Finding the standard matrix of a linear transformation

GSI: Christopher Eur

Office hours: Th 4-6pm, 1064 Evans

Website: https://math.berkeley.edu/~ceur/course_pages/math54f16.html

9/16/2016

Recall that given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, the **standard matrix** of T, which we denote as M_T , is a $m \times n$ matrix:

$$M_T = \begin{bmatrix} | & \cdots & | \\ T(\vec{e_1}) & \cdots & T(\vec{e_n}) \\ | & \cdots & | \end{bmatrix}$$

Question. What if we are given $T\vec{v}_1, \ldots, T\vec{v}_n$ for $(\vec{v}_1, \ldots, \vec{v}_n)$ not a standard basis?

Answer. Do the following procedure: Let $A := \begin{bmatrix} | & \cdots & | \\ \vec{v}_1 & \cdots & \vec{v}_n \\ | & \cdots & | \end{bmatrix}$ and let $B := \begin{bmatrix} | & \cdots & | \\ T\vec{v}_1 & \cdots & T\vec{v}_n \\ | & \cdots & | \end{bmatrix}$. Row reduce the matrix $[A^t : B^t]$ (note the transpose!!!) to $[I_n : M]$. Then M^t is the matrix M_T .

Example. Given
$$T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}$$
 and $T\begin{bmatrix}2\\5\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix}$, we find that M_T is $\begin{bmatrix}2&-1\\-7/3&4/3\end{bmatrix}$ as follows:
We first write:
 $\begin{bmatrix}1&1&|&1&-1\\2&5&|&-1&2\end{bmatrix}$

(again, note the transposing!). This row reduces to:

$$\begin{bmatrix} 1 & 0 & 2 & -7/3 \\ 0 & 1 & -1 & 4/3 \end{bmatrix}$$
And transposing the right matrix we get
$$\begin{bmatrix} 2 & -1 \\ -7/3 & 4/3 \end{bmatrix}$$
.