MATH 54 FALL 2016: DISCUSSION 102/105 QUIZ#7

GSI: CHRISTOPHER EUR, DATE: 10/14/2016

Problem 1. (4 points) Suppose $A\vec{x} = \vec{b}$ is an *inconsistent* system of equations. Then show that

$$\operatorname{rank} A < \operatorname{rank}[A|b]$$

where $[A|\vec{b}]$ is the matrix A augmented by a column \vec{b} .

Problem 2. Let $\mathcal{P}_2 := \{a_2x^2 + a_1x + a_0 : a_2, a_1, a_0 \in \mathbb{R}\}$ be the vector space of polynomials of degree at most 2. Let $B = (x^2, x, 1)$ be a basis of \mathcal{P}_2 . Consider a linear map $T : \mathcal{P}_2 \to \mathbb{R}$ given by

$$T(p(x)) = \int_0^1 p(t)dt$$

- (a) (2 points) Write down the matrix A of the linear map T with respect to the basis B on \mathcal{P}_2 and the standard basis on \mathbb{R} .
- (b) (1 point) Verify that $\int_0^1 x^2 + 2x = \frac{4}{3}$ by multiplying A to the coordinate vector corresponding to $x^2 + 2x$ (w/r/t basis B).
- (c) (2 points) Find a basis for ker T, and a basis for im T.
- (d) (1 point) Verify the rank-nullity theorem for this linear map T.