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Abstract

A firm issues a convertible bond. At each subsequent time, the bond-
holder must decide whether to continue to hold the bond, thereby collecting
coupons, or to convert it to stock. The firm may at any time call the
bond. Because calls and conversions usually occur far from maturity, we
model this situation with a perpetual convertible bond, i.e, a convertible
coupon-paying bond without maturity. This model admits a relatively sim-
ple solution, under which the value of the perpetual convertible bond, as a
function of the value of the underlying firm, is determined by a nonlinear
ordinary differential equation.
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1 Introduction

Firms raise capital by issuing debt (bonds) and equity (shares of stock).
The convertible bond is intermediate between these two instruments and is
often issued by firms who already have large debt and/or high volatility (see
Essig [16]). A convertible is a bond in that it entitles its owner to receive
coupons plus the return of principle at maturity. However, prior to maturity
the holder may “convert” the bond, surrendering it for a pre-set number of
shares of stock. (In some cases, not studied here, the bondholder may also
sell the bond back to the issuing firm at a pre-set price.) The price of the
bond is thus dependent on the price of the firm’s stock. Finally, prior to
maturity, the firm may “call” the bond, forcing the bondholder to either
surrender it to the firm for a previously agreed price or else convert it for
stock as above.

After a convertible bond is issued, the issuing firm’s objective is to ex-
ercise its call option in order to maximize the value of shareholder equity.
The bondholder’s objective is to exercise his conversion option in order to
maximize the value of the bond. If stock and convertible bonds are the
only assets issued by a firm, then the value of the firm is the sum of the
aggregate value of these two types of assets. In idealized markets where the
Miller-Modigliani [30], [31] assumptions hold, changes in corporate capital
structure do not affect firm value. In particular, the value of the firm does
not change at the time of conversion, and the only change in the value of the
firm at the time of call is a reduction by the call price paid to the bondholder
if the bondholder surrenders rather than converts the bond. By acting to
maximize the value of equity, the firm is in fact minimizing the value of the
convertible bond. By acting to maximize the value of the bond, the bond-
holder is in fact minimizing the value of equity. This creates a two-person,
ZE€ro-sum game.

Brennan & Schwartz [7] and Ingersoll [19] address the convertible bond
pricing problem via the arbitrage pricing theory developed by Merton [28]
and underlying the option pricing formula of Black & Scholes [6]. This leads
to the conclusion that the firm should call as soon as the conversion value of
the bond (the value the bondholder would receive if he converts the bond to
stock) rises to the call price. There has been considerable discussion in the
empirical literature whether firms call bonds as soon as the conversion price
rises to the call price. Ingersoll [20] presents evidence that firms wait until
the conversion price is much higher than the call price before issuing the call.
In his study of 179 convertible bonds, the conversion price excess over the
call price had a median of 43.9%. At least five reasons have been proposed



to explain this inconsistency between the model and observed behavior.

(1) Convertible bonds are often issued with some initial period of “call
protection” during which the issuer agrees not to call, even if the
conversion price exceeds the call price.

(2) Firms prefer the call to force conversion so they do not need to refinance
debt. Investors have 30 days to respond to a call, and the stock price
can fall during that time, causing investors to surrender the bond for
the call price. To avoid this, firms wait until the conversion price
exceeds a “safety premium” (said to be roughly 20% by Asquith [1])
over the call price before issuing the call.

(3) Because coupon payments receive preferential tax treatment and div-
idends do not, firms have an incentive to keep the bond alive even
if the net present value of coupons to be paid somewhat exceeds the
net present value of the dividends which would be paid to the former
bondholders following conversion.

(4) Calling may send a signal that management expects the firm’s equity to
decline in value (making the payment of dividend rather than coupons
preferable to the firm), and management is reluctant to send such a
signal. See Harris & Raviv [17] and Mikkelson [29].

(5) If “sleeping” investors are not optimally converting their bonds, it is in
management’s best interest not to awaken them by issuing a call. See
Dunn & Eades [15].

In an empirical study of hypotheses (3), (4) and (5) by Constantinides &
Grundy [12], the hypotheses were not rejected. Asquith & Mullins [2] and
Asquith [1] showed that (1), (2) and (3) explained essentially all the call
delays in two large samples.

We return to the discussion of convertible bond models. In the Brennan
& Schwartz [7] model, dividends and coupons are paid at discrete dates.
Between these dates the value of the firm is a geometric Brownian motion
and the price of the convertible bond is governed by the linear second-order
partial differential equation developed by Black & Scholes [6]. Brennan &
Schwartz [8] generalize that model to allow random interest rates and debt
senior to the convertible bond. In Ingersoll [19], coupons are paid out con-
tinuously, and for most of the results obtained, dividends are zero. Again,
the bond price is a governed by a linear second-order partial differential



equation. In [7] the bond should not be converted except possibly immedi-
ately prior to a dividend payment; in [19] the bond should not be converted
except possibly at maturity. Therefore, neither of these papers needs to ad-
dress the free boundary problem which would arise if early conversion were
optimal.

The present paper assumes that a firm’s value is comprised of equity
and convertible bonds. To simplify the discussion, we assume the equity
is in the form of a single share of stock, and there is a single convertible
bond outstanding. We assume the value of the issuing firm has constant
volatility, the bond continuously pays out a coupon at a fixed rate, and
the firm equity pays a dividend at a rate which is a fixed fraction of the
equity value. In particular, payments are always up to date and there is no
issue of accrued interest at the time of a call, default or conversion. Default
occurs if the coupon payments cause the firm value to fall to zero, in which
case the bond has zero recovery. In this model, both the bond price and
the stock price are functions of the underlying firm value. As pointed out
by Bensoussan, Crouhy & Galai [4], [5], this means that the stock price
does not have constant volatility. Furthermore, because the stock price
is the difference between firm value and bond price, and dividends are paid
proportionally to the stock price, the differential equation characterizing the
bond price as a function of the firm value is nonlinear. The development of
a mathematical methodology to treat this nonlinearity is the rationale for
this paper.

To simplify the analysis, we assume the bond is perpetual, i.e., it never
matures. This removes the time parameter from the problem, and the free
boundary problems associated with optimal call and optimal conversion be-
come “free point” problems. As noted by Ingersoll [19], perpetual convertible
bonds are unknown in the market, but they are close relatives of preferred
stock, which does trade. Preferred stock does not mature, it can often be
called by the issuing firm, and it can be converted to common stock by its
owner. Whereas our perpetual convertible bond pays coupons, preferred
stock pays dividends. We also take all model parameters, including the
interest rate, to be constant.

In the time-independent setting of this paper, it is possible to place the
convertible bond pricing problem on a firm theoretical foundation. Indeed,
the price we obtain is shown to be the only arbitrage-free price in a per-
fectly liquid market in which the bond, the stock and a constant-interest
rate money market can be traded. To establish this we first make the as-
sumption that the respective parties adopt not necessarily optimal call and
conversion strategies and derive the corresponding no-arbitrage bond price



(Theorem 2.1). We then pose the determination of optimal call and con-
version strategies as a two-person, zero-sum game and show that the game
has a value (Theorem 2.4). We give a full description of the bond price as
a function of the firm value in Theorem 2.5. One of the conclusions of that
theorem is that it can be optimal to call the bond before the conversion
price has reached the call price. Section 2 states the results of this paper
and subsequent sections provide the proofs.

Convertible bonds have several other features which should be captured
by any model intended for practical application (see [27]). These bonds have
periods of call protection, often have time-dependent conversion factors, and
are subject to interest rate and default risk. The model of this paper captures
only the default risk, and that via a simple structural model which would be
difficult to implement. Loshak [25] allows non-convertible senior debt and
uses a more sophisticated structural model for default. Another interesting
issue is the process of conversion when bonds are held by a competing set
of investors (see Constantinides [11] and Constantinides & Rosenthal [13]).

We close this introduction with a brief discussion of the literature de-
signed to obtain practically useful models for convertible bonds. All of the
following models permit stochastic interest rates, although not all of them
are able to fit the initial yield curve. Ho & Pteffer [18] build a model which
can fit the initial yield curve. When equity prices are low, convertibles are
unlikely to be converted and thus behave like bonds. When equity prices
are high, they are more like equity. When computing the net present value
of the cash flow from such a bond, Tsiveriotas & Fernandes [33] separate
the cash flow into an “equity” part which is discounted at the risk-free rate
and a “bond” part which is discounted at the risk-free rate plus a credit
spread. Davis & Lischka [14] build a model which uses this idea locally at
nodes within a tree. The Davis & Lischka model also can fit the initial
yield curve. Because stock prices are directly observable and firm value is
not, many models seek to determine bond value directly as a function of
stock price rather than firm value, sometimes with apology (see McConnell
& Schwartz [26]). Another such model is Barone-Adesi, Bermudez & Hat-
gioannides [3]. Additional models and computational procedures are pro-
vided by Carayannopoulos [9], Chung & Nelken [10], Longstaff & Schwartz
[24] and Yigitbasioglu [34].



2 The model

We consider a firm whose value at time ¢ > 0 is denoted by X (t). We assume
that the evolution of X (¢) is governed by the stochastic differential equation

dX(t) = h(X(t)) dt — cdt + o X (t) AW (), (2.1)

where W is a one-dimensional Brownian motion on some probability space
(Q, F,P), h is a Lipschitz continuous function satisfying h(0) = 0, and ¢ and
o are positive constants. We denote by {F(t);t > 0} the filtration generated
by the Brownian motion W.

At time ¢, the firm has a debt D(t), and so the equity value is

S(t) = X(t) — D(t). (2.2)

The debt is in the nature of a convertible bond, which pays coupons at the
constant rate c. We assume the bond never matures. The firm’s dividend
policy is to pay continuously to shareholders at a rate § times the equity,
where § > 0. It turns out to be notationally convenient to explicitly display
the coupon payments in (2.1) but let the dividend payments be implicit in
the function h.

At any time, the owner of the convertible bond may convert it for stock.
According to the provisions of the bond, upon conversion the bondholder
will be issued new stock so that his share of the total equity of the company
is the conwversion factor -y, where 0 < v < 1. To simplify the discussion, let
us assume that before conversion the firm has one share of stock outstanding.
We are denoting by X (t) the value of the firm and by D(t) the size of the
debt before conversion. Therefore, S(t) = X (t) — D(t) is the price of firm’s
single share of stock before conversion. Upon conversion, the firm issues new
stock and the former bondholder becomes a stockholder. The total value
of the firm’s outstanding stock is X (¢), and the value of the stock owned
by the former bondholder is X (¢). Therefore, the price of the share of the
stock outstanding before conversion is now (1 — )X (¢).

At any time, the firm may call the bond, which requires the bondholder
to either immediately surrender it for the fixed conversion price K > 0 or
else immediately convert it as described above. If the bond is surrendered,
no new stock is issued and the price of the firm’s single outstanding share
becomes X (t)— K. In this model the firm may not call the bond if X (¢) < K,
i.e., there is no provision for reissuing debt.

