Quiz #3; Wed, 2/17/2016 Math 53 with Prof. Stankova Section 110; MWF12-1 GSI: Christopher Eur

Student Name: \_\_\_\_\_

*Problem.* Find the equation for the tangent line to the curve of intersection of the cylinders  $x^2+y^2 = 25$  and  $y^2 + z^2 = 20$  at the point (3, 4, 2).

Solution. First sketch the two cylinders:



(Pink is  $x^2 + y^2 = 25$ , and the green is  $y^2 + z^2 = 20$ ). We are concerned with the point (3, 4, 2), so we only need consider the parametrization with x-coordinate being positive. The points lie on the green cylinder entirely, so set  $y = \sqrt{20} \cos t$ ,  $z = \sqrt{20} \sin t$ . then  $x = \sqrt{25 - y^2} = \sqrt{25 - 20 \cos^2 t}$ . In other words, we have

$$\mathbf{r}(t) = \langle \sqrt{25 - 20\cos^2 t}, \sqrt{20}\cos t, \sqrt{20}\sin t \rangle$$

so that

$$\mathbf{r}'(t) = \langle \frac{1}{\sqrt{25 - 20\cos^2 t}} (20\cos t\sin t), -\sqrt{20}\sin t, \sqrt{20}\cos t \rangle$$

So, at the (3, 4, 2), which occurs when  $\cos t = \frac{4}{\sqrt{20}}$ ,  $\sin t = \frac{2}{\sqrt{20}}$  (note that  $\cos^2 t + \sin^2 t = 1$  here so such t does exist), the tangent vector direction is  $\langle 8/3, -2, 4 \rangle$ , so the tangent line is:

$$\frac{x-3}{8/3} = \frac{y-4}{-2} = \frac{z-2}{4}$$

Alternatively, one can parameterize as:

$$\mathbf{r}(t) = \langle \sqrt{25 - t^2}, t, \sqrt{20 - t^2} \rangle$$

so that

$$\mathbf{r}'(t) = \langle \frac{-t}{\sqrt{25-t^2}}, 1, \frac{-t}{\sqrt{20-t^2}} \rangle$$

at t = 4 to get  $\langle -4/3, 1, -2 \rangle$ , which gives the same line.