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Model of a financial market

There are d + 1 traded or liquid assets:

1. a savings account. We assume that the

interest rate is 0:

B = const

2. d stocks. The price process S of the stocks

is a semimartingale on (Ω, F , (Ft)0≤t≤T , P),
where T is a maturity.

Assumption (No Arbitrage)

Q 6= ∅
where Q is the family of equivalent local mar-

tingale measures for S.
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Economic agent or investor

x: initial capital

U : utility function for consumption at T such

that

– U : (0, ∞) → R

– U is strictly increasing

– U is strictly concave

– the Inada conditions:

U ′(0) = ∞ U ′(∞) = 0
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Pricing problem

Consider a family of N non-traded or illiquid
European contingent claims with

• maturity T

• payment functions f = (fi)1≤i≤N

Question What is the (marginal) price p(x)
of the contingent claims f?

Intuitive definition: p(x) is the threshold such
that given the chance to buy or sell at ptrade

the investor will

• buy at ptrade < p(x)

• sell at ptrade > p(x)

• do nothing at ptrade = p(x)
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Denote

u(x, q) = sup
X0=x

E[U(XT + 〈q, f〉)]

the maximal expected utility from the port-

folio (x, q), where

x: total wealth invested into liquid securities

q = (qi)1≤i≤N : a number of non traded op-

tions

Definition A (marginal) utility based price

is a vector p(x) such that

u(x) := u(x, 0) ≥ u(x′, q′)

for any portfolio (x′, q′) such that

x = x′ + 〈q′, p(x)〉.
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Computation of p(x) = p(x, 0)

The idea belongs to Mark Davis. Define the

conjugate function

V (y) = max
x>0

[U(x) − xy] , y > 0.

and consider the following dual optimization

problem:

v(y) = inf
Q∈Q

E
[
V

(
y(

dQ
dP

)

)]
, y > 0

The measure Q(y), where the lower bound

is attained, is called the minimal martingale

measure for y.

Mark Davis argued that if x = −v′(y) then

p(x) = EQ(y)[f ].
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Theorem (Hugonnier,K.,Schachermayer)

Let y > 0, x = −v′(y) and X be a non-

negative wealth process. The following con-

ditions are equivalent:

1. for any contingent claim f such that

|f | ≤ K(1 + XT ) for some K > 0

a utility based price p(x) is uniquely de-

fined.

2. the minimal martingale measure Q(y) ex-

ists and X is a uniformly integrable mar-

tingale under Q(y).

Moreover, in this case

p(x) = EQ(y)[f ].
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“Trading” problem

Question What quantity q = q(ptrade) the

investor should trade (buy or sell) at the price

ptrade?

Qualitatively, there are two different cases:

1. If f is replicable, then

q(ptrade) =

{
any ptrade = p(x)

∞, ptrade 6= p(x)

2. else if f is not replicable and ptrade is an

arbitrage-free price, then

q(ptrade) =

{
0 ptrade = p(x)

finite ptrade 6= p(x)
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Goal: study the dependence of prices on quan-
tities.

Reservation price (different values for buying
or selling)

Marginal utility based price for the claims f
given the portfolio (x, q) is a vector p(x, q)
such that

u(x, q) ≥ u(x′, q′)
for any pair (x′, q′) such that

x + 〈q, p(x, q)〉 = x′ + 〈q′, p(x, q)〉.
In other words, given the portfolio (x, q)

the investor will not trade the options at
p(x, q).

If u = u(x, q) is differentiable at (x, q) then

p(x, q) =
uq

ux
(x, q).

9



Using the marginal utility based prices p(x, q)

we can compute the optimal quantity

q = q(ptrade)

from the “equilibrium” condition:

ptrade = p(x − qptrade, q)

Main difficulty: p(x, q) is hard to compute ex-

cept for the case q = 0.
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Sensitivity analysis of utility based prices

We study linear approximation for p(x, q):

p(x + ∆x, q) ≈ p(x) + p′(x)∆x + D(x)q,

where

pi(x) = pi(x, 0), i = 1, . . . , N

p′(x) is the derivative of p(x) and

Dij(x) =
∂pi

∂qj
(x, 0), i, j = 1, . . . , N.

The vector p′(x) and the matrix D(x) measure

the sensitivity of p(x, q) with respect to x and

q at (x, 0)
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Question (Quantitative) How to compute

p′(x) and D(x)?

Closely related publications:

J. Kallsen (02) : formula for D(x) for gen-

eral semimartingale model but in a differ-

ent framework of local utility maximiza-

tion.

V. Henderson (02) : formula for D(x) in the

case of a Black-Scholes type model with

basis risk and for power utility functions.
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Question (Qualitative) When the following

(desirable) properties hold true for any family

of contingent claims f?

1. The marginal utility based price p(x) =

p(x, 0) does not depend (locally) on x,

that is,

p′(x) = 0

2. The sensitivity matrix D(x) has full rank

for non replicable contingent claims:

D(x)q = 0 ⇔ 〈q, f〉 is replicable.

3. The sensitivity matrix D(x) is symmetric,

that is

Dij(x) = Dji(x), i, j = 1, . . . , N.
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4. The sensitivity matrix D(x) is strictly neg-

atively defined for non-replicable options:

〈q, D(x)q〉 < 0 ⇔ 〈q, f〉 is not replicable

5. Stability of the linear approximation: for

any ptrade the linear approximation to the

“equilibrium” equation:

ptrade = p(x − qptrade, q)

that is,

ptrade ≈ p(x) − p′(x)qptrade + D(x)q

has the “correct” solution.