We assume that equation (2.1) describes the evolution of X () only before
any call or conversion occurs. It is possible that prior to bond conversion



or call, the firm value X (¢) drops to zero, in which case the firm declares
bankruptcy and all coupons and dividends cease.

There is a constant interest rate r, and we assume § < r. Prior to call
or conversion of the bond, there are three tradable instruments: the firm’s
stock, the convertible bond, and a money market paying rate of interest r.
We assume that all these are infinitely divisible and there are no transaction
costs. Thus, the value V'(¢) of a portfolio which holds A;(¢) shares of stock
and Az (t) convertible bonds at each time ¢ and finances this by investing or
borrowing at interest rate r evolves according to the stochastic differential
equation

dv(t) = Ai(t)(dS(t) +0S(t)) + As(t)(dD(t) + cdt) (2.3)
+r(V(8) — A1(t)S(t) — Ax(t)D(t)) dt.

An arbitrage arises if it is possible to begin with V' (0) = 0 and choose {F(t)}-
adapted processes A; and Aj so that at some bounded stopping time 7 at
or before the minimum of the time of call, the time of conversion and the
time of bankruptcy, we have V(7) > 0 almost surely and V(7) > 0 with
positive probability. We restrict ourselves only to trading strategies A1(%),
Ay(t) which cause V (¢) to be uniformly bounded from below for 0 <t < 7.
Our goal is to price the convertible bond, under the assumption that the
firm issuing the bond and the bondholder behave optimally, in a way which
precludes arbitrage.

If the bond has been called, we assume the bondholder will surrender
the bond for the call price K if K exceeds the conversion value yX (¢) and
convert it if yX (¢) > K. If yX (t) = K, the bondholder is indifferent between
surrender and conversion. Thus, if the bond is called when the firm value
is X (t), then the value of the bond is max{K,vX(¢)}. If the bond has not
been called, we assume the bondholder adopts a rule of the form: “convert
as soon as the value of the firm equals or exceeds C,.” For the firm issuing
the bond, we consider call strategies of the form “call the first time the
value of the firm equals or exceeds C,.” The firm must choose C, > K; if
C, < K the firm would call when the firm value was insufficient to pay the
call price. Let us suppose the firm and bondholder each choose a strategy,
characterized by positive constants C, > K and C, > 0. Once C,,C, are
chosen, we want to find the price of the bond as a smooth function of the
value of the firm, such that no arbitrage can occur.

The following theorem provides a differential equation for this pricing
function:



Theorem 2.1 Suppose C, > K and C, > 0 are chosen (not necessarily
optimally) by the firm and bondholder, respectively, and set

a, £ min{C,,C,}, 7 £inf{t > 0;X(t) ¢ (0,a.)}. (2.4)
Assume X (0) € (0,a4) and
D(t) = f(X(t), 0<t<m, (2.5)
for a function f € C[0,a.] N C%(0,a.) satisfying the boundary conditions
_ | va. if 0 < C, < Cy,
10=0 fa)={ 1 Bl e

If there is no arbitrage then

rf(z) — (rz —c)f'(z) + 6(z — f(z))f'(z) — %02:1:2]‘”(:0) =c for 0 <z < ay.
(2.7)

Conversely, if the function f satisfies (2.6) and (2.7) and the derivative f'
is bounded on (0, a4), then there is no arbitrage.

To set the notation, for an arbitrary number a > 0 we define the non-
linear differential operator acting on functions f € C[0,a] N C2(0,a) by the
formula

Nf(z) & rf(z) - (rz —c)f'(z) + 8z - f(2))f'(z) - %Uzwzf”(w)- (2-8)

We shall see that this differential operator corresponds to the stochastic
differential equation for the firm value

dX(t) = (rX(t) —c)dt — §(X(t) — f(X(t))dt+oX(t)dW(t), (2.9)

rather than the equation (2.1) posited above. This turns out to be the
so-called risk-neutral evolution of the value of the firm. Under the risk-
neutral evolution, the firm value has mean rate of change r reduced by the
coupon and dividend payments. The volatility o is the same as in (2.1). An
interesting feature of this model is that the function f appearing in (2.9)
which determines the evolution of the “state” under the risk neutral measure
for this problem must be determined by optimality considerations. It is not
known a priori.

In order to compute the “no arbitrage” price of the convertible bond
for some (not necessarily optimal) call and conversion levels, we need an
existence and uniqueness result for boundary value problems associated to
equation (2.7), namely:



Theorem 2.2 Let y; be a positive number and 0 < y; < x1. Then there
ezists a unique solution f € C[0,z1] N C?%(0,z1) of the boundary value prob-
lem

Nf(z) =c for z € (0,z1),
{ f(O) = 0, f(:cl) =Y1. (2.10)

Furthermore, the derivative f' is bounded on (0,z1). Ify1 < 1, then f'(z) <
1 for all z € (0,z1).

Taking into account Theorem 2.1, Theorem 2.2 and the discussion re-
garding the price of the bond at call or conversion time, we see that once
the call and conversion levels have been set, the “no-arbitrage” price of the
convertible bond is

D(t) = f(X(¢), Cas Co), (2.11)
where the function f(z,C,, C,) is given in the next definition.

Definition 2.3 (i) If 0 < C, < C,, define f(z,C4,C,) for 0 <z < C, to
be the unique solution of the equation N f = c on (0,C,) satisfying the
boundary conditions f(0) =0, f(C,) = ¥Cs. For z > C,, define

_ Yz, Co<z< Caa
f(lL',Ca,Co) - { max{K, 'Y:E}, x> Ca-

(il) If K < C, < C,, define f(z,C,,C,) for 0 < z < C, to be the unique
solution of the equation N'f = ¢ on (0,C,) satisfying the boundary
conditions f(0) = 0, f(C,) = max{K,yC,}. For z > C,, define
f(z,C,, C,) = max{K,yzx}.

Equation (2.11) provides a bond price once the call and conversion levels
C, and C, have been chosen. The firm wishes to minimize the value of the
bond (in order to maximize the value of equity) and the bondholder wishes
to maximize the value of the bond. This creates a two-person game, and
according to the next theorem, this game has a value.

Theorem 2.4 There exist C; > K and C, > 0 such that for each z > 0,
we have

f(z,C;,C) = inf f(z,C,,C;) = sup f(z,C,,C,). (2.12)
Cu>K Co>0



Because infcr > f(x,Cf, Co) < f(x,Cq, C,) for any C, > 0 and Cy > K,
we have

sup inf f(z,C. C,) < sup f(z,C,,C,).
Co>0Ca2K Co>0

Taking the infimum on the right-hand side, we obtain

s inf C,,C.))< inf s C, C,).
C?focﬂxf(m’ @ O)_CigKClg)Of(m, 2 Co)

From this inequality and Theorem 2.4, we obtain

f(z,Cq,C;)

Cng f(z,Cq,Cy)

< inf

< g:1>po CgKf(w,Ca,Co)

< inf

< Gt g:lfof(:c,Ca,Co)

< sup f(z,C;,C,)
Co>0

= f(.’L‘, C;, C:)
All the above inequalities must be equalities. For > 0, we define

A * *\ . _ .
fe(x) = f(2,C;,C)) = sup. C}zngf (z,Cq,Co) = C}Lng csllfof (z,Cq, Cy).

(2.13)

This is the price of the bond as a function of the underlying firm value x, and
C; and C} are the optimal call and optimal conversion levels respectively.

Our final theorem describes the function f,. Figures 1, 2 and 3 show
the three cases of this theorem. In all three figures, r = 0.05, § = 0.03,
c = 0.898, 0 = 0.20 and v = 0.25. The values of K are indicated in the
respective figures.

Theorem 2.5 The function fy is in C[0,00) and is described by one of three
cases. There are two constants 0 < Ky < Ka depending on r,6,0,c and ~.

(i) If K > K, then f. € C1(0,00) and satisfies
0< fi(z) <1 forz>0. (2.14)
In this case,

K
C, = min{z > 0; fu(z) = vz} = 72,
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Figure 1: Case (i) of Theorem 2.5. K = 50.

f« restricted to (0,C%) is the unique classical solution of N'fyx = c on
(0,C%) with boundary conditions f.(0) =0 and f.(C%) =~C2,

f«(z) = vz for x > C;, (2.15)

and Cy = % > C; = 2.

(ii) If K1 < K < K, then f. restricted to (0, K/7) is the unique classical
solution of N f« = ¢ on (0, K/v) with the boundary conditions f.(0) =
0 and f« (K/v) = K. We have

0< fi(z) <lfor0<z<Z, (2.16)

fe(z) =y for x> % (2.17)

In this case, C; = C; = %

(iii) If K1 > 0, there is a third case. A sufficient condition for K1 > 0 is

0 < v < 3. In the third case, 0 < K < K1, f. restricted to (0,K/v)

is continuously differentiable, C; € (K,K/v), and f. restricted to

(0,C%) is the unique solution of N f. = ¢ on (0,C%) with the boundary
conditions f.(0) =0, f«(C,) = K. We have

0< filz) <1 for0<z<CZ (2.18)
K, Cr<z<X&
— b a — — 77
fi(z) { o, T > % (2.19)

In particular, fi(Ci—)=0and K < Ci < Ck = %

10
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Figure 2: Case (ii) of Theorem 2.5. K = 25.
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Figure 3: Case (iii) of Theorem 2.5. K = 11.005.
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From Theorem 2.5 we see that the firm debt at time ¢ is D(t) = f.(X (¢)),
and (2.2) becomes

S(t) = X(t) = fo(X(2))- (2.20)
So long as z € (0,CF A C), the function F(z) £ z — f.(z) is strictly
increasing because of (2.14), (2.16), (2.18), and hence has an inverse F~1.
We may invert (2.20) to obtain

X(t) = FH(S(t)),

and thereby obtain a formula for the market price of the convertible bond
in terms of the equity of the firm:

D(t) = f(F~H(S()))

In all three cases of Theorem 2.5, the firm should call as soon as D(t) rises
to the call price K. In cases (ii) and (iii), this is the first time the conversion
value of the bond rises to the call price. In case (iii), the call should occur
before the conversion value rises to the call price. The owner of the bond
should convert as soon as D(t) — yF~1(S(t)) falls to zero, i.e., as soon as
the difference between the bond price and the bond’s conversion value falls
to zero.

3 Proof of Theorem 2.1

The strategy of the paper is to construct the family of functions f(z, C,, C,)
and then establish the min-max property (2.12). Before we do so, we prove
Theorem 2.1 in order to better understand the role of the risk neutral mea-
sure.

PROOF OF THEOREM 2.1: Assume that the price of the bond is D(t) =
f(X(t)) for a function f € C[0,a.]NC?(0,a.) satisfying (2.6). In particular,
the value of the equity is S(t) = X (¢) — f(X(t)) for 0 < ¢t < 7. Taking (2.3)
into account, we see that the value V' (¢) of a self-financing portfolio starting
with initial capital V' (0) = 0 and containing A;(t) shares of stock and Ay(t)
units of convertible bond evolves according to

dV(t) = Ai)[d(X() — F(X@) +8(X () - F(X(2)))dt]
+22(t) [df (X (t)) + cdt]
+r[V(t) — A(t) (X (1) — F(X (1)) — A2(t) (X (2))]de.

