
COMPLEX ANALYSIS NOTES

CHRISTOPHER EUR

Notes taken while reviewing (but closer to relearning) complex analysis through [SSh03] and
[Ahl79]. Some solutions to the exercises in [SSh03] are also written down. I do not claim that the
notes or solutions written here are correct or elegant.

1. Preliminaries to complex analysis

The complex numbers is a field C := {a + ib : a, b ∈ R} that is complete with respect to
the modulus norm |z| = zz. Every z ∈ C, z 6= 0 can be uniquely represented as z = reiθ for
r > 0, θ ∈ [0, 2π). A region Ω ⊂ C is a connected open subset; since C is locally-path connected,
connected+open =⇒ path-connected (in fact, PL-path-connected). Denote the open unit disk by
D.

Definition 1.1. A function f : U → C for U ⊂ C open is holomorphic/analytic/complex-
differentiable at z0 ∈ U if

lim
h→0

f(z0 + h)− f(z0)

h

exists, and we denote the limit value by f ′(z0). Equivalently, f is holomorphic at z0 iff there exists
a ∈ C and such that f(z0 + h) − f(z0) − ah = hψ(h) and ψ(h) → 0 as h → 0, in which case
a = f ′(z0). f is holomorphic if it is at z0 for all z0 ∈ U .

Proposition 1.2. Differentiation rules about f + g, fg, f/g and f ◦ g (chain rule) holds.

Theorem 1.3. For f : U → C, write f = u+ iv where u, v : U → R. f is holomorphic at z0 ∈ U if
and only if f as a map R2 ⊃ U → R2 is differentiable at z0 and satisfies

Cauchy-Riemann equations: ux = vy and uy = −vx at z0

Proof. First, note that a + ib ∈ C can identified with the real matrices of the form

[
a −b
b a

]
. This

also works well with C ' R2 in that the vector in R2 for (a+ ib)(c+ id) is

[
a −b
b a

] [
c
d

]
.

Now, as a map in real variables, f is differentiable iff there exists a matrix A such that |f(z0 +
h)−f(z0)−Ah| = |h||ψ(h)| with |ψ(h)| → 0 as h→ 0. Now, multiplication by A is complex number

multiplication iff A of the form

[
a −b
b a

]
. Thus, if f is differentiable in real sense and satisfies the

Cauchy-Riemann equations, then f(z0 + h)− f(z0)− (ux(z0) + ivx(z0))h = hψ(h) with |ψ(h)| → 0
as h→ 0, and hence holomorphic at z0. If f is holomorphic, then letting A be the matrix of f ′(z0)
works, and thus Cauchy-Riemann equation follows. �

Definition 1.4. Define two differential operators by:

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
1
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Proposition 1.5. f is holomorphic at z0 iff
∂f

∂z
(z0) = 0. Moreover, if holomorphic,

f ′(z0) =
∂f

∂z
(z0) = 2

∂u

∂z
(z0) = 2i

∂v

∂z
(z0) and det[Df ]z0 = |f(z0)|2

Power series are good (and really the only) examples of holomorphic functions.

Theorem 1.6. Given a power series
∑∞

n=0 anz
n, let 1/R := lim sup |an|1/n (with 1/∞ = 0 and

1/0 =∞). Then for |z| < R, the series (uniformly) converges absolutely, and diverges for |z| > R.
Moreover, f(z) :=

∑∞
n=0 anz

n is holomorphic on its disk of convergence with f ′(z) =
∑∞

n=0 nanz
n

with the same radius of convergence.

Proof. Compare to geometric series (Weierstrass M-test), and do some computation. �

It is useful to note the relationship between the root-test and the ratio-test; ratio-test is often the
easier option, but root-test is more general. More precisely,

Proposition 1.7. For any sequence {cn} of positive numbers,

lim inf
cn+1

cn
≤ lim inf n

√
cn and lim sup n

√
cn ≤ lim sup

cn+1

cn
1.8. Exercises.

Exercise 1.A. [SSh03, 1.4] Show that there is no total ordering on C
Proof. Suppose there is a total ordering > on C, and WLOG i > 0. Then −1 = i2 > 0, and so
−1 > 0, and so 1 = (−1)2 > 0 but −1 + 1 > 1. Thus, 1 > 0 and 1 < 0, which is a contradiction. �

Exercise 1.B. [SSh03, 1.7] For z, w ∈ C such that zw 6= 1 and |z| ≤ 1, |w| ≤ 1, show that∣∣∣∣ w − z1− wz

∣∣∣∣ ≤ 1

where the equality occurs exactly when |z| = 1 or |w| = 1. Moreover, for w ∈ D, the mapping
F : z 7→ w−z

1−wz is a bijective holomorphic map F : D→ D that interchanges 0 and w, and |F (z)| = 1

if |z| = 1. These mappings are called Blaschke factors

Proof. The inequality is equivalent to |w− z|2 ≤ |1−wz|2, which when written out is equivalent to
|z|2 + |w|2 ≤ 1 + |w|2|z|2, and this inequality holds with equality exactly at |z| = 1 or |w| = 1 since
0 ≤ (1 − |w|2)(1 − |z|2) for |z|, |w| ≤ 1. One computes that F ◦ F (z) = z and the rest of claims
about F follows immediately from the inequality. �

Exercise 1.C. [SSh03, 1.9] Show that Cauchy-Riemann equations in polar coordinates is

ur =
1

r
vθ, vr = −1

r
uθ

Proof. With x = r cos θ, y = r sin θ, computing du for u : R2 → R in two coordinates (x, y) and
(r, θ) gives us (and likewise for dv):[

cos θ sin θ
−r sin θ r cos θ

] [
ux
uy

]
=

[
ur
uθ

]
,

[
cos θ sin θ
−r sin θ r cos θ

] [
vx
vy

]
=

[
vr
vθ

]
and thus we have [

r cos θ − sin θ
r sin θ cos θ

] [
ur vr
uθ vθ

]
=

[
ux vx
uy vy

]
Now, ux = vy and uy = −vx becomes:

(1) : r cos θur − sin θuθ = r sin θvr + cos θvθ, (2) : r sin θur + cos θuθ = −r cos θvr + sin θvθ

And from here (1) ·cos θ+(2) · sin θ gives us rur = vθ, and −(1) · sin θ+(2) ·cos θ gives us rvr = −uθ,
as desired. �
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Exercise 1.D. [SSh03, 1.10,11] Show that 4 ∂∂z
∂
∂z = 4 ∂∂z

∂
∂z = ∆ where ∆ is the Laplacian ∆ =

∂2

∂x2
+ ∂2

∂y2
. Moreover, show that if f is holomorphic on an open set Ω, then real and imaginary parts

of f are harmonic, i.e. Laplacian is zero.

