MATH 54 FALL 2017: DISCUSSION 205/208 QUIZ#12

GSI: CHRISTOPHER EUR, DATE: 11/17/2017

STUDENT NAME:

Problem 1. Consider the homogeneous differential equation

$$y'' - 4y' + 4y = 0$$

- (a) (3 points) Find the general solution as the span of two functions.
- (b) (2 points) Confirm that the two functions you found in part (a) are linearly independent by computing the Wronskian.

Problem 2. (5 points) Find the general solution to the differential equation

$$y'' + 9y = 6\sin 3t$$

#1. (a) Aux. eq.:
$$r^2-4r+4=(r-2)^2 \Rightarrow \int span_{\mathbb{R}}(e^{2x}, xe^{2x})$$

(b) $\left| e^{2x} \times xe^{2x} \right| = e^{4x} + 2xe^{4x} - 2xe^{4x} = e^{4x} \neq 0 \quad \forall x \in \mathbb{R}.$

#2. Homog part:
$$r^2 + 9 = 0 \Rightarrow r = \pm 3i$$

Let's solve $y'' + 9y = 6(\cos 3t + i \sin 3t) = 6e^{3it}$ and take the imaginary part.

Guess: Ate^{3it} : $(te^{3it})' = e^{3it} + 3ite^{3it}$

So,
$$(Ate^{2it})'' + 9(Ate^{3it}) = 6iAe^{3it} = 6e^{3it}$$

$$A = -i$$
 \Rightarrow soln: $-i + e^{3it} = -i + \cos 3t + \cos 3t$

:
$$-t\cos 3t$$
 is particular soln.
: General soln: $-t\cos 3t + span(\cos 3t, \sin 3t)$