12



Therefore,

AV (1)
= TM@X() - FXWD) - (r - )XWt + (r — OF(X(@))d]

( (
Fe Tt A(E)[d ( (t)) + cdt — rf(X(t))]
e A1) (1 = F(X (1) + Aa(®)f (X (E)]dX (2)

+e—”A1(t>[ X () (X (1)) — (r 6)X(t)+<r—5)f<x<t))] dt

e An() [EUQXQ(t)f”(X(t)) feo rf(X(t)))} dt.

(3.1)

l\DIb—lA

We choose
Ai(t) = fI(X(t)sen(NF(X(2)) - c),
As(t) = —(1- f(X(t))sen(Nf(X(t)) —c)

so that A1(t)(1 — f(X(t))) + Az2(t)f'(X(t)) = 0. With these choices (3.1)

becomes
d(e "V (t)) = IN(X(t)) — c| dt.

This equation shows that the portfolio value V'(¢) is bounded from below by
V(0) = 0 and provides an arbitrage unless N f(z) = c for 0 < = < ax.

We now prove the converse. Assume D(t) = f(X(¢)) for 0 < ¢t < 7,
and f satisfies (2.6) and (2.7). Let 7 < 7. be a bounded stopping time.

Since MX() ang L ((';)) are bounded for 0 < ¢ < 75, we can use Girsanov’s

X(t)
theorem to construct an equivalent probability measure P such that

WX () [ XN,
/0 o e+ oW (t) =t 5/0 (1 o )d o) (32)

for 0 <t < 7, where W is a Brownian Motion under P. The differential of

the value of the firm may be rewritten as
(t))dt — cdt + o X (£)dW (t), 0 <t < T.

dX(t) =rX(t)dt —6(X(t) — f(X
(3.3)
Let us consider the value V(t) starting with initial capital V(0) =
corresponding to a self-financing trading strategy A(t), Az(t) for 0 < ¢ S
We can write the evolution of V'(¢) as
(3.4)

de™™V () = Ai(t)(d(e " S(¢t) + de IS (t)dt)
+Aq(t)(d(e " D(t)) + ce"dt).

13



Since D(t) = f(X(t)), S(t) = X (t) — f(X(¢)), and the function f is smooth,
we can apply It6’s formula to obtain

d(e” " S(t)) + de S (t)dt (3.5)
= e (N(X(t) — ) dt +e (1 — /(X))o X (t)dW (t),
d(e "™D(t)) + ce "dt (3.6)

— e N(X(t) —¢) + e (X () X (£)dW (2).

We assume N f(z) —c = 0 for 0 < z < a«, and taking into account (3.5),
(3.6) and (3.4), we conclude that e "IV (A7) is a local martingale under
P. But V is uniformly bounded below, and Fatou’s lemma implies

E[e™V(r)] < V(0) = 0. (3.7)
This means it is impossible to have P{V () > 0} = 1 and P{V () > 0} > 0.

Since P is equivalent to the probability measure to P, no arbitrage exists.

4 Generation of candidate functions

Theorem 2.5 asserts that for small values of z, the value f.(z) of the convert-
ible bond satisfies the second-order ordinary differential equation N f(z) = c.
Not only is this equation nonlinear, it is also singular at £ = 0. Rather than
solving the differential equation N f(z) = c directly, we generate a one-
parameter family of solutions to the variational inequality

min{N f(z) — ¢, f(z) — vz} = 0. (4.1)

To do this, we first construct for a fixed function g € C|0,a], a solution to
the variational inequality

min{£,f(c) - ¢, f(z) — 72} = 0, (4.2)

subject to boundary conditions f(0) = 0, f(a) = ~ya. Here, the linear
differential operator L, is defined by

Lof(z) £ rf(z) = (rz — ) f'(z) + 6(z — g(x)) f'(z) - %02:621”"(50)- (4.3)

In Section 7 we prove existence of a function g for which the solution to this
equation is g itself.
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Definition 4.1 Leta € (0,00) be given. Denote D, = [0, a] and let G, be the
set of continuous functions g: D, — R which are continuously differentiable
on (0,a) and satisfy

9(0)=0, g(a) =1a,
g(z) > vz, -M,<g'(z) <1 Vze(0,a),

where M, will be defined in Proposition 6.7. We denote by G, the closure
of G, with respect to the supremum norm in C|0, a].

Denote Doy = [0,00) and let Goo be the set of continuous functions
9: Do — R which are continuously differentiable on (0,00) and satisfy

9(0) =0, g(:l?) =T Vz € [bg,oo),
9(z) >yz, 0<g'(z)<1 Vze(0,00),

where by is a finite number depending on the function g. Let (C,,d) be
the complete metric space of continuous functions on Do which satisfy
lim; ,00[g(z) — vz] = 0, and d is the supremum metric. We denote by
Goo the closure of Goo in (Cy,d).

For a € (0,00], g € Gq, and x € D,, we define X°(t) by X*(0) =z and

dX*(t) =rX*(t)dt — & (X°(t) — g(X*(t))) dt — cdt + o X*(t) dW (¢)

(4.4)
for 0 <t < 7§ AT, where 72 £ inf {t > 0; X*(t) = y}. We then set
T.g(z)= sup E [/ e "edu+ I core” T X(T) ], (4.5)
0<T<TFNATE 0

where the supremum is over all stopping times T which satisfy 0 < 7 < TEATS
almost surely.

We interpret the objects in Definition 4.1 as follows. Suppose we have
a function g which maps the value of the firm into the value of convertible
bond, which is the firm’s debt. Then S(¢) in (2.2) is given by S(t) = X (¢t) —
9(X(t)). As we have already seen in the proof of Theorem 2.1 (see (3.3)),
under a “risk-neutral” measure, we expect the value of the firm to have
mean rate of growth equal to the interest rate r, reduced by the dividend
and coupon payments. In other words, the evolution of the value of the
firm should be given by (4.4). The Brownian motion in (4.4) should be the

P-Brownian motion W appearing in (3.2) rather than the one appearing in
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(2.1). However, since we have no further need of the Brownian motion W
in (2.1), we simplify notation by suppressing the ~ on W, P and E here and
in the remainder of the paper.

The fortunes of the firm, which depend on the function g and the initial
condition z, may result in bankruptcy at time 7j. If bankruptcy never
occurs, then 7§ = oo. The bondholder collects dividends at rate c until
bankruptcy occurs or until he converts the bond to stock. He may make
this conversion at any stopping time 7 < 77; if he has not converted by the
time 74, he must do so at this time. The parameter @ in this restriction
on the stopping time 7 will allow us to construct a one-parameter family of
solutions to (2.8) rather than a single solution, and we shall later see that
the correct choice of the parameter a depends on the price K at which the
firm can call the bond. However, in this interpretation of the function T,g,
we do not permit the firm to call. Since the conversion option is worthless
after bankruptcy, we assume without loss of generality that 0 < 7 < 7§
almost surely. Upon conversion, the bondholder receives stock valued at
vX?®(7). It follows that the risk-neutral value of a conversion strategy 7 is
E[fy e ™ edu + L coye™ "™y X% (7)], and Tog(x) is the value of the optimal
conversion strategy, if it exists.

We began this discussion with the supposition that g(z) is the value
of the convertible bond when z is the value of the firm. But the value of
the convertible bond should be the risk-neutral discounted value of coupons
collected plus the risk-neutral discounted value of the stock received upon
conversion. In other words, we seek a function f € G, such that T, f = f.
Such a function will satisfy (2.8), at least for small values of z.

In Section 5 we prove continuity of the function 7,g. In Section 6 we
show that, like g, the function T,g is in G4, and we develop the Hamilton-
Jacobi-Bellman equation satisfied by T,g, namely equation (4.2). In Section
7, we show that the mapping T,: G, — G has a unique fixed point, which
we call f,. Section 8 shows that for each call price K, there is a value of a so
that f, is a part of the function described in Theorem 2.5. This enables us
to prove Theorems 2.4 and 2.5. Finally, the proof of Theorems 2.2 is given
in Section 9.

5 Continuity of candidate functions

Let a € (0,00] and g € G, be given, and define T,g by (4.5). In this section
we show that T,g is continuous.
If a is finite, we extend g to be constant on (—o0, 0] and on [a, 00). Since
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the extended g is Lipschitz, we may use (4.4) to define X*(¢) for all ¢ > 0.
The assumptions on g ensure that for some 7 > 0

d(z—g(z))+c>nz Vz>0.
We now set Z(t) = exp { —oW (t) — 10%t}, so that

d(Zt)X°1) = (r—o°) Z(t)X"(t)dt
—0Z(t) (X®(t) — g(X*(t))) dt — cZ(t) dt
< (r—o®—n)Z(tH)X*(t)dt, 0<t< 13,

Integration yields
t
Z2B)XE) <z + (r—o® — 1) / ZW)X*(w)du, 0<t<1E,
0
and an application of Gronwall’s inequality gives the bound

Xo(t) < %e(’"*" )t (5.1)

1
= zexp {aW(t) + (r - 502 —n) t} , 0<t< 7.
Lemma 5.1 The function T,g satisfies the bounds
vz < Tog(z) < ; +vx Vz € D,. (5.2)

PRrROOF: The lower bound in (5.2) is obvious, since 7 = 0 is one of the
stopping times over which the supremum in (4.5) is taken.

For the upper bounded, we apply the Optional Sampling Theorem and
Fatou’s Lemma to the martingale exp {cW (t) — 50 %t} and use (5.1) to ob-
tain for any stopping time 7 satisfying 0 < 7 < 7§

1
Ee " X*®(r) < zEexp {O'W( ) — —027'} (5.3)
1
< :vlitmianEexp {O'W(t AT)— 502(1; A 7')} = .
—00

Therefore,

oo
Tug(z) < / e "™ecdu+y sup Ee "TX%(1) < °y .
0 0<7<7g r
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Lemma 5.2 For ally > 0, the stopping time 7,/ is almost surely continuous
inz at all z > 0.

PROOF: It is possible to choose for each initial condition a version of the
process X?(t), t > 0, such that X*(t) is jointly continuous in (¢, ), almost
surely (see [23]). For 0 < ¢ < z < y, we have X¢(t) < X?%(t), 0 < t < oo,
almost surely, which implies that limg, 7'5 > 7. On the other hand, 7 =
inf {¢ > 0; X*(t) > y}, which implies that limgy, < 7, - Therefore,

151%175 =T, (5.4)

We next consider the case 0 < z < §{ < y, for which we have X?(t) <
X&(t), 0 < t < oo, almost surely, and hence limg , 75 < 7. If limg, 7-5 =
00, the reverse inequality holds, and if this limit is finite, then the joint
continuity of X'(-) implies that y = lim¢, Xg(’rﬁ) = X*(limg, 7'5), which
again gives us the reverse inequality. This shows that

lglﬁclrzf =T, (5.5)

Combining (5.4) and (5.5), we conclude that, almost surely, lim¢_,, 75 =
7y, 0 <z <y, and (5.4) holds for = y. A similar argument shows that

limg_,, 75 = 72, 0 <y < z, and (5.5) holds for z = y. &
We know that

1
e " X"(t) < zexp {aW(t) - Eazt} (5.6)
Since X?(t) is jointly continuous in (¢,z) € [0,00) X [0, a], using Lemma 5.2
and the convergence

t—o0 2

1
lim exp {O'W(t) — —02t} =0 as. (5.7)
we can conclude that the process:
tATGATS -
Y*(t) £ / e ™ecdu + ]I{t,\,.g/\Tg@o}e*’"(t/\TO Ny X (EATE ATE)
0

(5.8)

is jointly continuous in (¢,z) € [0, 00] X [0, a], almost surely. In particular,
we have continuity at time ¢ = oo, where

TEATS R
Y*(00) £ / e ™Medu+ Iiepre <oo}e_r(70 Ny X2 (18 ATE).
0
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Lemma 5.3 The function T,g is lower semicontinuous on D,.