Proof. 41
2(∂x − i∂y)1

2(∂x + i∂y) = ∆, and f holomorphic means ∂f
∂z = 0, and so ∆f = 0. �

Exercise 1.E. [SSh03, 1.13] If f is holomorphic on an open set Ω, and (i) Re(f), or (ii) Im(f), or
(iii) |f | is constant, then f is constant on Ω.

Proof. It suffices to show that f ′ = 0 on Ω on any of the conditions given. For (i) or (ii), ∂f
∂z =

2∂u∂z = i2∂v∂z , so f ′ = 0. For (iii), u2 + v2 is constant, and so applying ∂xx, ∂yy to (u2 + v2) = C gives

us uxxu+ vxxv+ (u2
x + v2

x) = 0, uyyu+ vyyv+ (u2
y + v2

y) = 0. Adding the two and using the fact that
u, v are harmonic, we have that ux = uy = vx = vy = 0. �

Exercise 1.F. [SSh03, 1.14,15] Prove the summation by parts formula (defining Bk :=
∑k

n=1 bn
and B0 := 0),

N∑
n=M

anbn = aNBN − aMbM−1 −
N−1∑
n=M

(an+1 − an)Bn

and use the formula to prove the Abel’s theorem: If
∑∞

n=1 an converges, then

lim
r→1−

∞∑
n=1

anr
n =

∞∑
n=1

an

Proof. For the summation by parts formula, draw the n× n matrix (aibj)1≤i,j≤n and consider what

each terms in the summation mean. As for Abel’s theorem, something is weird : since fN (r) =∑N
n=1 anr

n is continuous on 0 ≤ r ≤ 1 and fN → f uniformly (where f :=
∑∞

n=1 anr
n), we can

commute the two limits. �

Exercise 1.G. [SSh03, 1.20] Show that: (1)
∑
nzn diverges for all points on the unit circle, (2)∑ 1

n2 z
n converges for all points on the unit circle, (3)

∑ 1
nz

n converges for all points on the unit
circle except z = 1.

Proof. For (1), each terms don’t go to zero. For (2), absolute convergence. For (3), we need:
Lemma: Suppose partial sums An of

∑
an is a bounded sequence, and b0 ≥ b1 ≥ b2 ≥ · · · with

limn→∞ bn = 0. Then
∑
anbn is convergent. (Proof: use summation by parts formula).

This lemma also implies the Alternating Series Test with an = (−1)n. For (3), we note that
an = zn satisfies the condition of the lemma for |z| ≤ 1, z 6= 1. �
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2. Cauchy’s Theorem and Basic Applications

A curve γ is assumed piecewise differentiable unless otherwise noted. A curve γ is closed if
the initial and end points are the same. A R-path is a curve entirely consisting of horizontal and
vertical segments. Note that any region in C is R-path-connected.

A region Ω is simply-connected if π1(Ω) = 0, or equivalently, if any continuous map S1 → Ω

extends to B2 → Ω, or equivalently, if complement of Ω in Ĉ is connected.

2.1. Cauchy’s Theorem.

Definition 2.2. For f : Ω→ C and γ : I → Ω, we define the integral of f along γ by:∫
γ
fdz :=

∫
I
f(γ(t))γ′(t)dt

Equivalently, the integral is the integration of a 1-form as follows:
∫
γ(udx− vdy) + i(udy + vdx).

Proposition 2.3. The defining length(γ) :=
∫
γ |dz| =

∫
I |γ
′(t)|dt, one has the following inequality:∣∣∣∣∫

γ
fdz

∣∣∣∣ ≤ ∫
γ
|f ||dz| ≤

(
sup
γ
|f |
)
· length(γ)

Theorem 2.4. For a 1-form ω = pdx+ qdy on an open region Ω,
∫
γ pdx+ qdy = 0 for any closed

curve γ in Ω if and only if ω is exact. Moreover, if ω = df , then for any γ : [a, b]→ Ω,∫
γ
ω = f(γ(b))− f(γ(a))

Proof. The second part is easy, and it implies one direction of the first part. For the converse, if the
integral along any closed curve is zero, pick an arbitrary point p ∈ Ω and define F (z) :=

∫
γ ω for

z ∈ Ω where γ is a curve from p to z. By making γ an R-path, with last segment being horizontal
or vertical, one recovers that dF = ω. �

Corollary 2.5. If f : Ω→ C has a primitive, i.e. F : Ω→ C such that F ′ = f , then
∫
γ f = 0 for

all closed γ ⊂ Ω.

Proof. If F = U + iV and F ′ = f = u + iv, then dF = Uxdx + Uydy + i(Vxdx + Vydy) and
u = Ux = Vy, v = Vx = −Uy , so that f as a 1-form equals dF . �

Theorem 2.6. [Goursat’s Theorem] If f is analytic on R, a rectangle with horizontal and vertical
sides, then ∫

∂R
fdz = 0

Proof. Keep subdividing rectangles into fours and pick ones with biggest integral and converge to
z0. At each step, we have |η(Rn)| ≥ 4−n|η(R)|. Now, make n large enough (Rn small enough to z0)
so that

|f(z)− f(z0)− (z − z0)f ′(z0)| < ε|z − z0|
Note that

∫
∂R dz = 0 =

∫
∂R zdz, so integrating both sides of inequality above gives |η(Rn)| ≤

e
∫
∂Rn
|z − z0||dz|. Rest is computation. �

Proposition 2.7. Theorem 2.6 still holds if f is holomorphic on R\{z1, . . . , zk} (zi ∈ int(R)) where

lim
z→zi

(z − zi)f(z) = 0 ∀i

Proof. WLOG let k = 1 and use Theorem 2.6 to shrink the boundary of rectangle to a very small
square centered at z1. �
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Theorem 2.8. [Cauchy’s Theorem I] If f is holomorphic on an open disk D (or on D minus finite
points satisfying the condition in Proposition 2.7), then for any closed γ ⊂ D,∫

γ
fdz = 0

Proof. Construct the primitive of f as F (z) :=
∫
σ fdz where σ is an R-path from a pre-fixed point

p to z. F is well-defined due to Theorem 2.6 (Proposition 2.7). �

Theorem 2.9. Suppose f is holomorphic on open region Ω. Then if γ0, γ1 ⊂ Ω are homotopic (need
be end-point homotopy), then ∫

γ0

fdz =

∫
γ1

fdz

Proof. Let γs(t) : I × I → Ω be the homotopy. Since Im(γs(t)) ⊂ Ω is compact, there exists ε > 0
such that any 3ε-ball around a point in Im(γs(t)) is contained in Ω. Also, there exist δ > 0 such that
sup |γs0(t)− γs1(t)| < ε whenever |s0 − s1| < δ. Use these to make disks {D0, . . . , Dn} of radius 2ε,
and consecutive points {z0, . . . , zn+1} ⊂ γs0 , {w0, . . . , wn+1} ⊂ γs1 with z0 = w0, zn+1 = wn+1 such
that zi, zi+1, wi, wi+1 ∈ Di. Now Theorem 2.8 integrals implies that integrals along closed curves

zi
straight→ wi

γs1→ wi+1
straight→ zi+1

−γs0→ zi is zero, and adding these up we have
∫
−γs0+γs1

fdz = 0. To

finish the proof, divide interval I into many pieces all of length less than δ. �

Theorem 2.10 (Cauchy’s Theorem II). If f is holomorphic on an simply-connected region Ω, then
for any closed γ ⊂ Ω, ∫

γ
f = 0

Proof. Homotope γ to a constant map and use Theorem 2.9 �

Proposition 2.11. Let a ∈ C and γ a closed curve not going through a. Then the index of a
point a with respect to γ (or, the winding number of γ around a), defined as

n(γ, a) :=
1

2πi

∫
γ

1

z − a
dz

is an integer. In fact, if C(C\{a}) is the group of chains of closed curves in C\{a}, then the map

C(C\{a})→ Z given by γ 7→ n(γ, a) is the map C(C\{a})→ H1(C\{a}) ∼→ Z.

Proof. Homotope γ to lie on a circle centered at a and compute. For the second statement, note
that H1 is the abelianization of π1. �

Proposition 2.12. Given a closed curve γ, define the regions determined by γ as the connected
open components of C − γ. Then the number n(γ, a) only depends on the region determined by γ
that a belongs to.

Proposition 2.13. Let C(Ω) be the group of chains of closed curves on open region Ω. Given
γ ∈ C(Ω), we have that [γ] = 0 ∈ H1(Ω) if and only if n(γ, a) = 0 for any a ∈ C− Ω.

Theorem 2.14 (General Cauchy’s Theorem). If f is holomorphic on an open region Ω, then∫
γ
fdz = 0

for all γ ∈ C(Ω) such that [γ] = 0 ∈ H1(Ω).

Proof. TODO �
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2.15. Basic Applications of Cauchy’s Theorem.

Remark 2.16. Even before touching upon calculus of residues, one can compute many real integrals
using toy-contours and Cauchy’s Theorem. (Examples in the Exercises)

Theorem 2.17 (Cauchy integral formulas). Let f be holomorphic on a region Ω, and D ⊂ Ω be a
closed disk and C := ∂D. Then for any z ∈ D,

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

Furthermore, one has that

f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ

Proof. Fix z0 ∈ D. By Theorem 2.8 on
∫
C
f(ζ)−f(z0)

ζ−z0 dζ = 0, and linearity of integral gives
∫
C

f(ζ)
ζ−z0dζ =

n(C, z0) · f(z0). The second part of the theorem follows from the following more general lemma:

Lemma 2.18. [Ahl79, 4.2.3] If φ(ζ) is continuous on an arc γ, then Fn(z) :=
∫
γ

φ(ζ)
(ζ−z)ndζ is holo-

morphic in each region determined by γ and F ′n(z) = nFn+1(z).

�

Theorem 2.19 (General Cauchy’s formula). Let f be holomorphic on a region Ω, and γ be a cycle
such that γ ∼ 0 ∈ H1(Ω). Then for any z ∈ Ω not on γ, we have

n(γ, z)f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

Corollary 2.20 (Cauchy’s inequality). If f holomorphic on open Ω and DR(z0) ⊂ Ω, then

|f (n)(z0)| ≤ n!‖f‖C
Rn

where ‖f‖C = supz∈C |f(z)|.

Theorem 2.21 (Morera’s Theorem). If f is continuous on open Ω and
∫
γ fdz = 0 for all closed

γ ⊂ Ω, then f is holomorphic on Ω.

Proof. Can define a primitive of f by F (z) :=
∫
σ fdz, and Theorem 2.17 implies that F ′ = f is

holomorphic as well. �

Remark 2.22. In the above statement, since any open set can be covered by open disks, it suffices
to check

∫
∂R fdz = 0 for every rectangle R ⊂ Ω.

Theorem 2.23 (Taylor’s Theorem I). Suppose f is holomorphic on a region Ω, and DR(z0) ⊂ Ω.
Then for all z ∈ D, f has a power series expansion

f(z) =
∞∑
n=0

an(z − z0)n where an =
f (n)(z0)

n!

Proof. Let C = ∂D and by Theorem 2.17 write f(z) = 1
2πi

∫
C
f(ζ)
ζ−z dζ. Now, note that for any

|z − z0| < r with r < R, we have a uniformly convergence series

∞∑
n=0

(
z − z0

ζ − z0

)n
=

1

1− z−z0
ζ−z0

= (ζ − z0)
1

ζ − z
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Uniform convergence means that we can interchange integral and the summation, and hence

f(z) =

∞∑
n=0

1

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ · (z − z0)n =

∞∑
n=0

an(z − z0)n

�

Corollary 2.24. Suppose f is holomorphic on DR(z0). Then in the power series expansion
∑∞

n=0 an(z−
z0)n of f at z0, the coefficients an are given by

an =
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθdθ

for any 0 < r < R.

Proof. Combine Theorem 2.17 and Theorem 2.23. �

Corollary 2.25 (Mean-value property). If f is holomorphic on DR(z0), and Re(f) = u, then

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ)dθ and u(z0) =

1

2π

∫ 2π

0
u(z0 + reiθ)dθ

Theorem 2.26 (Analytic continuation). If f, g are analytic on a region Ω and agrees on a set with
a limit point in Ω, then f ≡ g. (If f = g on some open subset of Ω, then f ≡ g).

Proof. One shows that zeroes of non-zero analytic functions are isolated by using Theorem 2.23 as
follows: let E1 be points where all derivatives vanish, and E2 be points where at least one derivative
is nonzero; both are open. �

Theorem 2.27 (Liouville’s Theorem). If f is entire and bounded, then f is constant.

Proof. Show f ′ = 0 on any z0 ∈ C by Cauchy’s inequality. �

Corollary 2.28 (Fundamental Theorem of Algebra). A polynomial P (z) has a root in C.

Theorem 2.29. If {fn} is holomorphic on a region Ω and fn → f uniformly on every compact
subset of Ω, then f is holomorphic on Ω. Moreover, f ′n → f ′ uniformly on every compact subset of
Ω.

Proof. Use uniform convergence to interchange limit and integral to find that f satisfies Morera’s
Theorem. For the second part, prove for every closed disk. �

Often a holomorphic function is thus built as
∑∞

n=0 fn(z). (e.g. Zeta function). The following is
the continuous version:

Proposition 2.30. For an open Ω, suppose F : Ω × [0, 1] → C be continuous and F (z, s) is

holomorphic for each s ∈ [0, 1]. Then f(z) :=

∫ 1

0
F (z, s)ds is holomorphic.

Let Ω be a symmetric open subset, in the sense that z ∈ Ω ⇔ z ∈ Ω (i.e. symmetric across the
real-axis). In this case Ω partitions into Ω+,Ω−, I, the upper, lower, real-line parts of Ω. The next
two theorems are in this setting.

