cz+d

for a,b,c,d € C such that ad — bc # 0.

Remark 4.10. Noting the identification CP! ~ @, we see that a Mobius map computed in CP! is
[21 : 29| = [az1 + bz : cz1 + dzg]. In other words, it really is a linear transformation in homogeneous
a b

d
of PSLy(C) correspond exactly to different Mobius maps, and so a Mobius map is determined
by image of three distinct points. Moreover, composition of Mobius maps corresponds to matrix
multiplication. Indeed, it is thus a biholomorphic map C 3 C. Moreover,

coordinates made by multiplying matrix M = ] to [zl} In this view, one sees that matrices
2

Proposition 4.11. Given three distinct points zo, 23, 24 € @, the Mobius map T that maps zs, 23, 24
to 1,0, 00, respectively, is given by
B (z — 23) (22 — 24)
f(z) =
(z — 24) (22 — 23)
(if z2, 23, or z4 = 00, just cancel the terms with it). We denote the above f(z) by (z, 22, 23, 24) called
the cross ratio.

Theorem 4.12. For distinct points 21, 29, 23, 24 € C and T a Mobius map, (Tz1,Tz2,Tz3,Tz4) =
(21, 22, 23, 24). And hence, T that maps za, 3, 24) to wa, w3, w3 is obtained by writing (w, we, w3, wy) =
(2, 22, 23, 24) and solving for w.
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Example 4.13. Fractional linear map gives us abundance of biholomorphism, especially when we

use them to rotate the Riemann sphere. The map z — (z,7,1,—1) = % = zﬁz is the map
G : D — H in Example 4.5. In another case, z — (z,0,—1,1) = % = if’f maps upper

half-disk to the first quadrant.
4.14. The Schwarz lemma and Aut(D), Aut(H).

Proposition 4.15 (Schwarz Lemma). Let f : D — D be holomorphic with f(0) = 0. Then |f(z)] <
|z| for all z € D, and if equality occurs at zg € D, then f is a rotation. Moreover, |f'(0)| < 1, and
if equal then f is a rotation.

Proof. Consider the holomorphic function %Z) and use the maximum principle. O

Definition 4.16. For a open set Q C C, an automorphism of Q) is a biholomorphic map f : ) —
Q. Automorphisms of Q forms a group Aut(Q).
Example 4.17. In [SSh03, Exercise 3.14], we proved that Aut(C) = {z — az+b:a,b € C, a # 0}.
Theorem 4.18. Automorphisms of D are exactly the maps

f(z) =€ 1-az
where § € R and o € D.

Proof. Note that the map ¢, (z) := *=£ is a biholomorphism D — D that exchanges 0 and «,

1—az
and ¢, is its own inverse. Now, suppose f € Aut(D) and f(0) = «. Consider g = f o ¢4, which
biholomorphically maps D — D and g(0) = 0. By Schwarz lemma on both g and g1, we get
l9(2)| = || for z € D, and hence g is a rotation g = . But then f = g o ¢,. O

Corollary 4.19. Automorphisms of D that fix the origin are the rotations.
Theorem 4.20. Automorphisms of H are exactly of the form
az+b

cz+d
where a,b,c,d € R such that ad — bc = 1. In other words, we have an isomorphism

Aut(H) ~ PSLs(R)

Proof. Let F : H — D be a biholomorphism. Note the isomorphism Aut(D) = Aut(H) via f
F~1o foF. Then, the previous theorem and computation yields the desired result. O

Remark 4.21. Note that Aut(D), Aut(H) act transitively on D, H (respectively), but not faithfully.

Z =

4.22. The Riemann mapping theorem.

Before stating and proving the Riemann mapping theorem and its proof, we consider some metric
topological matters.

Given a metric space (X,d), X is totally bounded if X can be covered by finitely many e-balls
for any given € > 0. It is well-known that

A metric space X is compact iff it is complete and totally bounded

Given a metric space (Y,d) and X a set, we can define a metric on YX by

pf9) == { i“gngpdgl(xxg(:c))

This is the uniform topology on Y¥; convergence in this metric is exactly uniform convergence
of functions. Hence, we know that C(X,Y) C YX is closed. Moreover, note the fact that Y X is
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complete if Y is complete. Note that unit-ball in C'(X,Y’) is not compact; e.g. {z"}, C C([0,1])
is not sequentially compact. For K a compact metric space, a family of functions # € C(K) is
uniformly bounded if there exists M such that |f| < M Vf € Z, and % is equicontinuous if
for any € > 0 there exists 6 > 0 such that |f(z) — f(y)| < € whenever z,y € K, d(x,y) < 0 and
feZz.

Theorem 4.23 (Arzela-Ascoli). Let K is a compact metric space. If a family of functions # C
C(K) is equicontinuous and uniformly bounded, then F# is compact.

In complex analysis, a related notion to a family of functions being compact is the following:

Definition 4.24. Let Q@ C C be open, and % be a family of holomorphic functions on Q. F is
normal if every sequence in F has a subsequence that converges uniformly on every compact subset
of Q (limit need not be in F ).

Theorem 4.25 (Montel’s theorem). Let .% be a family of holomorphic functions on Q. If F is
uniformly bounded on every compact subset of 2, then F is equicontinuous on every compact subset
of Q, and hence F is a normal family.