Let 7 be any nonnegative stopping time. Lemma 5.2 implies that 7 A7§ A TS
is almost surely continuous in z. The function

TATGATY o @
hT,a, = E {/ e_ruc du + ]I{T/\T(?A:<OO}C_T(TATO ATG)’)/X:E (T A 7—(:]1: 1A\ T:)
0

is thus lower semicontinuous in z (by Fatou’s lemma), and T,g(z) = sup, h-q(z),
being the supremum of lower semicontinuous functions, is lower semicontin-
uous. &

We know from inequality (5.1) that

1 X
sup Y?(t) < y v sup exp{oW (t) — (n + Zo?)t} = i yzeV", (5.9)
0<t<co T >0 2 r

where W* = sup;so [W(t) — (5 + 2)]. According to ([21]), Exercise 5.9,
Chapter 3, W* has density

P{W* € db} = 2 (% + g) exp {2 (% + g) bdb, b>0.  (5.10)

This means that Ee°"” < 0o, so we obtain

E sup Y*(t) < 0. (5.11)
0<t<oo

In light of Lemmas 5.1, 5.3, the set
Sy = {z € Do; Tug(z) = vz} = {z € Dy : Tug(z) < vz}
is closed, contains the origin, and contains a if a is finite. We define
2 & inf {t > 0; X*(t) € S}, (5.12)

a stopping time satisfying 77 < 7§ A 75. Since inequality (5.11) holds, it is
known from the general theory of optimal stopping that the process

t/\Tg/\Tg o o
Z5(t) 2 / e e du+ Iy nns conpe TN TLg(X2(t A TE ATE))
0
(5.13)
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is a supermartingale for 0 < ¢ < oo, the stopped process Z*(t ATF), 0 <t <
00, is a martingale and 77 is an optimal stopping time, i.e.,

x
*

Tog(z) =E [/0 e "edu + ]I{Tf<oo}€_TTf’YXw(Tf) . (5.14)

To prove this, one can first show, using the Markov property, that the process
{Z*(t) }o<t<oo is the Snell envelope of {Y*(t)}o<t<oo, i.€.,

Z*(t) = esssup,>E[Y*(7)|F], (5.15)

and then appeal to [22], Appendix D. Another way to prove it is to combine
Theorem 1, page 124 and Theorem 3, page 127 from [32].

Lemma 5.4 Assume a = co. We have
v < Teog(z) <z VI € Doy, (5.16)
and there is a number b > 0 such that
Toog(z) =7z Vz € [b,00). (5.17)
If a € (0,0), we have
v < Teg(z) <z VI € D,. (5.18)

PROOF: We shall construct a number b > 0 and a function ¢: [0,00) — R
such that

vz < p(z) <z Vze|0,b), (5.19)
o(z) =yz Vz € [b,00), (5.20)

¢" is defined and continuous on [0, c0), except at v/b and b, but has one-

sided derivatives at these points, ¢’ is defined, bounded, and continuous on
[0, 00) except at v/b, but has one-sided derivatives at this point which satisfy

D (Vb)) — DT p(vb) >0, (5.21)
and

Lgp(z) >c Vz € [0,00)\ {\/E,b}. (5.22)
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Once b and ¢ are constructed, we choose an arbitrary « > 0. With
X (t) = X*(t), the extension of Ité’s rule to continuous, piecewise C? func-
tions implies that

d(e (X () = —e "Lyp(X (b)) dt — e (D—<p(\/5) — D+so(\/5)) dA(t)
+e "o X ()¢ (X (t) dW (2),

where A(t) is the (nondecreasing) local time of X at v/b. From (5.21) and
(5.22), we see that

d(e (X (1)) < —e "cdt + e o X (t)¢' (X (t) AW ().

Hence, for any stopping time 7 < 7§ and any deterministic time 7, we have
TAT
Ee """ D (X (1 AT)) < p(z) — E/ e "edt,
0

where we have used the boundedness of ¢’ and (5.1) to ensure that the
expectation of the It6 integral is zero. This last inequality implies

TAT
p(z) > E [/ e "tedt + ]I{T<Oo}e_r(TAT)fyX(T A T)} .
0

Letting T — oo and using Fatou’s Lemma, then maximizing over 7, we
obtain ¢(z) > T,g(z). The relations (5.16), (5.17) now follow from (5.2),
(5.19) and (5.20).

If a € (0,00), then the function h(z) = z on [0, a] is two times continu-
ously differentiable on (0,a) and satisfies Loh(x) > c. Since h(z) > vz for
each 0 < z < a, we can do the same computation as above for the function
h instead of ¢ and obtain (5.18).

The remainder of the proof is the construction of b and ¢. For b > €2,
define the positive function

A 1-7
1 1
(Elogb+%—1)

n(b)
Consider the function
K(B) £ ey — n(8) — 1]+ 28v5(1 —7) (v (b)) — 3o*n(B)V5.

Since limp_; o, 7(b) = 0, we have lim,_,, k(b) = co. We fix a value b > e? for
which

k(b) > 0, n(b) < 7. (5.23)
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For any g € G, we know that lim, ,o[g(z) — yz] = 0, so for b sufficiently
large, we also have

z—g(z) > %(1 — Wb Vz € [Vb,0), (5.24)

(L—7)c

0z —g(z) > Vz € [b,00). (5.25)

With b chosen to satisfy all the above properties, we set

T, 0 S z S ﬁ)
p(z) = vz +n(b)vb (2 —log% —1), Vb <z <b, (5.26)
vz, z > b.

The function ¢ is easily seen to be continuous. We compute

1, 0<z< Vb,
¢(@) =2 y+abvb(i-1), vh<z<b,
v, z > b.

Thus, ¢' is defined and continuous at b, and

D_QO(\/E) = ]-7
1-vb
Dto(Vb) = ~y+n < 7.
p(Vb) v+ n(b) < 7 ) g
In particular, (5.21) holds. Finally,
0, 0<z< b,
¢'(@)=q 1O pca <, (5.27)
0, x > b.

JFrom (5.27), it is apparent that ¢’ is increasing on (v/b, b), and since ¢'(b) =
7, we must have ¢’ < -y on this interval. Because ¢(v/b) = v/b and ¢(b) = b,
we see that

vz < p(z) <z, Vb<z <b. (5.28)

Combining (5.28) with (5.26), we conclude that (5.19), (5.20) are satisfied.

It remains only to establish (5.22). For 0 < z < /b, this inequality is
obvious from the formula ¢(z) = z and the fact that g(z) < z. For = > b,
we have

Lyp(z) =ryz —(rz —c) + y(z —g(x)) = c
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because of (5.25).
Finally, we consider (5.22) when vb < x < b. We have

Lep(x) = ryz+rmn(b)Vh (f ~log > - 1)

b b
+[=re+ote—gta) + o [+ (3 - 1))
—%a%(b)\/é

= rn(b)ﬁlogg +d(z — g(z)) [7 +n(b)Vb <% - %)]
+v¢+ en(b)vb (% - %) - %a%(b)\/l;

> (8(z—g(z)) +¢) (v—n(b)§> — 5on(b)vb

> (3a —g(x)) +¢) (v~ b)) — 50O}V

> (56VB0=)+¢) (= n(®) - gaPn(es
= k() +ec.

where we have used (5.24) to get the last inequality. ;From (5.23) we con-
clude that (5.22) holds. $

Corollary 5.5 The function T,g is continuous on D,.

PRrROOF: Recall from the proof of Lemma 5.3 that for each y > 0, the
stopping time 7 is a continuous function of z. The complement of the
closed set Sg,

Cg = {z € Do; Tug(z) > vz},

is a countable union of disjoint open intervals, and on each of these intervals
(o, 8), we have 77 = 75 A 73, which is a continuous function of z € [a, B].
On the set Sy, 77 = 0. Hence, 77 is continuous on both S; and on its
complement C4. To show that 7 is continuous on D, = C4 U Sy, it remains
only to show that if {z,}2° ; is a sequence in C4 converging to x € Sy, then
T — 12 = 0. But 77 < 72" and 72" — 7% = 0 almost surely (Lemma
5.2), so the desired result holds.

For a < oo we have 0 < X*(t A 7¥) < a. For a = 0o, Lemma 5.4 implies
there exists b > 0 such that [b,00) C Sy. In this case, 0 < X*(t A7¥) <
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max{z, b}. The continuity of T,g follows from the representation (5.14), the
continuity of 77, the joint continuity of X*(¢) in (¢,z), and the dominated
convergence theorem. &

Proposition 5.6 The function T,g is twice continuously differentiable on
Cy and satisfies the equation

LyTog =c on Cy. (5.29)
If g € Ga, then T,g is three times continuously differentiable on C,.

PROOF: Let z € C4 be given, and choose 0 < a < z < 8 such that (o, 8) C
Cg4. Consider the linear, second-order ordinary differential equation

Lgh(z) =c Vz € (o, P), (5.30)

with the boundary conditions h(a) = Tpg(e), h(B) = Tug(B). Because the
coefficients of the equation (5.30) are continuous, the equation has a twice
continuously differentiable solution h satisfying these boundary conditions.
If g € G, so that the coeflicients of (5.30) are continuously differentiable,
then A is three times continuously differentiable. It6’s formula implies that

dfehETO)] = e [~Lh(X(D) dt + o X7 (OR (X7 (0) dW (1)
= —etedt+e o XT(H)R (XO(E)) AW (2).

Integrating this equation from ¢ = 0 to ¢t = 74 A 77 and taking expectations,
we obtain

TENTS R
h(z) = JE[ / Be_”cdt+e_T(T“ATﬂ)h(X””(T;”/\TE)):|
0

TENTS R
= E |:/ ? e "tedt + e_T(T“ATﬂ)Tag(Xm(Tg A TE)):|
0
= REZ%(15 A15) = Z%(0) = Tag(z),

where we have used the fact that Z”(¢ A 75 A 75) is a bounded martingale,
since 74 AT < 7). &

Remark 5.7 Let us denote by D*T,g the derivatives from the right and
left of T,,9, when these one-sided derivatives exist. We likewise denote by
DT,g the derivative of T,g, when the derivative exists. Because it is open,
the set C4 is a countable union of disjoint open intervals, which we call the
components of Cy4. Let (o, 5) be one of these components. The second-order
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differential operator £y does not degenerate to a first-order operator at any
point in [a, 3], except at  when a = 0. Therefore, the function A in the
proof of Proposition 5.6 is twice continuously differentiable at the endpoint
B and also at « provided that @ > 0. We conclude that D™ Tog(8) =
limg1p DTog(z) exists. If & > 0, then D1T,g(a) = lim, |, DT,g(z) also
exists.