Theorem 2.31 (Symmetry principle). If f+ and f− are holomorphic on Ω+,Ω−, and extends
continuously to I with f+(x) = f−(x) for all x ∈ I, then f defined piecewise accordingly on Ω is
holomorphic.

Proof. At each open disk in Ω centered on a point on I, use Morera with ε-shifting and partitions
of rectangles under consideration. �
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Theorem 2.32 (Schwarz reflection principle). Suppose f is holomorphic on Ω+ and extends con-
tinuously to I with f(I) ⊂ R. Then there exist F holomorphic on Ω such that F = f on Ω+.

Proof. Define the lower half to be F (z) = f(z), and use the symmetry principle. �

2.33. Exercises.

Exercise 2.A. [SSh03, 2.1,2] Evaluate the following integrals:

Fresnel integrals :

∫ ∞
0

sin(x2)dx =

∫ ∞
0

cos(x2)dx =

√
2π

4∫ ∞
0

sinx

x
dx =

π

2

Proof. Follow the hint. �

Exercise 2.B. [SSh03, 2.7] Suppose f : D → C is holomorphic, and let d := diam(f(D)) =
supz,w∈D |f(z)− f(w)|. Then

2|f ′(0)| ≤ d
and equality holds precisely when f is linear.

Proof. For any 0 < r < 1, we have that 2f ′(0) = 1
2πi

∫
∂Dr

f(ζ)−f(−ζ)
ζ2

dζ, and thus 2|f ′(0)| ≤
1

2π
d
r2

(2πr) = d/r for any 0 < r < 1. Hence, 2|f ′(0)| ≤ d, as desired. That equality holds when f is
linear is clear. For converse, we first consider the following lemma:
Lemma: If f is holomorphic on D and non-constant, then ∃z ∈ D such that |f(0)| < |f(z)|. (Proof:
If f(0) = 0 where is nothing to prove. So assume not can let R > 0 be such that f(z) 6= 0 on |z| < R.

Note that for by Cauchy integral formula we have |f(0)| ≤ 1
2π

∫
∂Dr

|f(ζ)|
r |dζ| for any 0 < r < R. If

|f(0)| = sup|ζ|=r |f(ζ)|, then |f(ζ)| = |f(0)| constant, so that f is constant by [SSh03, 2.15]. Thus,

‖f(0)| < sup|ζ|=r |f(ζ)|.
Back to the main proof: now, use power series expansion and consider f(z) − f(−z) to conclude

that if reserved for later. turns out this is a hard problem �

Exercise 2.C. [SSh03, 2.12] Let u : D → R be C2 and harmonic (i.e. ∆u = 0). Then show that
there exists holomorphic f on D such that Re(f) = u. Moreover, the imaginary part of f is unique
upto a (real) additive constant.

Proof. First, let g(z) := 2∂u∂z . Note that g is holomorphic on D since ∂g
∂z = 2 ∂∂z

∂
∂zu = 1

2∆u = 0. By
Cauchy’s Theorem there exists F , unique upto (complex) additive constant, such that F ′ = g. So,
writing F = U + iV + c (where c ∈ C), that (F − u)′ = 0 implies that (U − u)x = (Uu)y = 0, and
thus U − u = α for some α ∈ R. Absorbing this into c, we have constructed f = F = u + iV + c
where c is imaginary. �

Exercise 2.D. [SSh03, 2.13] If f is holomorphic on a region Ω and for each z0 ∈ Ω at least one
coefficient in the power series expansion f(z) =

∑∞
n=0 cn(z − z0)n is zero. Then show that f is a

polynomial.

Proof. Define Sn := {z ∈ Ω : f (n)(z) = 0}. Since
⋃
n∈N Sn = Ω, there is N such that SN is

uncountable. Thus, f (N)(z) has zeroes that accumulate, and hence is identically zero. �

Exercise 2.E. [SSh03, 2.15] Suppose f is continuous and non-zero on D and holomorphic on D
such that |f(z)| = 1 for all |z| = 1. Show that f is then constant.
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Proof. Note that for any g holomorphic on U ⊂ C open, if φ : C→ C is the conjugation map, then
g̃(z) := f(z) is holomorphic on φ−1(U). Thus, we can extend f to |z| > 1 by defining f(z) := 1

f( 1
z

)

(that |f | = 1 at |z| = 1 condition implies that the two f ’s match at |z| = 1). Now, using Morera’s
theorem with rectangles (and continuity of f), we have that f is entire, and since f was non-zero
on D, f is bounded. By Liouville’s theorem, f is thus constant. �
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3. Meromorphic Functions and the Logarithm

3.1. Zeroes, singularities, meromorphic functions.

Definition 3.2. A point z0 ∈ C is a (point/isolated singularity of f if f is defined in a neigh-
borhood of z0 but not at z0.

There are three types of point singularities: removable, poles, and essential singularities.

Theorem 3.3. Suppose f is analytic on Ω\{z0}. Then f can be extended to analytic function on Ω
if and only if limz→z0(z− z0)f(z) = 0 (i.e. f is bounded on a neighborhood of z0), and the extension
is unique.

Proof. By Proposition 2.7, we have that f(z) = 1
2πi

∫
C
f(ζ)
ζ−z dζ is valid for z 6= z0 for a circle C ⊂ Ω

centered at z0, but the RHS expression is analytic inside the circle by Lemma 2.18, so extend f as
the integral formula expresses. �

As a result of this theorem, isolated singularities that satisfy the condition in Theorem 3.3 are
called removable singularities.

Theorem 3.4 (Taylor’s Theorem II). If f is analytic on a region Ω 3 z0, then it is possible to write

f(z) =

(
n−1∑
k=0

f (k)(z0)

k!
(z − z0)k

)
+ fn(z)(z − z0)n

where fn is analytic on Ω.

Proof. Apply Theorem 3.3 to F (z) = f(z)−f(z0)
z−z0 for case n = 1, and induct using the same idea. �

Theorem 3.5. If f is analytic on a region Ω, does not vanish identically on Ω, and f(z0) = 0, then
there exists g(z) analytic on Ω and nonzero in a neighborhood of z0, and a unique n, such that

f(z) = (z − z0)ng(z)

(in which case, we say z0 is a zero of order n).

Definition 3.6. A function f has a pole at z0 if 1/f , defined to be 0 at z0, is analytic in a
neighborhood of z0. Equivalently, z0 is a pole of f if limz→z0 f(z) =∞.