Proof. Note that if |f’| is bounded, then f is Lipschitz cotninuous, so use Cauchy integral formula
and that % is uniformly bounded to show that |f'(2)] < M for all f € # and z € Q. This show
Z equicontinuous. Then use Arzela-Ascoli theorem with exhaustion of 2 by compact sets to show
normal. O

Proposition 4.26. If Q is a region and {f,} a sequence of injective holomorphic functions on
that converges uniformly to a holomorphic function f on every compact subset of €}, then f is either
injective or constant.

Proof. If f(z1) = f(z2), then consider the sequence g, (2) := fn(2) — f(21). Note that g, — g :=
f(2) — f(21) uniformly on all compact subsets and so does ¢/, — ¢’. Thus, for a small circle around

22, we must have 0 = ﬁ fc 902) 1, = ﬁ fC Z((ZZ)) dz = 1, which is a contradiction. O

an(2)

Theorem 4.27 (Riemann mapping theorem). If Q C C is proper and simply-connected region, then
for zo € Q, there exists a unique biholomorphism F : Q@ — D such that F(zy) =0 and F'(zy) > 0.

Proof. O

4.28. Exercises.

Exercise 4.A. [SSh03, 8.10] Let F' : H — C be a holomorphic function satisfying |F(z)| < 1 and
F(i) = 0. Then show that |F(z)| < \er—z .

Proof. Note that G : H — D defined by G(z) := Z—i and G~ H(w) = zi—g is a conformal equivalence.
Define H:D — Dby H:=FoG !:D— C. Since H maps D — D and H(0) = 0, by the Schwarz
lemma we have |H(w)| < |w]| for all w € D. In other words, |F(G~(w))| < |G(G~!(w)|, and thus
|F(z)| < |z| for z € H. O

Exercise 4.B. [SSh03, 8.12] If f : D — D is analytic and has two distinct fized points, then f is
the identity (i.e. f(z)=z).

a—z

Proof. Suppose a, 8 € D are two distinct fixed points. Consider the biholomorphism ¢, (2) := =,
which satisfies ¢, (0) = a and ¢, (8) = ' (note ¢ (8') = B8). Now, consider the map g := @0 fo, :
D — D, which has fixed points 0 and 3’. By the Schwarz lemma, g is a rotation that fixes a nonzero
point, and hence identity, and thus f is also identity. O
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Exercise 4.C. [SSh03, 8.14] Show that all biholomorphic maps H — D take the form

zHeieﬁ, feR, BeH
z=p
Proof. Any biholomorphism f : H — D factors through as f = (fo F’l) o F where F: H—Disa
biholomorphism z — =% and fo F~! € Aut(D) is of the form z ew% for 6 € R, a € D. Now,
computing the composition of the Mobius transformation

O | R e ey

ola+1l 0 1 —-p
1o a+1||1 -8

which factors as

where = Z% = F~1(a). Since |a+1| = [@+ 1|, the left matrix also rotation Mobius map. Hence,
for some 0’ and 8 € H as defined, f(z) = ¢’ Z=2 as desired. O

z—pB’
Exercise 4.D. [SSh03, 8.15] Suppose ® € Aut(H) that fizes three distinct points on the real axis,
then ® is identity. If (z,y,z) and (2',y,2') are two pairs of three distinct points on the real azxis
with z1 < z9 < 23, w1 < wg < w3, then there exists a unique automorphism ® € Aut(H) such that
O(x;) = w;. Same holds if wy < ws < wy or wz < wy < ws.

~

Proof. Aut(H) C Aut(C) as PSLs(R) C PSLy(C). Thus, since a Mobius transformation is deter-
mined by images of three distinct points, the first statement follows. Now, for the second statement,
writing (z, 21, 22, 23) = (w, w1, w2, w3) and solving for w gives a Mobius transformation ZZZIS for
some a, b, c,d € R mapping z1, 22, 23 to wy, wa, ws, and with (a lot of) computation, one checks that

ad — bc > 0 (so that [a b
c d

€ PSLy(R)) exactly when w;’s are ordered as given. O

Exercise 4.E. [SSh03, Problem 8.2] The oriented angle of z,w € C is determined by two quan-
tities
(z,w) and (z, —iw)7
2wl |2 [w]
An oriented angle of two intersecting curves at the intersection is defined as the angle of two tangent
vectors at the intersection. A map f: Q) — C is angle-preserving at zy € Q) if for any two curves
v,m C Q intersecting at zy, the (oriented) angle of v,n at zy and the angle of f oy, fon at f(zy)
are the same. Show that:
(1) If f : Q@ — C is holomorphic with f(z9) # 0, then f is angle-preserving at zg.
(2) Conversely, if f: Q — C is real-differentiable at zy with J¢(z0) # 0 and is angle-preserving,
then f is holomorphic at zg.

Proof. (1) is easy, for if y(tp) = 29 and n(sg) = z9, then (f o) (to) = f'(20)7 (to), (fon)(tg) =
1" (z0)n'(to). For the converse, by chain rule, if v is a curve through zq at to, then [Df].,7 (to) = (fo
v) (to). Since the matrix M := [Df],, is such that (u,v) = (Mu, Mv) and (u, —iv) = (Mu, M (—iv))

where (z,w) = Re(wZz)

for any |u| = |v| = 1, it is of the form , which means that f satisfies the Cauchy-Riemann

a
b

equation at zg.



COMPLEX ANALYSIS NOTES

REFERENCES

[Ahl79] Ahlfors. Complex Analysis. 3rd ed. Mc-Graw Hill. 1979.
[SSh03] Stein & Shakarchi. Complez Analysis. Princeton Lectures in Analysis II. 2003.
[Leel3] Lee. Introduction to Smooth Manifolds. Springer. 2013.

19