6 The Hamilton-Jacobi-Bellman equation

As in the previous section, let a € (0,00] and g € G, be given, and define
Tug by (4.5). We wish to show that T,g is a solution of the Hamilton-Jacobi-
Bellman equation

min{Lyh(z) — c,h(x) —yx} =0 Vz € D,. (6.1)

We do not know, however, that the derivatives of T,g exist at all points in
D,, and hence we cannot understand (6.1) in the classical sense. We instead
understand this equation in the wviscosity sense, as described below.

Definition 6.1 A viscosity subsolution of the Hamilton-Jacobi-Bellman equa-
tion (6.1) is a continuous function h: Dy, — R with the property that for ev-
ery point zg € (0,a) and for every twice continuously differentiable function
¢: (0,a) = R satisfying

©(zo) = h(zo), ¢(z) > h(z) Vz € (0,a), (6.2)
we have
min {Lgp(z0) — ¢, p(z0) — 7Z0} < 0. (6.3)

A viscosity supersolution of (6.1) is a continuous function h: D, — R with
the property that for every point xy € (0,a) and for every twice continuously
differentiable function ¢: (0,a) — R satisfying

©(zo) = h(zg), ¢(z) <h(z) Vz e (0,a), (6.4)
we have
min {Ly¢(x0) — ¢, (x0) — Yxo} > 0. (6.5)

A viscosity solution of (6.1) is a function which is both a viscosity subsolution
and a viscosity supersolution.
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Proposition 6.2 The function T,g is a viscosity solution of the Hamilton-
Jacobi-Bellman equation (6.1).

PROOF: To show that T,g is a subsolution of (6.1), let g € (0,a) and ¢
be given as in Definition 6.1, with (6.2) satisfied by ¢ and h = T,g. If
o(zo) < yxo or Lgp(zo) < c, then (6.3) holds. We suppose therefore that
o(zg) > yzo and Lyp(zg) > c and seek a contradiction. We may choose
€ > 0 so that 0 < zg — € < g + € < a and Tog(x) > vz, Lgp(z) > c for all
z € (xo — €,z0 +€). In particular this means that (zo —,z9+¢€) C Cq. We
define

7 2 min {t > 0; | X (t) — z| = €}, (6.6)
and note that 7 < Tfo. Because
d (e p(X™0(t)) = —e " Lyp(X0(2)) dt + o X () (X (8)) dW (2),
we have Ee "(tA\T) (X% (¢t A 1)) < @(zq) — Ef(fm- e "cdu. Therefore,
Tag(mo) = ¢(z0)
tAT
> E [/ e "edu 4+ e "o ( X0t A 7')):| (6.7)
0

tAT
> E [/ e "edu+ e T T,g( X0t A 7'))] .
0

This violates the martingale property for the process Z*°(t A 77°) of (5.13).

To show that T, g is a supersolution of (6.1), we let zo € (0,a) and ¢ be
given as in Definition 6.1, but now with (6.4) satisfied by ¢ and h = T,g.
Since p(zg) = Tag(xo) > Yo, it suffices to show that Lyp(zg) > cin order to
prove (6.5). We assume that Lyp(zg) < c and seek a contradiction. Again we
choose € > 0, but this time with Ly¢(z) < cfor allz € (zo—e¢, zo+€) C (0,a),
and we define 7 by (6.6). Obviously, 7 < 73° A 72°. Repeating the previous
argument with the inequalities reversed, we obtain in place of (6.7) the
conclusion

tAT
Tug(zo) < E [/ e edu + e T T, (Xt AT))|, (6.8)
0
which violates the supermartingale property for the process Z%°(t A 7°).

We use the viscosity solution property to deduce other information about
the value function T,g.
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Corollary 6.3 Given any b € (0,a), the set Cqg N (0,b) is nonempty.

PROOF: Suppose Tyg(z) =z for all z € [0,b]. Taking ¢ = T,g in Definition
6.1, we compute

Lgp(z0) — ¢ = (v — 1)e+ 6v(zo — g(20)),

which is strictly negative for £y > 0 sufficiently small. This violates the
viscosity supersolution property for 7,g. &

Lemma 6.4 If (0,a) NS, contains a point b, then [b,0c0) N D, C S, .

PROOF: Assume b € (0,a)()|Sy and denote @(z) = yz. Because T,g(b) =
@(b) and T,g > @, the viscosity supersolution property for T,g implies

¢ < Lgp(b) = cy + 6v(b— g(b)).
But the function z — z — g(z) is nondecreasing on D,. Therefore
c<cy+dy(z—g(z)) Vz e [b,00)ND,.

We must show that T,g(z) < @(z) for all z € [b,00)ND,. Assume on the
contrary that n £ sup {T,g(z) — ¥(z);z € [b,00) N Dy} is positive and let
Zo attain the supremum in the definition of 7. (The supremum is attained
because both T,g and @ are continuous, and if a = oo, then T,g(z) = ¥(z)
for all sufficiently large z.)

We take p(z) = @(z) +n for z € [b,00) N Dy, so that p(z) > Tug(x)
for x € [b,00) N D, and p(xzo) = Tog(zo). We have ¢(b) > Tog(b) and
can choose ¢ on (0,b) so that it is twice continuously differentiable and
dominates T,g on all of (0,a). Because T,g is a viscosity subsolution of
(6.1) and ¢(zo) = Tag(x0) > yzo, We obtain

Lgp(z0) = rTug(zo) —¥(rz0 — ) +dv(x0 — 9(20)) < ¢ < ye+dv(zo — g(20)),

and hence T,9(zo) < yZo, a contradiction to the choice of zy. We conclude
that Tog(z) < @(z) for z € [b,00) N D,. &

From Corollary 6.3 and Lemmas 6.4, 5.4, we have the following conclu-
sion.

Proposition 6.5 If a is finite, then C; = (0,b) for some b € (0,a] and
Sy = {0} U [b,a]. If a = oo, then C4 = (0,b) for some b € (0,00) and
Sy = {0} U [b, 00).
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Let b be as in Proposition 6.5. We have already seen that T, g is twice con-
tinuously differentiable on C, = (0,b) with a one-sided derivative D~ T,g(b)
at b. Since Tog(x) = vz on Sy, this function is clearly differentiable on the
set (b,a) if b < a, with one-sided derivative D™ T,g(b) = «. It remains to
examine the differentiability of T,g at the point b.

Proposition 6.6 (Smooth pasting) The function T,g is continuously dif-
ferentiable on (0,a).

PRrROOF: It suffices to show in the case that b < a that D T,g(b) =
D*T,g(b). Because T,g(z) > vz for all z € D, and T,g(b) = vb, we must
have D Tog(b) <. If D" T,g(b) <, we choose m € (D T,g(b), DT T,g(b)),
k > 0, and define ¢(z) = yb + m(z — b) + k(z — b)? for z in an open in-
terval containing b. Note that ¢(b) = T,g(b) and ¢'(b) = m. Therefore,
o(z) < T,g(z) for  # b in a sufficiently small neighborhood of b (whose size
depends on k). We construct ¢ outside this neighborhood so that ¢ is twice
continuously differentiable on (0,a) and ¢(z) < T,g(z) for all z € (0,a).
Because T,g is a viscosity supersolution of (6.1), the inequality

0< Lyp(d) —c=ryb— (rb—c)m + (b — g(b))m — o*b’k — ¢
must hold. Since k£ > 0 is arbitrary, this is impossible. &

We have proved so far the following properties of the value function 7,g:
for any g € G4, Tyg is a continuous function on D, and it has a continuous
derivative on (0, a), T,9(0) = 0 and T,g(x) > ~yz for all z € D,. If a is finite,
then Tyg(z) = 7a; if a = 0o, then Twg(z) = vz for z sufficiently large.

We now need to prove an invariance property for the operator T,. Up to
this point, we have taken g to be an arbitrary function in G,. For the next
proposition, we must restrict our attention to g € G,.

Proposition 6.7 Let a € (0,00] be given. Then T, maps G, into G,.

PROOF: Assume that g € G,. According to the above remark, it remains
only to show that —M, < DT,g < 1 on (0,a) if a is finite and 0 < DTog < 1
if a = o0.

First we claim that the function ¢ = DT,g (defined on (0,a)) cannot
attain a positive local maximum or a negative local minimum in C4. Accord-
ing to Proposition 5.6, 1 is twice continuously differentiable on Cy. Assume
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that ¢ has a positive local maximum at z. € C4. Thus, we have ¢'(z,) = 0.
In particular,

94 Tog(@) - (@) = —at () = O,

dw T=T

Equation (5.29) implies for z € C, that
c = LgT,9(x)
= r(Tag(z) — z9(z)) + c(z) + 6(z — g(x))¢(z) — %02«%21/1'(96),

and thus

0= 2 £ge)| =00 - g@)wia) - 1ok (@),
dz T=Tx 2
Because % has a local maximum at z., ¥ (z.) < 0. But 1—g'(z.) is positive,
and 9 (z«) > 0. We have a contradiction, and hence ¢ cannot have a positive
local maximum in Cg4. If 4 has a negative local minimum at z., we likewise
have a contradiction.

We consider now the case that a = co. For z < y we have X*(t) < X¥(t)
a.s. and 7§ < 7§ a.s. It follows from the definition (4.5) of Tog that Toog
is nondecreasing. The lower bound DTg > 0 is established. For the
upper bound, DTu.g(z) < 1, we recall that Cq = (0,b) for some b € (0, 00).
Assume there were a point zgp € (0,b) where DT g(z9) > 1.We know that
DT»g(b) = v < 1. Now consider a point z1 € (0,z9). If DTog(z1) < 1,
then DTy,g would have a positive local maximum in the interval (z1,b),
which is impossible. We conclude that DTog(z1) > 1. In other words, if
there were a point z¢ € (0,b) where DT,g(z9) > 1, then DTwg > 1 on the
whole interval (0, zg). The upper bound in (5.16) would immediately imply
that Trog(z) = z for 0 < z < zg, and once again DTy, would have a positive
local maximum in (0,b). We conclude that DT (z9) < 1 for all ¢ € (0,b).

If a is finite, we can modify the above argument, using (5.18) in place of
(5.16) and DT~ g(b) < v (in case Cg = (0,a)), to obtain the upper bound
DT,g <1 on (0,a).