Theorem 3.7. If f has a pole at z0, then there exists h holomorphic and nonzero on a neighborhood
of z0, and a unique n, such that

f(z) = (z − z0)−nh(z)

(in which case, z0 is a pole of order/multiplicity n).

Corollary 3.8. If f has a pole of order n at z0, then

f(z) =
a−n

(z − z0)n
+ · · ·+ a−1

z − z0
+G(z)

where G(z) is holomorphic on a neighborhood of z0.

Theorem 3.9 (Casorati-Weierstrass). Suppose f is holomorphic on a neighborhood of z0 but not
on z0, which is an essential singularity (point singularity that is neither removable or a pole).
Then the image of any (punctured) neighborhood of z0 under f is dense in C.

Proof. Let D be a small disk around z0, and suppose there exists w with r > 0 such that Dr(w) ∩
f(D) = ∅. Now, consider the function g(z) := 1

f(z)−w . Note that g(z) is bounded on D, and hence

has a removable singularity at z0. If g(z0) 6= 0, then f has removable singularity at z0, and if
g(z0) = 0, then f(z)−w has a pole at z0, which means f(z) has a pole at z0. Either case, we get a
contradiction. �
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Definition 3.10. If f is holomorphic on an unbounded region, we say that f has a remov-
able/pole/essential singularity at ∞ if F (z) := f(1/z) has the corresponding singularity at
z = 0.

Definition 3.11. A function f is meromorphic on an open set Ω if it is holomorphic on Ω except
for a discrete set of points which are poles of f .

Theorem 3.12. The meromorphic functions on Ĉ are the rational functions.

Proof. Given f meromorphic on Ĉ, subtract off principal part of f at each poles to get a bounded
holomorphic function on C, which must be constant. �

3.13. The calculus of residues.

Definition 3.14. Suppose f has a pole of order n at z0, so that by Corollary 3.8 we can write

f(z) =
a−n

(z − z0)n
+ · · · + a−1

z − z0
+ G(z). We call the a−n

(z−z0)n + · · · + a−1

z−z0 part the principal part

of f at pole z0, and define the residue of f at pole z0 as Resz0 f := a−1.

Proposition 3.15. If f has a pole of order n at z0, then

Resz0 f = lim
z→z0

1

(n− 1)!

(
∂

∂z

)n−1

(z − z0)nf(z)

Theorem 3.16 (Residue formula). Let f be analytic on a region Ω except for poles z1, . . . , zN ∈ Ω.
Then, for any cycle γ ∼ 0 ∈ H1(Ω) and not passing through any of zj’s, we have

1

2πi

∫
γ
fdz =

N∑
j=1

n(γ, zj) Reszj f

In particular, if γ is a toy-contour in Ω containing z1, . . . , zN , then we have∫
γ
fdz = 2πi

N∑
j=1

Reszj f

Proof. Note that γ ∼ 0 in Ω implies that γ ∼
∑N

j=1 n(γ, zj)Cj in Ω\z1, . . . , zN for some circles Cj
centered at zj . For each Cj use Corollary 3.8. �

Example 3.17. [Ahl79, 4.5.3] One can show (in increasing generalities) that for a rational function
R(x) such that R(∞) = 0 and poles on the real line are simple, we get∫ ∞

−∞
R(x)eix = 2πi

∑
y>0

Resy R(z)eiz + πi
∑
y=0

Resy R(z)eiz

3.18. The argument principle & applications.

Theorem 3.19 (Argument principle). Suppose f is meromorphic on an open Ω with zeroes {aj}
and poles {bk} (repeated to each order), and γ is a cycle such that γ ∼ 0 ∈ H1(Ω) and does not go
through zeroes or poles of f . Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
j

n(γ, aj)−
∑
k

n(γ, bk)

Proof. Apply the residue formula (Theorem 3.16) to f ′/f . �



12 CHRISTOPHER EUR

Corollary 3.20. If f is meromorphic on an open set containing a circle C and its interior, and f
has no zeroes or poles on C, then

1

2πi

∫
C

f ′(z)

f(z)
dz = (number of zeroes inside C)− (number of poles inside C)

where the zeros and poles are counted with multiplicity.

Theorem 3.21 (Rouche’s theorem). If f and g are holomorphic on an open set containing a circle
C and its interior, and |f(z)| > |g(z)| for all z ∈ C, then f and f + g have the same number of
zeros in C.

Proof. Define ft(z) = f(z) + tg(z) for t ∈ [0, 1], which is continuous jointly in t, z. Note that
|f(z)| > |g(z)| implies that ft(z) 6= 0 for all t in a neighborhood of C. Thus, we can define

nt :=
1

2πi

∫
C

f ′t(z)

ft(z)
dz

Since nt is continuous in t, it must be constant, and hence n0 = n1, as desired. �

Theorem 3.22 (open mapping theorem). If f is holomorphic and non-constant on Ω, then f is
open.

Proof. Fix arbitrary z0 and let w0 := f(z0). Choose δ > 0 such that Bδ(z0) ⊂ Ω and f(z) 6= w0 on
|z − z0| = δ, and ε > 0 such that |f(z) − w0| ≥ ε on |z − z0| = δ. Now, note that for any w such
that |w −w0| < ε, by Rouche’s theorem we have that g(z) := f(z)−w = (f(z)−w0) + (w0 −w) =
F (z) +G(z) has a root in |z − z0| < δ. �

Theorem 3.23 (maximum modulus principle). If f is holomorphic and non-constant on a region
Ω, then f cannot attain a maximum (i.e. maximum in modulus |f(z)|) in Ω.

Proof. If |f(z0)| is max, then consider f(D) where D is a small disk around z0, which is open. �

Corollary 3.24. Suppose Ω is a region with compact closure Ω. If f is holomorphic on Ω and
continuous on Ω, then

sup
z∈Ω
|f(z)| ≤ sup

Ω−Ω

|f(z)|

3.25. Complex logarithm.

Proposition 3.26. Suppose Ω is simply connected with 1 ∈ Ω and 0 /∈ Ω. Then in Ω there is a
branch of the logarithm F (z) = log z such that F is holomorphic on Ω, eF (z) = z for all z ∈ Ω, and
F (r) = log r whenever r is real number near 1.

Example 3.27. In the split plane Ω = C − {(−∞, 0]}, we have the principal branch log z =
log r + iθ where |θ| < π. For α ∈ C, zα is defined as zα := eα log z on Ω

Theorem 3.28. If f is nowhere vanishing holomorphic on simply connected region Ω, then there
exists g holomorphic on Ω such that

f(z) = eg(z)

(i.e. g(z) = log f(z)).

Proof. Fixing z0 ∈ Ω, define g(z) =
∫
γ
f ′(ζ)
f(ζ) dζ + c0 for γ path from z0 to z and ec0 = f(z0). �
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3.29. Exercises.

