Quiz #3; Wed, 2/10/2016 Math 53 with Prof. Stankova Section 107; MWF10-11 GSI: Christopher Eur

Student Name:

Problem. Two lines L_1, L_2 given as follows:

$$L_1: \frac{x-1}{2} = y - 1 = z - 2$$
$$L_2: x - 1 = \frac{y-1}{2} = z - 2$$

(a) L_1 and L_2 intersect at a point *P*. Find *P*. (5 points)

(b) Let Q = (5,3,4) be a point on the line L_1 , and let R be a point on line L_2 such that $\overline{QR} \perp \overline{PR}$. Find the coordinates for this point R. (10 points) Solution. (a) For both L_1 and L_2 , the "initial starting point" is (1, 1, 2), so P = (1, 1, 2). (b) The vector \overrightarrow{PR} can be acquired by projecting the vector \overrightarrow{PQ} onto the direction vector $\mathbf{u} = \langle 1, 2, 1 \rangle$ of the line L_2 . That is, $\overrightarrow{PR} = \operatorname{Proj}_{\mathbf{u}} \overrightarrow{PQ} = \frac{\langle 1, 2, 1 \rangle \cdot \langle 4, 2, 2 \rangle}{1^2 + 2^2 + 1^2} \mathbf{u} = \frac{5}{3} \mathbf{u}$. Thus, the point R, considered as the vector $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR}$ is $\langle 1, 1, 2 \rangle + \langle 5/3, 10/3, 5/3 \rangle = \langle 8/3, 13/3, 11/3 \rangle$.