The proof of the lower bound DT,g(z) > —M, for the case a < oo is
more involved. Again using the notation C, = (0,b), we assume there is
zo € (0,b) such that DT,g(z9) < 0. Let z1 € (0,z0). The continuous
function DT,g attains its minimum on [z1,b] at z; or b, since it cannot
attain a negative interior minimum. In case the minimum is attained at
x1, this means that DT,g(x1) < DT4(zg) < 0. For any 0 < z2 < x1, DT,
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cannot attain a negative interior minimum on [z2, o], so we can conclude
that DT,g(z2) < DTgg(z1) < 0. This should hold for any 0 < z2 < zi,
which is in contradiction to T,g(0) = 0, Tog(z) < z. So, if DT,g(zo) < 0
then, for any z1 € (0,z0), DT,g attains its negative minimum on [z1,b] at
b. This means that

D™ Tog(b) < infocp<pDaTg(z) < 0. (6.9)

In other words, either the derivative D,T'g is nonnegative, or, if it has neg-
ative values, is bounded below by DT, g(b). Of course, the latter case can
only happen for b = a. The first case satisfies the conclusion, so we assume
that

D™ Tyg(a) = re%n] DT,g(x) < 0. (6.10)
This means that C; = (0,a) and hence L;T,g(z) = c for all z € (0,a). Let
h satisfy L4h(x) = ¢ for ¢ € (ya,a) and h(ya) = va, h(a) = ~va. Since
Tog(va) < va = h(va), T,g(a) = ya = h(a) and L,T,g9(x) = Lgh(z) for all
z € (0,a), the usual comparison argument based on the maximum principle
yields T,g(z) < h(z) for all z € [ya,a]. But T,g(a) = h(a), and this implies

D T,g(a) > D h(a). (6.11)

It suffices to find a lower bound on D~ h(a).

We have 0 < vz < T,g(z) < h(z) for z € [ya,a]. In order to find an
upper bound on h, we let z* € [ya,a] be such that h(z*) = max,c|yq,q h(T).
If z* is an interior point of [ya,a], then h'(z*) = 0 and A”(z*) < 0. But
Lgh(z*) = c¢ from which we conclude that

max h(z) = h(z*) <
z€[ya,al

IO

If z* is not an interior point of [ya,a], then max,¢c(yq,q h(z) < h(va) =
h(a) = va. In either case, we have

0 < h(z) < max {~a, ;} Vz € [ya,al. (6.12)
We know that
0<g(z)<a Vzc€lya,al (6.13)

Neither (6.12) nor (6.13) depends on the lower bound —M, < ¢'(z) satisfied
by functions g in C, when a is finite.
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Since h(ya) = h(a), there exists zg € (ya,a) such that h'(zg) = 0. We
may solve the equation Lyh = ¢ on (ya,a) for A" and then integrate to
obtain

W@ = [ 3 [rh() = (ry = W @) + 5y~ gu)W @) — )] dy, (6,14
o

for all z € [zg,a]. Taking into account the bounds (6.12) and (6.13), we

may use Gronwall’s inequality to obtain |h'(a)| < M, for some constant M,

depending only on the bounds max{~a, f} and a appearing in (6.12) and

(6.13) and also depending on the interval [ya,a]. ;jFrom (6.10), (6.11) we

conclude that DT,g(z) > — M, for all z € (0,a). O

Remark 6.8 The construction of M, shows that M, is bounded in a as
long as a is bounded away from 0.

7 The fixed point property

For a = oo we recall that G, is a closed subset of the complete metric space
(Cy,d) (see Definition 4.1). For a < oo, the set G, is a closed convex subset
of the Banach space C|0, a] endowed with the supremum norm. We denote
by d(f, g) the metric associated with the supremum norm. We have proved
that Too(Goo) C Cy and To(Gs) C C0,a] for a < oo. We also know (in both
cases a = 00 and a < 00) that T,(G,) C G,. In this section we prove that
T.(Ga) C G, and the operator T, has a unique fixed point in G,.

Many of the arguments in the rest of the paper are based on the following
comparison lemma.

Lemma 7.1 (Comparison) Let 0 < a < b and f,g € C(a,b) be given.
Consider ¢ € C'(a,b) a viscosity subsolution of Lsp(z) < ¢ on (a,b) and
¥ € C'(a,b) a viscosity supersolution of Lgp(z) > c on (a,b). Assume
that at least one of the functions is a classical (C*(a,b)) solution of the
corresponding differential inequality and that the function ¢ — v attains a
local mazimum at z, € (a,b). Then

r(p(@s) — (@) < 6(F(zs) — 9(2:)) ' (m4) = (F () — g())9" ().

PROOF: Let us assume that ¢ € C?(a, b) is a classical solution of L¢(z) < c.
The argument in the other case is identical. This means that

ro(z2) = (13 — ) (4) + 0(@a — f(@4)) ' (1) — %Uzwfso”(fv*) <c
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The function ¢ — ¢ attains a local minimum at z., and since ¢ is C2 in a
neighborhood of z., we can can consider ¢ as a test function when we apply
the definition of the viscosity supersolution ¥. We obtain the inequality

(@) = (rzx — )¢’ (T4) + 0(zs — g(24)) ' (24) — %02:03%"(93*) > c.

Comparing the above results, we conclude that

r(e(za) = P(z4)) < 8(f(24) — g(4)) ' (4)-

Since z, is a point of interior maximum for ¢ — v, and both ¢ and v have
continuous derivatives on (0,a), we have that ¢'(z.) = ¥'(z.). &

Proposition 7.2 For 0 < a < oo, we have T,(G,) C G, and the mapping
T, has a unique fized point in Gg.

ProOF:
Let f,g € Go be given. We denote ¢ = T,f and 9 = T,g. Since
©(0) = ¥(0) = 0, we know that

sup,ep, (#(z) — ¥(z)) > 0.

We recall that ¢, 1 are continuous on [0, a] for finite a (or they are continuous
on [0,00) and equal to yz for z large enough, if a = 00). We conclude that
there exists x,, such that

p(z+) = ¢(zs) = max (p(z) —p(2)).

z€[0,a]

If p(z4) — 9(z4) = 0, then

D, ((2) ~(z)) < pla2) ~(z2) = 0 < > max{M,, 1}d(f, ).

Assume now that ¢(z«) —9(z«) > 0. Since ¢(0) = 1(0) and p(a) = ¢¥(a) (or
¢©(z) = ¥(z) for all z large enough, if a = 00), we conclude that 0 < z, < a.
Furthermore, since ¢(z«) > 9 (z«) > vz, we know that z, € C; = {z :
o(z) > yz}.

We remember that ¢ is a C? function on the open set C , it is a classical
solution of the equation Lfp = c on Cy, and %) is a viscosity supersolution
of L4 > c. Lemma 7.1 implies r(@(z+) — ¥(z4)) < 0(f(z4) — g(z4)) ¢ (z4)-
Therefore,

sup (p(z) — 9 (@)) < p(zs) — P(zs) < glf(w*) = g(z)ll¢' ().

z€[0,qa]
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Since ¢'(z.) = ¥'(z4), it is enough to assume that at least one of the func-
tions f and g is actually an element of G, to conclude that

|’ ()| < max{Ma,, 1},

where M, = 0 for a = co. Consequently, we obtain

sup (ple) ~ Y(@)) < 7 max{Ma, d(f,0).

We can switch ¢ and 1 in the argument above and obtain a similar inequality
for ¢ — ¢. In other words, we have proved that

AT, Tog) < > max{ My, 1}d(/, ), (7.1)

provided that at least one of the functions f and g is an element of G,.
We now choose f € G,, and let f,, € G, be such that

d(fn, f) = 0 as n — oo.

Using (7.1) we immediately obtain d(T, fn,T.f) — 0 as n — oo, and since
Tofn € G, for all n, we conclude that T, f € G,.

A similar approximation argument (f, — f, gn — ¢, fn,9n € Ga),
together with

d(Tafv Tag) < d(Tafa Tafn) + d(Tafna Tagn) + d(Tagna Tag)

yields
d(Tof, Tag) < gmax{Ma, 1}d(f,g) for all f,g € Ga-

We consider separately the two cases a = 0o and a < co. If a = oo, then
My = 0. Since § < r, T, is a contraction on the complete metric space
(Goo,d). Applying the Banach Fixed Point Theorem, we conclude that T,
has a unique fixed point in Go.

If a < oo, then using the Arzela-Ascoli Theorem we see that G, is a
convex and compact subset of the Banach space C[0,a]. Since T, : G4 — G,
is a continuous mapping with respect to the norm of C[0,a], Schauder’s
Fixed Point Theorem implies there exists a fixed point of T} in G,. Suppose
there were two fixed points of T,, namely f and g. Assume without loss of
generality that

fl@:) - g(@.) = max (f(2) - g(z)) >0,
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so z, € Cy. We apply Lemma 7.1 to conclude

r(f(zs) = g(2s)) < 6 () (f(24) — 9(z4)),

which is impossible since f(zs) — g(z«) > 0, § < r and f'(z.) < 1. (We
use here the fact that f has a continuous derivative on (0,a) and f € G, to
conclude f'(z,) <1). This means that f < g on [0, a]. Interchanging f and
g, we obtain f = g, so the fixed point is unique. &

We denote by f, the unique fixed point of T in G,. The function f, is
continuous on D, and continuously differentiable on (0,a). Associated with
the function f, is a number b, € (0, a] such that

Ly, fo(z) =c, fa(z) > 2, 0 <2 < by, (7.2)
Ly fa(z) > ¢, folz) =72, bg <z <a. (7.3)

Even if a = 00, by, is finite.

Proposition 7.3 The number b, is given by

_Joa, ifa< b,
b“‘{ booy if 0> boc. (7.4)

PROOF: The proof is based on the same comparison argument for viscos-
ity solutions that allowed us to conclude that the fixed point is unique in
Proposition 7.2, namely an application of Lemma 7.1.

Consider first the case a < by, and suppose b, < a. The function f, is
defined only on [0, a], but we may extend it by the formula

— { fa(z), f0<z<a,

falz) = vz, ifz > a. (7.5)

It is apparent from (7.3) that f, is continuous on [0,00) and continuously
differentiable on (0, 00). Furthermore, for z > a we have

c< Ly fala) =cy+0v(1 - y)a < ey +0v(1 — y)z = L5 fo(z). (76)

Using (7.6) we conclude that f, is a viscosity solution of the equation
min{L; f(z)—c, f(z) —yz} = 0 on (0, c0). Furthermore, f, has a continuous
derivative on (0,00) and f,(z) = vz for large z. We can now compare f,
and fo,. We know that either

SUPze[0,00) (?a(m) - foo(x)) <0
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or there exists z« € (0,bs) such that

?a(m*) - foo(x*) = SUDPge(0,00) (7a(m) - foo(m)) > 0.

In the latter case, x4 € C? and Lemma, 7.1 implies

r(Fa(@x) = foo(x)) < 8 oo (@) (Fal@a) — foo(24)),

which is impossible since 7 < § and f. (z.«) < 1. This means that the only
possibility is f, < feo. In the same way we prove that fo, < f,, 50 f, = foo-
This implies that b, = b, which contradicts the hypothesis b, < a < bso.-
The case a > by is similar since f,(a) = ya = foo(a), and the restriction
of foo to [0, a] is a viscosity solution of (6.1) on (0,a). We can use the same
comparison argument to conclude that foo|[0,a} = f4, which implies that
by = boo-
¢

Corollary 7.4 For 0 < a < 00, the function f, is in G,.