Exercise 3.A. [SSh03, 3.1] Show that the complex zeros of sinπz are exactly at the integers, and
are each of order 1. Calculate the residue of 1/ sinπx are z = n ∈ Z.

Solution. Since sinπz = eiπz−e−iπz
2i , we have that sinπx = 0 =⇒ ei2πz = 1, and writing z = x+ iy,

one obtains ei2πxe−2πy = 1, so that y = 0 and x = n ∈ Z. Power series expanding sinπz at n ∈ Z
gives

∑∞
k=1 π(z − n)− π3

3! (z − n)3 + · · · if n is even, and the opposite if n is odd. Hence, the zeros
are of order 1, and the residues for 1/ sinπz are 1/π for n even and −1/π for n odd. �

Exercise 3.B. [SSh03, 3.6] Show that for n ≥ 1,∫ ∞
−∞

dx

(1 + x2)n+1
=

(2n)!

4n(n!)2
π

Proof. Note that f(z) := 1
(1+z2)n+1 has poles i and −i of order n + 1. So, [above integral equals

2πiResi f = limz→i
1
n!(

∂
∂z )n (z−i)n+1

(1+z2)n+1 = 2πi (2n)!
(n!)2

(−1)n

(2i)2n+1 = (2n)!
4n(n!)2

π. �

Exercise 3.C. [SSh03, 3.8] Prove that∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

Proof. Letting z = eiθ, we can rewrite the integral as (where C is unit circle)∫
C

1

a+ b · 1
2(z + 1

z )

dz

iz
= 2πiResz0∈D f

which gives us the desired result. �

Exercise 3.D. [SSh03, 3.10] Show that for a > 0,∫ ∞
0

log x

x2 + a2
dx =

π

2a
log a

Proof. Define log z on C− {(0, y) : y ≤ 0} by log z = log |z|+ iθ where θ ∈ (−π/2, 3π/2). Using the

dented semicircle γ as the contour, and noting that r log r
r2+a2

→ 0 as r → 0 or r → ∞, one computes
that

2πi · log(ia)

2ia
=

∫
γ

log z

z2 + a2
dz =

∫ 0

−∞

log(−x) + iπ

x2 + a2
dx+

∫ ∞
0

log x

x2 + a2
dx

and thus we have π log a
a + iπ2

2a = 2
∫∞

0
log x
x2+a2

+ iπ2

2a , and the desired equality follows. �

Exercise 3.E. [SSh03, 3.14] Prove that all entire functions that are also injective take the form
f(z) = az + b with a, b ∈ C and a 6= 0.

Proof. If f is meromorphic on Ĉ, then f is a rational function, but since f entire, it is a polynomial
and injectivity implies that f is then linear. If f has essential singularity at infinity, then f(C\D)
must be dense in C, but then since f is an open map, f(C\D) ∩ f(D) 6= ∅, and hence injectivity
implies that f cannot have essential singularity at infinity. �

Exercise 3.F. [SSh03, 3.15] Prove the following statements:

(1) If f is an entire function satisfying sup|z|=R |f(z)| ≤ ARk+B for some A,B ≥ 0 and k ∈ N,
then f is polynomial of degree ≤ k.

(2) If f is holomorphic on D, is bounded, and converges uniformly to zero in the sector θ <
arg z < φ as |z| → 1, then f = 0.

(3) Let w1, . . . , wn be on the unit circle C. Then ∃z ∈ C such that |z − w1| · · · |z − wn| = 1.
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(4) If the real part of an entire function f is bounded, then f is constant.

Proof.

(1) Cauchy inequality implies that f (n)(0) = 0 for all n > k.

(2) ASK
(3) Note that C → R given by z 7→ |z−w1| · · · |z−wn| is continuous, so it suffices to show that

for some z ∈ C, |z − w1| · · · |z − wn| ≥ 1. Well, (z − w1) · · · (z − wn) is holomorphic on D,
then achieves modulus 1 when z = 0, so the maximum principle gives us the desired z ∈ C.

(4) If f has essential singularity at infinity, then the real part is not bounded by Casorati-
Weierstrass. But if f is meromorphic, then f is a polynomial and hence is constant.

�

Exercise 3.G. [SSh03, 3.16] Suppose f and g are holomorphic on a region containing D, and
suppose f has a simple zero at z = 0 with no other zeroes on D. Then fε(z) = f(z) + εg(z) has a
unique zero in D for ε sufficiently small, and if zε is the zero of fε, then ε 7→ zε is continuous.

Proof. For a small enough ε > 0, we have inf |z|=1 |f | > ε sup|z|=1 |g|, so that by Rouche’s theorem

fε has a unique zero in D. Moreover, let {δn} sequence of numbers converging to δ < ε. We need
show that zδn → zδ. Well, if {zδn} ⊂ D does not converge to zδ then it has a subsequence that
converges to some w 6= zδ. But since F : D× R → C defined as F (z, ε) := fε(z) is continuous, and
(δn, zδn)→ (δ, w), we have fδ(w) = F (w, δ) = 0, which contradicts uniqueness of the zero of fδ. �

Exercise 3.H. [SSh03, 3.17] Let f be non-constant and holomorphic on an open set containing D.
Iff |f(z)| = 1 on |z| = 1, or if |f(z)| ≥ 1 on |z| = 1 and there exists z∈D such that |f(z0)| < 1, then
the image of f contains the unit disk.

Proof. In both cases, by Rouche’s theorem f(z) = w has a root for every w ∈ D if f(z) = 0 has a
root. But if f(z) = 0 has no root, then 1/f defined on D achieves its maximum in the interior D
(by maximum principle for the first case, obvious in the second case). �

Exercise 3.I. [SSh03, 3.19] Prove the maximum principle for harmonic functions.

Proof. Suppose an harmonic function u defined on an open set Ω achieves a local maximum M at
z0 ∈ Ω. We know that there exists a holomorphic function f on Ω such that Re(f) = u. Then f
is not open since f(z0) = M + ib, and no neighborhood of M + ib is contained in the image f(D)
where D is a small neighborhood of z0. �

Exercise 3.J (Laurent Series Expansion). [SSh03, Problem 3.3] Suppose f is analytic on a region
containing the annulus {r1 ≤ |z − z0| ≤ r2}. Then, we can write (uniquely)

f(z) =
∞∑

n=−∞
an(z − z0)n

where the series converges absolutely in the interior of the annulus.

Proof. By Theorem 2.14, one can write

f(z) =
1

2πi

∫
Cr1

f(ζ)

ζ − z
dζ − 1

2πi

∫
Cr2

f(ζ)

ζ − z
dζ

and use the series expansion of 1/(ζ − z) = 1
(ζ−z0)−(z−z0) appropriately in each case. �
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4. Conformal Maps

4.1. Conformal equivalence and examples.

Proposition 4.2. If f : U → V for U, V ⊂ C open is holomorphic and injective, then f ′(z0) 6= 0
for all z0 ∈ U . Moreover, as a result the inverse of f defined on its image is holomorphic.

