MATH 54 FALL 2016: DISCUSSION 102/105 QUIZ#11-2

GSI: CHRISTOPHER EUR, DATE: 11/18/2016

STUDENT NAME: Not Euler

Note. You may use a calculator or Wolfram|Alpha to compute definite integrals. (However, you'll need to review how to integrate certain functions anyway, so might as well review it now).

Problem 1. Define an inner product on $C^{\infty}[-\pi, \pi]$ (the space of all infinitely differentiable functions on the interval $[-\pi, \pi]$) as follows:

$$\langle f(t), g(t) \rangle := \int_{-\pi}^{\pi} f(t)g(t)dt$$

- (a) (1 point) Check that $(\sin t, \cos t)$ is an orthogonal set of vectors in $C^{\infty}[-\pi, \pi]$ with respect to this inner product.
- (b) (4 points) Let $W := \operatorname{span}_{\mathbb{R}}(\sin t, \cos t)$ be a subspace of $C^{\infty}[-\pi, \pi]$, and define $\ell(y) := y''$. Find the function $f(t) \in W$ that "best solves" the equation $\ell(y) = t$; more precisely, find the function $f(t) \in W$ that minimizes

$$\int_{-\pi}^{\pi} \left(t - \ell(f(t)) \right)^2 dt$$

Problem 2. Let A and B be orthogonally diagonalizable $n \times n$ matrices.

- (a) (2 points) Show that A and B are symmetric.
- (b) (3 points) Show that if AB = BA, then AB is also orthogonally diagonalizable.

#1. (a)
$$\int_{-\pi}^{\pi} (6int) C \cos t dt = \int_{-\pi}^{\pi} \frac{1}{2} \sin(2t) dt = -\frac{1}{4} \cos(2t) \int_{-\pi}^{\pi} = 0.$$

(b) Need find
$$Proj_W t = \frac{\langle t, \sin t \rangle}{\langle \sin t, \sin t \rangle} \sin t + \frac{\langle t, \cos t \rangle}{\langle \cos t, \cos t \rangle} \cos t$$

$$= \frac{\int_{-\pi}^{\pi} t \sin t \, dt}{\pi} \qquad \text{Sin } t = \frac{\left[\sin t - t \cos t\right]_{-\pi}^{\pi}}{\pi} \sin t = 2 \sin t$$

Now, want
$$l(f) = 2\sin t$$
. $f'' = 2\sin t \Rightarrow f(t) = -2\sin t$

#2 (a)
$$A = PDP^{-1}$$
 for some D diagonal \$ $P^{-1} = PT$.

 $A^{T} = (P^{T})^{T} PP^{T} = PDP^{T} = A$. Hence A symmetric. Same for B .

(b)
$$(AB)^T = B^TA^T = BA = AB \Rightarrow AB$$
 symmetric \Rightarrow ortho. diagonalizable. \checkmark from part (a)