Remark Using the representation

p(x, q) =
uq

ux
(x, q).

one can see that all these properties are, in

fact, equivalent!



Risk-tolerance wealth process

Fix x > 0. Recall that −U ′(x)/U ′′(x) is called

the risk-tolerance coefficient of U at x.

Denote by X̂(x) the optimal solution of

u(x) := u(x, 0) = sup
X0=x

E[U(XT )].

Definition (K., Sirbu) A maximal wealth pro-

cess R(x) is called the risk-tolerance wealth

process if

RT (x) = − U ′(X̂T (x))

U ′′(X̂T (x))
.
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Some properties of R(x) (if it exists):

1. Initial value:

R0(x) = − u′(x)

u′′(x)
.

2. Derivative of optimal wealth strategy:

R(x)

R0(x)
= X′(x) := lim

∆x→0

X̂(x + ∆x) − X̂(x)

∆x
.
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Theorem (K., Sirbu) The following assertions

are equivalent:

1. The risk-tolerance wealth process R(x) ex-

ists for all x > 0.

2. The minimal martingale measures Q(y) for

different y > 0 coincide:

Q(y) = Q̂, y > 0.

3. Any (equivalently, each) of the “qualita-

tive” properties 1–5 holds true.
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Extremal cases:

1. Power utility functions:

U(x, α) =
x1−α − 1

1 − α
, (α > 0).

For α = 1 we have Bernoulli utility:

U(x; 0) = log x.

2. Model is “essentially complete”, that is, it

has the same minimal martingale mea-

sure for any utility function.
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Computation of D(x)

We choose

R(x)/R0(x) = X′(x)

as a numeraire and denote

fR = fR0(x)/R(x) : discounted contingent claims

XR = XR0(x)/R(x) : discounted wealth pro-

cesses

QR : the martingale measure for R(x)/R0(x)-

discounted wealth processes:

dQR

dQ̂
=

RT (x)

R0(x)
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Consider the QR-martingale

P R
t = EQR

[
fR|Ft

]
.

and let

P R = M + N, N0 = 0,

be its Kunita-Watanabe decomposition, where

1. M is R(x/R0(x)-discounted wealth pro-

cess. Interpretation: hedging process.

2. N is a martingale under QR which is or-

thogonal to all R(x)/R0(x)-discounted wealth

processes. Interpretation: risk process.
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Denote by a(x) the relative risk-aversion coef-

ficient of

u(x) = max
X0=x

E[U(XT )],

that is

α(x) = −xu′′(x)

u′(x)
.

Theorem (K., Sirbu) Assume that the risk-

tolerance wealth process R(x) exists. Then

p′(x) = 0

D(x) = −a(x)

x
EQR

[
NT N ′

T

]
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Question How to compute D(x) in practice?

Inputs:

1. Q. Already implemented!

2. R(x)/R0(x). Recall that

R(x)

R0(x)
= lim

∆x→0

X̂(x + ∆x) − X̂(x)

∆x
.

Decide what to do with one penny!

3. Relative risk-aversion coefficient α(x). De-

duce from mean-variance preferences. In

any case, this is just a number!
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Black and Scholes model with basis risk

Traded asset:

dSt = St (µdt + σdWt)

Non traded asset:

dS̃ = (µ̃dt + σ̃dW̃t),

Denote by

ρ =
dW̃dW

dt

the correlation coefficient between S and S̃.

In practice, we want to chose S so that

ρ ≈ 1.
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Consider contingent claims

f = f(S̃)

whose payoffs are determined by S̃.

To compute D(x) assume (as an example) the

following choices:

1. Q is a martingale measure for S̃.

2. R(x)/R0(x) = 1

Then

Dij(x) = −α(x)

x
(1 − ρ2)CovarQ(fi, fj).
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Smoothness of the indirect utility

Consider the problem of expected utility max-

imization:

u(x) = sup
X0=x

E[U(XT )]

Question When u′′(x) exists and is strictly

positive?

We need additional conditions on the utility

function U and the price processes S.

Assumption There are strictly positive con-

stants c1 and c2 such that

c1 < −xU ′′(x)

U ′(x)
< c2, x > 0.
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Definition A semimartingale R is called sigma-
bounded if

R =

∫
HdS

and S is (locally) bounded.

Assumption For any numeraire X

SX =

(
1

X
,

S

X

)

is sigma-bounded.

Examples:

1. S is continuous or, more generally, depends
on a finite number of Poisson processes

2. complete financial model

Remark These two examples will not satisfy
if sigma-boundedness is replaced by local bound-
edness.
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Theorem (K.,Sirbu) Let both assumptions

above hold true. Then u′′ exists and

c1 < −xu′′(x)

u′(x)
< c2, x > 0.

where c1 and c2 are the same constants as in

the assumption on U .

Remark Both assumptions are essential for

the assertion of the theorem to hold true.

Other results:

1. The existence of the derivative processes

X′(x) and Y ′(y) of the solutions to the

primal and dual problems.

2. The computation of p′(x) and D(x) in gen-

eral case (when R(x) does not exist).
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Summary

• For non replicable (in practice, all) contin-

gent claims the fair prices depend on the

trading volume.

• The following conditions are equivalent:

– Approximate utility based prices have nice

qualitative properties

– Risk-tolerance wealth processes exist.

– Minimal martingale measures do not de-

pend on initial capital.

• We need to solve the mean-variance hedg-

ing problem, where the risk-tolerance wealth

process plays the role of the numeraire.
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