Proof. Write f(z)− f(z0) = ak(z − z0)k + [(z − z0)k+1] and use Rouche’s theorem to conclude that
f(z)− f(z0) is not injective. Second part follows: (f−1)′(f(z0)) = 1

f ′(z0) . �

Definition 4.3. A map holomorphic map f : U → V with f ′(z0) 6= 0 ∀z0 ∈ U is called con-
formal map. If f is bijective, then it is called a biholomorphism (note that its inverse is also
holomorphic), in which we say U, V are conformally equivalent.

Example 4.4. Translations z 7→ z+a and rotation+dilation given by z 7→ cz, (c ∈ C) are conformal

equivalences C ∼→ C.

Example 4.5. Let H := {z ∈ C : Im(z) > 0} be the upper half-plane. H and the unit disk D are
conformally equivalent. One equivalence is given by F : H→ D, G : D→ H where

F (z) =
i− z
i+ z

, G(w) = i
1− w
1 + w

Example 4.6. For 0 < α < 2, the map f(z) = zα defined in terms of the principal branch is a
biholomorphic map from H to the sector S = {w ∈ C : 0 < arg(w) < απ}.

Example 4.7. The map f(z) = log z is a biholomorphism from H to a region {a + bi : a ∈ R, 0 <
b < π}. It also biholomorphically maps upper unit disk to {a+ bi : a < 0, 0 < b < π}

4.8. The Mobius transformations.

Definition 4.9. We call maps of the following form a Mobius transformation / (fractional)
linear map:

f(z) =
az + b

cz + d
for a, b, c, d ∈ C such that ad− bc 6= 0.

Remark 4.10. Noting the identification CP1 ' Ĉ, we see that a Mobius map computed in CP1 is
[z1 : z2]→ [az1 + bz2 : cz1 +dz2]. In other words, it really is a linear transformation in homogeneous

coordinates made by multiplying matrix M =

[
a b
c d

]
to

[
z1

z2

]
. In this view, one sees that matrices

of PSL2(C) correspond exactly to different Mobius maps, and so a Mobius map is determined
by image of three distinct points. Moreover, composition of Mobius maps corresponds to matrix

multiplication. Indeed, it is thus a biholomorphic map Ĉ ∼→ Ĉ. Moreover,

Proposition 4.11. Given three distinct points z2, z3, z4 ∈ Ĉ, the Mobius map T that maps z2, z3, z4

to 1, 0,∞, respectively, is given by

f(z) =
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)

(if z2, z3, or z4 =∞, just cancel the terms with it). We denote the above f(z) by (z, z2, z3, z4) called
the cross ratio.

Theorem 4.12. For distinct points z1, z2, z3, z4 ∈ Ĉ and T a Mobius map, (Tz1, T z2, T z3, T z4) =
(z1, z2, z3, z4). And hence, T that maps z2, z3, z4) to w2, w3, w3 is obtained by writing (w,w2, w3, w4) =
(z, z2, z3, z4) and solving for w.
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Example 4.13. Fractional linear map gives us abundance of biholomorphism, especially when we

use them to rotate the Riemann sphere. The map z 7→ (z, i, 1,−1) = (z−1)(i+1)
(z+1)(i−1) = i1−z

1+z is the map

G : D → H in Example 4.5. In another case, z 7→ (z, 0,−1, 1) = (z+1)(−1)
(z−1)(1) = 1+z

z−1 maps upper

half-disk to the first quadrant.

4.14. The Schwarz lemma and Aut(D), Aut(H).

Proposition 4.15 (Schwarz Lemma). Let f : D→ D be holomorphic with f(0) = 0. Then |f(z)| ≤
|z| for all z ∈ D, and if equality occurs at z0 ∈ D, then f is a rotation. Moreover, |f ′(0)| ≤ 1, and
if equal then f is a rotation.

Proof. Consider the holomorphic function f(z)
z and use the maximum principle. �

Definition 4.16. For a open set Ω ⊂ C, an automorphism of Ω is a biholomorphic map f : Ω→
Ω. Automorphisms of Ω forms a group Aut(Ω).

Example 4.17. In [SSh03, Exercise 3.14], we proved that Aut(C) = {z 7→ az+ b : a, b ∈ C, a 6= 0}.

Theorem 4.18. Automorphisms of D are exactly the maps

f(z) = eiθ
α− z
1− αz

where θ ∈ R and α ∈ D.

Proof. Note that the map ϕα(z) := α−z
1−αz is a biholomorphism D → D that exchanges 0 and α,

and ϕα is its own inverse. Now, suppose f ∈ Aut(D) and f(0) = α. Consider g = f ◦ ϕα, which
biholomorphically maps D → D and g(0) = 0. By Schwarz lemma on both g and g−1, we get
|g(z)| = |z| for z ∈ D, and hence g is a rotation g = eiθ. But then f = g ◦ ϕα. �

Corollary 4.19. Automorphisms of D that fix the origin are the rotations.

Theorem 4.20. Automorphisms of H are exactly of the form

z 7→ az + b

cz + d

where a, b, c, d ∈ R such that ad− bc = 1. In other words, we have an isomorphism

Aut(H) ' PSL2(R)

Proof. Let F : H → D be a biholomorphism. Note the isomorphism Aut(D)
∼→ Aut(H) via f 7→

F−1 ◦ f ◦ F . Then, the previous theorem and computation yields the desired result. �

Remark 4.21. Note that Aut(D),Aut(H) act transitively on D,H (respectively), but not faithfully.

4.22. The Riemann mapping theorem.

Before stating and proving the Riemann mapping theorem and its proof, we consider some metric
topological matters.

Given a metric space (X, d), X is totally bounded if X can be covered by finitely many ε-balls
for any given ε > 0. It is well-known that

A metric space X is compact iff it is complete and totally bounded

Given a metric space (Y, d) and X a set, we can define a metric on Y X by

ρ(f, g) :=

{
supx∈X d(f(x), g(x))
1 if sup > 1

This is the uniform topology on Y X ; convergence in this metric is exactly uniform convergence
of functions. Hence, we know that C(X,Y ) ⊂ Y X is closed. Moreover, note the fact that Y X is
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complete if Y is complete. Note that unit-ball in C(X,Y ) is not compact; e.g. {xn}n ⊂ C([0, 1])
is not sequentially compact. For K a compact metric space, a family of functions F ∈ C(K) is
uniformly bounded if there exists M such that |f | ≤ M ∀f ∈ F , and F is equicontinuous if
for any ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ K, d(x, y) < δ and
f ∈ F .

Theorem 4.23 (Arzela-Ascoli). Let K is a compact metric space. If a family of functions F ⊂
C(K) is equicontinuous and uniformly bounded, then F is compact.

