Quiz #13; Wed, 4/27/2016 Math 53 with Prof. Stankova Section 110; MWF12-1 GSI: Christopher Eur

Student Name: _____

Problem. Let $\mathbf{F} := \langle P, Q \rangle$ a vector field defined on $\mathbb{R}^2 \setminus \{(0,0)\}$ where

$$P = \frac{-2xy}{(x^2 + y^2)^2}$$
 and $Q = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

(a) Show that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Say why this doesn't necessarily mean that **F** is not conservative on $\mathbb{R}^2 \setminus \{(0,0)\}$.

(b) Use the function $f(x,y) = \frac{y}{x^2+y^2}$ to show that **F** is in fact conservative on $\mathbb{R}^2 \setminus \{(0,0)\}$.

Solution. (a) By quotient rule, one computes that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{-2x^3 + 6xy^2}{(x^2 + y^2)^3}$. Now, since the domain over which **F** is defined over is not simply connected, it may not be conservative.

(b) One checks that in fact, $\nabla f = \mathbf{F}$. So, \mathbf{F} is conservative.