PROOF: We have already seen that f, is continuously differentiable, and
since f, € G4, we conclude that —M, < f!(z) <1 for 0 < z < a. It remains
only to prove that the derivative f, cannot attain the value 1.

Assume, by contradiction, that f.(z¢) = 1 for some zg € (0,a). This
means that f. has a maximum at z¢ and z¢ € Cys., where f, is two times
continuously differentiable. Hence, f;(z9) = 0. Moreover, Ly, fa(zo) = ¢,
so (r — 0)(zo — fa(zo)) = 0. Since r — & > 0 we conclude that fo(zo) =
zg. The function f, is thus a solution of the ordinary differential equation
Lsf(z) = c with initial conditions f(zg) = zo, f'(z¢) = 1 on the interval
[0, be]. However, the only such solution to this equation is f(z) = z, and
we conclude that f,(z) = z for z9 < z < b,. This contradicts the fact that

fa(ba) = Ybg < bg. &

Corollary 7.5 For every 0 < a < oo, the function f, is concave for small
values of z, it has a right derivative at z =0 and D™ f,(0) < 1.

ProOOF: Since f, = T,f, and we just proved that f, € G,, we know from
the first part of the proof of Proposition 6.7 that the derivative f. = DT, f,
cannot attain a positive local maximum in (0, b,). Since f,(0) =0, fo(bs) =
b, and f, is differentiable on (0, b,), we can conclude from the Mean-Value
Theorem that there exists z., € (0,b,) with f;(zy) = ~. Since D™ fo(ba) <7,
we can argue that for any z; < 2 < z, we have f(z1) > fl(z2). To do
this, we first use the fact that f, cannot attain a positive interior maximum
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on [z2,b] to conclude that f)(z2) > f.(z,) = v and then use the fact that
f., cannot attain a positive interior maximum on [z1, Z,] to further conclude
that f.(z1) > f.(z2). In other words, the derivative f, is strictly decreasing
on (0, zy). This means that the function f, is concave on [0, z,] and

fa(z)—0

+ Ay — Tim f!
D* £,(0) 2 tim 220 i 1) &
is well defined. It is obvious that DT f,(0) < 1. &

8 Proof of Theorems 2.4 and 2.5

In this section, for each call price K we construct a function f* so that f*(z)
is the value of the convertible bond when the value of the firm is z. For
small values of z, the function f*(z) agrees with f,(z) for an appropriately
chosen a. The choice of a depends on K. In order to proceed, we must first
understand the dependence of f, on the parameter a. For this purpose, we
define m: (0,00) — (0,00) by

m(a) = max_fu(z). (8.1)

z€[0,a]

Because fu = fool0,q] for @ > bo and fw is nondecreasing by virtue of its
membership in G, we have

m(a) = vya for all a > by. (8.2)

For a < by and =z € (0,a), we have f,(z) > vz (Proposition 7.3 and
the inequality in (7.2)), and so the possibility exists that m(a) > va for
0 < a < by. We shall in fact discover that there is a number by € [0, bs)
such that m(a) > «ya for 0 < a < by, whereas m(a) = «ya for a > by (see
Remark 8.3).

Lemma 8.1 The function m: (0,00) — (0,00) is strictly increasing and
continuous and satisfies limg o m(a) = 0.

PROOF: It is clear from (8.2) that m is strictly increasing on [beo,00). We
first show that m is nondecreasing on (0,by]. Let 0 < a1 < a2 < by be
given. Since f,, (0) = 0 = f5,(0) and f,, (a1) = va1 < fa,(a1), if the function
fas — fap attains a positive maximum over [0, a;] it must be at an interior
point z. € (0,a1). But Ly, fao,(z) = ¢ = Ly,, fa,(z) for 0 < z < a1, and
z € Cy, , where fq, is C?. Lemma 7.1 implies that

T(fa1 (:I}*) - faz (:E*)) S 5(le1 (:L'*) - faz (x*))fllll (:E*),
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which is impossible because § < r and f; (z.) < 1. We conclude that
fa1 (@) < fap(z) for all z € [0,a;1]. It follows that m is nondecreasing on
(0, boo)-

By the same comparison argument, the function f,, — fs;, cannot attain
a positive maximum in (0,a1), s0 fg,(2) — fa, () < fay(a1) —yay for 0 <
z < a1. It follows that

miaz) ~m(a) = max{ max foo(c), max fu(@)}-mer)  (83)
< max{ max (foo(®) = far (), max (fan() = yar)}

= max{faz(al)—’yal, emax (faz(w) ’Yal)}

= e+ max fu(a).
z€[a1,a2]
By virtue of its membership in G,, and Remark 6.8, the function f,, satisfies
o () > —C for all z € (0,a2) and some positive constant C' which is
bounded away from zero so long as a2 is bounded away from zero. Thus, for
z € [a1,a2],

az
fay () = fay(a2) — / fay(y) dy = vaz2 + C(az — z) = vaz + C(az — a1).
Substituting this in (8.3), we conclude that

0 < m(az) —m(a1) < (C + 7)(az — a1), (84)

so long as ag is bounded away from zero. The function m is thus continuous.

We now prove that m(a1) < m(a2). Assume, by contradiction, that
m(a1) = m(az). Let zo € [0,a1] be such that f,, (z0) = m(a1). We must
actually have zg € (0,a1) because m(a1) = m(a2) > yaz > ya1 = fo,(a1) >
0 = fa,(0). We have already shown that f,, dominates f,, on [0,a;], and
hence we must have f,, (z9) = fa,(20). The comparison argument using
Lemma 7.1 shows that neither f,, — fo, nor fo, — fa, can have a positive
maximum in the open interval (0, z¢); we conclude that

fay (z) = fa,(z) for all z € [0, z). (8.5)

Both f,, and f,, are solutions of the ordinary differential equation L f(z) =
con [zg, a1] and have the same initial conditions fq, (z0) = fa,(0), f&, (zo) =
fa,(x0). It follows that

fay () = fap(z) for all z € [zg, a1]. (8.6)
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This implies that fo,(a1) = fa,(a1) = ya1, which contradicts Proposition
7.3. We conclude that m is strictly increasing on (0, boo].

Finally, since fo(z) < z for 0 < z < a, we see that 0 < m(a) < a, and
consequently lim, o m(a) = 0. &
Lemma 8.2 (i) Assume m(a) > va for somea > 0. Then @ < % and

m(a) > va for all a € (0,a).

(ii) If m(a) > ~va, the function f, attains its mazimum over [0,a] at a
unique point x4 € (0,a).

PROOF:
(i) Ifa > 77+ We define h(z) = ya > ¢ for z € [0,z]. Then L, h(z) > c for
0 < z < a. Lemma 7.1 shows that f, — h cannot have a positive maximum
in (0,a), and since f,(0) = 0 < h(0) and f,(a) = ya = h(z), we conclude
that fo(z) < h(a) for all 0 < z < a. Consequently, the maximum of f, is
m(a) = vya.

Assume now that m(a) > ~a for some @ > 0. We have just seen that
a < ;%. Let a € (0,a@) be given. Define £ = 2 < 1 and rescale the function
fz by setting

flz

We compute f/(z) = fi(%) and f"(z) = 3f2(%), from which we conclude
that

—

= ﬂfa(%) for all z € [0, a].

Lif(z) = chafﬁ(% +e(l— l)fé(%) <fe+e(l—£) =c for all z € (0,a).

Lemma 7.1 shows that f — f, cannot have a positive maximum over [0, a]
at a point in (0,a). But f(0) = f,(0) = 0 and f(a) = fo(a) = 7va, and
therefore f,(z) > f(z) for all z € [0,a]. In particular,

m(a) = max f,(z) > max f(z) =4¢m(a) > {ya = va. (8.7)

z€(0,a] z€[0,a]

(ii) Let us assume now that m(a) > -ya and there exist 0 < 2o < yo < a
such that fa(zo) = fa(yo) = m(a). Since fa(z) < m(a) for zo < z < yo
we conclude that f, has a local minimum in the interval (zg,yo) at some
point z1. Then f.(z1) = 0, fJ(z1) > 0, and we may use the equation
Ly, fa(x1) = c to obtain rf,(z1) > c. This is impossible because f,(z1) <
m(a) <m() = 7. O
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Remark 8.3 We define
by = sup{a > 0,m(a) > ~va},

where we set bp = 0 if m(a) = «a for all @ > 0. Lemma 8.2 shows that
m(a) > ya for all a € (0,bo). This lemma further shows that by < -%. Since
for £ > by, we have foo(z) = vz and Ly, foo(z) > ¢, we conclude that

TYboo — (Tboo — €)Y + §(boo — Yoo )Y > ¢,

which implies 6(1 — v)bsoy > ¢(1 — 7), and consequently bs > %. In
summary,

0§b0§%<7—05§b00. (8.8)

Lemma 8.4 If0 <y < %, then by > 0.

PROOF: For small values of a, we construct a quadratic subsolution of

<
{ Lgg(x) <cfor 0<z <a, (8.9)

g(0) =0, g(a) = a,

which satisfies max,¢[g 4 g(z) > va. According to Lemma 7.1, g — f, cannot

have a positive maximum over [0,a] in (0,a), and since g(0) = f,(0) = 0,

g9(a) = fa(a) = ya, we see that f, > g on [0, a]. It follows that m(a) > va.
The remainder of the proof is the construction of g. We define

2

@=-5+(v+3
T =", \""2)"
so that g(0) = 0 and g(a) = «ya. Direct computation results in

Lyg(z)
rz?  cx 1 @+36'yw2 5z? 9 bz o’z?
2)°" 22" "2a  4a 4" 2

ra 1 36ya da o3a
< - — _— _— .
< 5 +(7+2)c+ 5 +4+ 5 for all z € [0, a]

Because (7 + 3) ¢ < ¢, we have SUP,c(0,a] £99(2) < c for sufficiently small a.

¢

We summarize what has so far been established.
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(a) For a > by, we have fu = fool[0,q) @and the maximum m(a) = vya of
fa over [0,a] is attained at the right endpoint a. We have f,(z) > vz for
z € (0,bs) and fa(z) = vz for = € [beo, al.

(b) For by < a < bs, the maximum m(a) = va of f, over [0,a] is
attained at the right endpoint a and f,(z) > vz for all z € (0, a).

(c) If by > 0 (a sufficient condition for this is 0 < v < 3), then for
0 < a < by, we have fo(z) > ~z for all z € (0,a) and the maximum
m(a) > va of f, over [0,a] is attained at a unique point z, € (0,a).

For a fixed call price K we want to define f*(z) to agree with f,(z) for
small values of z, where a is the unique parameter such that m(a) = K.
Denoting

K1 =9by, K3 =7Ybo,

we have the following three situations corresponding to the three cases of
Theorem 2.5
(i) If K > Kj, we set a = % We define

fulz) = { fa(z) = foo(z) {0 <z <aq, (8.10)

vz if x > a.