In complex analysis, a related notion to a family of functions being compact is the following:

Definition 4.24. Let Ω ⊂ C be open, and F be a family of holomorphic functions on Ω. F is
normal if every sequence in F has a subsequence that converges uniformly on every compact subset
of Ω (limit need not be in F ).

Theorem 4.25 (Montel’s theorem). Let F be a family of holomorphic functions on Ω. If F is
uniformly bounded on every compact subset of Ω, then F is equicontinuous on every compact subset
of Ω, and hence F is a normal family.

Proof. Note that if |f ′| is bounded, then f is Lipschitz cotninuous, so use Cauchy integral formula
and that F is uniformly bounded to show that |f ′(z)| ≤ M for all f ∈ F and z ∈ Ω. This show
F equicontinuous. Then use Arzela-Ascoli theorem with exhaustion of Ω by compact sets to show
normal. �

Proposition 4.26. If Ω is a region and {fn} a sequence of injective holomorphic functions on Ω
that converges uniformly to a holomorphic function f on every compact subset of Ω, then f is either
injective or constant.

Proof. If f(z1) = f(z2), then consider the sequence gn(z) := fn(z) − f(z1). Note that gn → g :=
f(z)− f(z1) uniformly on all compact subsets and so does g′n → g′. Thus, for a small circle around

z2, we must have 0 = 1
2πi

∫
C
g′n(z)
gn(z)dz = 1

2πi

∫
C
g′(z)
g(z) dz = 1, which is a contradiction. �

Theorem 4.27 (Riemann mapping theorem). If Ω ⊂ C is proper and simply-connected region, then
for z0 ∈ Ω, there exists a unique biholomorphism F : Ω→ D such that F (z0) = 0 and F ′(z0) > 0.

Proof. TODO �

4.28. Exercises.

Exercise 4.A. [SSh03, 8.10] Let F : H → C be a holomorphic function satisfying |F (z)| ≤ 1 and
F (i) = 0. Then show that |F (z)| ≤ | i−zi+z |.

Proof. Note that G : H→ D defined by G(z) := i−z
i+z and G−1(w) = i1−w

1+w is a conformal equivalence.

Define H : D→ D by H := F ◦G−1 : D→ C. Since H maps D→ D and H(0) = 0, by the Schwarz
lemma we have |H(w)| ≤ |w| for all w ∈ D. In other words, |F (G−1(w))| ≤ |G(G−1(w)|, and thus
|F (z)| ≤ |z| for z ∈ H. �

Exercise 4.B. [SSh03, 8.12] If f : D → D is analytic and has two distinct fixed points, then f is
the identity (i.e. f(z) = z).

Proof. Suppose α, β ∈ D are two distinct fixed points. Consider the biholomorphism φα(z) := α−z
1−αz ,

which satisfies φα(0) = α and φα(β) = β′ (note φα(β′) = β). Now, consider the map g := φα◦f ◦φα :
D→ D, which has fixed points 0 and β′. By the Schwarz lemma, g is a rotation that fixes a nonzero
point, and hence identity, and thus f is also identity. �
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Exercise 4.C. [SSh03, 8.14] Show that all biholomorphic maps H→ D take the form

z 7→ eiθ
z − β
z − β

, θ ∈ R, β ∈ H

Proof. Any biholomorphism f : H→ D factors through as f = (f ◦ F−1) ◦ F where F : H→ D is a
biholomorphism z 7→ i−z

i+z and f ◦ F−1 ∈ Aut(D) is of the form z 7→ eiθ α−z1−αz for θ ∈ R, α ∈ D. Now,
computing the composition of the Mobius transformation

eiθ
[
−1 α
−α 1

] [
−1 i
1 i

]
= eiθ

[
α+ 1 i(α− 1)
α+ 1 i(1− α)

]
which factors as

eiθ
[
α+ 1 0

0 α+ 1

] [
1 −β
1 −β

]
where β = i1−α

1+α = F−1(α). Since |α+1| = |α+1|, the left matrix also rotation Mobius map. Hence,

for some θ′ and β ∈ H as defined, f(z) = eiθ
′ z−β
z−β , as desired. �

Exercise 4.D. [SSh03, 8.15] Suppose Φ ∈ Aut(H) that fixes three distinct points on the real axis,
then Φ is identity. If (x, y, z) and (x′, y′, z′) are two pairs of three distinct points on the real axis
with z1 < z2 < z3, w1 < w2 < w3, then there exists a unique automorphism Φ ∈ Aut(H) such that
Φ(xi) = wi. Same holds if w2 < w3 < w1 or w3 < w1 < w2.

Proof. Aut(H) ⊂ Aut(Ĉ) as PSL2(R) ⊂ PSL2(C). Thus, since a Mobius transformation is deter-
mined by images of three distinct points, the first statement follows. Now, for the second statement,
writing (z, z1, z2, z3) = (w,w1, w2, w3) and solving for w gives a Mobius transformation az+b

cz+d for

some a, b, c, d ∈ R mapping z1, z2, z3 to w1, w2, w3, and with (a lot of) computation, one checks that

ad− bc > 0 (so that

[
a b
c d

]
∈ PSL2(R)) exactly when wi’s are ordered as given. �

Exercise 4.E. [SSh03, Problem 8.2] The oriented angle of z, w ∈ C is determined by two quan-
tities

〈z, w〉
|z||w|

and
〈z,−iw〉
|z||w|

, where 〈z, w〉 = Re(wz)

An oriented angle of two intersecting curves at the intersection is defined as the angle of two tangent
vectors at the intersection. A map f : Ω→ C is angle-preserving at z0 ∈ Ω if for any two curves
γ, η ⊂ Ω intersecting at z0, the (oriented) angle of γ, η at z0 and the angle of f ◦ γ, f ◦ η at f(z0)
are the same. Show that:

(1) If f : Ω→ C is holomorphic with f(z0) 6= 0, then f is angle-preserving at z0.
(2) Conversely, if f : Ω→ C is real-differentiable at z0 with Jf (z0) 6= 0 and is angle-preserving,

then f is holomorphic at z0.

Proof. (1) is easy, for if γ(t0) = z0 and η(s0) = z0, then (f ◦ γ)′(t0) = f ′(z0)γ′(t0), (f ◦ η)′(t0) =
f ′(z0)η′(t0). For the converse, by chain rule, if γ is a curve through z0 at t0, then [Df ]z0γ

′(t0) = (f ◦
γ)′(t0). Since the matrix M := [Df ]z0 is such that 〈u, v〉 = 〈Mu,Mv〉 and 〈u,−iv〉 = 〈Mu,M(−iv)〉

for any |u| = |v| = 1, it is of the form

[
a −b
b a

]
, which means that f satisfies the Cauchy-Riemann

equation at z0. �
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