We see that fi(z) = f(z,Cx,C2) for C: = % and C* = be.
(ii) If K1 < K < K>, then again we set a = % We define

folm) = { fa(z) #0<z<a, (8.11)

vz if x > a.

In this case, fi«(z) = f(z,C:,C) for Ck = C* = %.

(iii) Assume K7 > 0 and 0 < K < K;. Because m(by) = K1, there exists
a unique a = m~1(K) < by such that m(a) = K. Since K < K;, Lemma
8.2 implies that K = m(a) > ya and there exists a unique z, € (0,a) such
that fo(zs) = m(a). Since f. < 1, we obtain that K = m(a) = fa(z4) < Za,
so K <xzg<a< % We now take C, = x4, C, = % and define

fa(z) for 0 <z <CE,
fflz)=} K for Ck <z < C3, (8.12)
vz for z > C»

Again we have f.(z) = f(z,C},C?). Since f.(C}) =0, f. is a C' function
on (0, %)

It is apparent that the function f, and the numbers C}, C; just defined
have all the properties set forth in Theorem 2.5. The uniqueness of solu-
tions to N f = c in that theorem follows from Lemma 7.1. We now accept
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Theorem 2.2, whose proof will be given in the next section, and show that
the function f. defined by (8.10)-8.12) is indeed the function f. given by
(2.13), and the numbers C} and C} defined above satisfy (2.12). Using fs,
C» and C} just defined in this way means that the proof of Theorem 2.4
given below also completes the proof of Theorem 2.5.

PROOF OF THEOREM 2.4: We need to prove that

f(z,Cq, C;)
f(z,Cq,C;)

< f(z,C,,C)) for each C, > K, z € (0,00), (8.13)
> f(z,C;,C,) for each C, >0, z € (0,00). (8.14)
Case (i): K > Ky = ybso

Ifc, >C; = %, it is apparent that f(z,C%,C%) = f(z,C,,C?) for
z € (0,00).

It C; < Co < %, according to Definition 2.3(i) we have f(z,C,,Cy) =
f(z,C;,C}) for 0 < z < C,, and f(z,C,,C;) = K > f(z,C;,Cy) for
Co<z< % For = > % , we have f(z,C%,C%) = f(z,Cq,C}) = vyz.

Finally, consider the case K < C, < C} = bs. Using the Case (i)
assumption, we have K > Ky = yby, = 7C} > vC,. According to Definition
2.3(ii),

f(Caa Ca, C:) = ma‘X{K’ ’YCa} =K > 70 = f*(Ca)'

Since f(:) = f(-,Ca,C}) satisfies L;f(x) = c on (0,C,) and Ly, fu(z) = ¢
on (0,C,), an application of Lemma 7.1 yields:

f(z,C;,C)) = fu(z) < f(z,C,,C}) for 0 < z < C,.
For C, <z < %, we have

@, ey C3) = max{K. 10} = K = £.(2) = £.(0) = £(2,C3. )

For z > %, we have f(z,Cy,Ck) = vz = f(z,C4,C%). This completes the
proof of (8.13) in Case (i).

To establish (8.14), we let C, > 0 be given. If C, < C%*, then f(C,,C%*,C,) =
vCo < f«(Csb). Applying Lemma 7.1, we get

f(z,C;,C,) < fu(z) = f(z,C;,C)) for 0 < z < C,, (8.15)

The same inequality is easily verified for C, < z < 0.
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The case C; < C, < C} is the most interesting. We know that the
function f(-) = f(-,Cy, C,) satisfies:

{ Lif(z)=cfor0<z<C,
f(0) =0, f(C,) =~C, = f*(C,) (since C, > C¥ = by)

We recall that f, is a C! viscosity supersolution of Ly, f«(z) = c on (0,C,),
so Lemma 7.1 can be again used to obtain:

f(z,C;,C,) = f(z) < f*(z) = f(z,C},C) for 0 < z < C,.
For C, < z, we have

f(:E’ C;aCo) =T = f*(JJ) = f(IE,C;,C:)-

IfC, > Ck = %, we just observe that f(z,C*,C,) = f(z,C%, %) SO we
can reduce this case to the case C, = C already considered. This completes
the proof of (8.14) in Case (i).

Case (ii): vbp = K1 < K < K3 = Yboo.-

This is the simplest case, all proofs being based on comparison arguments
for C? solutions of the equation L;f(z) = c. The details are left to the
reader.

Case (iii): 0 < K < K1 = ~yb,.
If C% < C, < 00, there is no change:

f(z,C;,C,) = f(z,C;,C;) for 0 < z < 0.

Ifo < C, < C%, then f(C,,Cx,C,) = vC, < f«(C,) The Comparison
Lemma 7.1 implies

f(z,C;,C,) < f(z,C,C3) for 0 < z < C,.

For z > C,, we have f(z,C%,C,) = vz < fu(z,C;,C%). This completes the
proof of (8.14) in Case (iii).

We consider (8.13). If K < C, < CZ, then f(C,,C,,Ck) = K >
f(C,,C,C%). The Comparison Lemma 7.1 implies f(z, Cy, Ck) > f(z,C2,C%)
for 0 < z < C,. For z > C,, we have f(z,C,,C,) = max{K,yx} >
#(z,C3,C3).

The case C, > C» can be reduced to the case C, = C since f(z,C,, C) =
f(z,Cx,Cy) for all z > 0 if C, > C. We do that case now.
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Assume C; < C, < C*. First we claim that f.(-) = f(-,C*,C2) is a C!
viscosity subsolution of

£r.f.@) S con (0.5, (8.16)

and then we use the Comparison Lemma 7.1 (the difference f.(-)—f(-, Cq, C%)
cannot have a positive maximum in (0, C,)) to conclude that

fe(z) < f(z,Cq,C) for 0 <z < C,

In the comparison argument we also use the fact that f(-) = f(-,C,,C})
satisfies L f(z) = c for 0 < z < C,, and

f*(O) =0= f(O’ Ca, C;)’ f*(Ca) =K = f(Ca’CaaC:)'

For C, < z < & we have f.(z) = K = f(z,Cq, C) and for z > % we know
that fi«(z) = vz = f(z,C,, C}).

This means that the proof (8.14) is complete, provided we can show
that f. is a viscosity subsolution of (8.16). We know that Ly, fi(z) = ¢
for 0 < z < C, f« being a C? function on (0,C}). ;From (8.8) and the
Case (iil) assumption, we see that 7K < c. Furthermore, f.(z) = K for
Cr<z< % We conclude that Ly, f.(z) < c on (C}, %)

It remains to show that if ¢ € C2(0,C}) dominates f* on (0,C}) and
agrees with f* at C}, then:

rp(Cq) — (rCq — )¢ (C3) + 8(Cq — $(C))¥'(C) — 302(02)21/)”(03) <e.
(8.17)

Since f, € C1(0, %) and f.(CX) = 0, we must have ¢'(C}) = 0. Since 0 <
C < a know that Ly, fo(Cy) = ¢, and since fo(Cy) = K and f,(C%) = 0,
we obtain:

a

1
rK — 50%(Ci)*fi(Cl) = e. (8.18)

However, since ¢(C) = f.(CX), ¢¥'(C%) = f.(CX) = 0 and ¢ dominates f,
on [0, C2] (because fi(z) = fo(z) on [0,C%]), we conclude that

fa(C3) < 9"(C2)- (8.19)
Substituting this into (8.18), we obtain (8.14). O
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Remark 8.5 The proof of the last claim is based on the elementary obser-
vation that for a C? function, a one-sided maximum is enough to conclude
that the second derivative is not positive, provided that the first derivative
vanishes . Furthermore, we have proved that f, is a viscosity solution of the
variational inequality

max{N f.(z) — ¢, f«(z) — K} = 0.

9 Proof of Theorem 2.2

PrOOF THEOREM 2.2:

For y; = z1, it is easily verified that f(x) = « is a solution of (2.10), and
the Comparison Lemma 7.1 establishes uniqueness.

For 0 < y1 < 1, uniqueness again follows from Lemma 7.1. The proof of
existence is based on a fixed point argument similar to the proof of Proposi-
tion 7.2 with a < oco. In fact, the argument here is simpler, since we deal only
with C? solutions of the differential equation £, f(z) = c rather then viscos-
ity solutions of the variational inequality min{L,f(z) — ¢, f(z) — yz} = 0.

For 0 < y1 < z1, we set A = 1 — y1 and define G to be the set of all
functions g € C[0,z;] N C?(0,z;) such that g(0) = 0, g(z1) = v1 and for
0<zx<z,

g9(z) > max{z — A,0}, —M(z1,11) < gl(x) <1,

where M (z1,y1) is a constant to be determined later but depending on only
z1 and y;. We further define G to be the closure of G in C[0, 1] with respect
to the supremum norm || - ||. For g € G, we set

TONTS I
Tg(m) =E |:/0 ' ce” "du + H{T§1<Tg}6_r(7—° ATzl)yl , (91)

where X?(t) is given by (4.4) with X®(0) = z. It is clear from its definition
that T'g is nonnegative for every g € G. We use the argument in the proof
of Proposition 5.6 to conclude that for g € G the function T'g is two times
continuous differentiable on (0,z1) and L,Tg(z) = ¢ for 0 < z < z1. The
continuity of T'g at 0 and z; follows from Lemma 5.2. The functions max{z—
A,0} and z are respective sub- and super-solutions of L,f = ¢ which lie
respectively below and above T'g at the endpoints 0 and 1. The Comparison
Lemma 7.1 allows us to conclude that for every g,h € G,

max{z — A,0} < Tg(z) <z for 0 <z <z, (9.2)
|Tg — Th|| < suPg<p<q, [DTg(@)[llg — Rl|- (9-3)
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We now prove that T(G) C G, the analogue of Proposition 6.7. For
g € G, the first part of the proof of Theorem 6.7 shows that DTg cannot
attain a positive local maximum nor a negative local minimum in (0, z1).
This implies that either DT'g is nonnegative on (0, 1) or else

D Tg(z1) < DTg(z) for 0 < = < z7.

To show that DTg(z) > —M(z1,y1), it suffices to find a lower bound on
D Tg(z1) which may depend on z; and y; but not on g. For this purpose,
we let h be the solution on [y1,z1] of the equation Ljh = ¢ with boundary
conditions h(y1) = h(z1) = y1. The Comparison Lemma 7.1 shows that h is
nonnegative and dominates T'g on [y1, 1], and hence D™ h(z1) < D™ T'g(z1).
If h attains a maximum at some point z, in (y1, 1), the equation Lyh(z,) =
c implies h(z«) < £. If h does not attain a maximum in (yi,z1), then h is
dominated by its value y; at the endpoints of this interval. In either case,
we obtain a bound on |h| which is independent of g. Furthermore, there
must be some point zg € (y1,x1) where h’ vanishes. We solve the equation
Lgh = ¢ for h" and integrate from zo to obtain (6.14). We can then use
Gronwall’s inequality to obtain a bound on |h’| which is independent of g.

We need also to obtain the upper bound DT'g < 1. We observe first that
since T'g(z) > max{z — A, 0} and these two functions agree ath z = z1, we
must have D™Tg(z1) < 1. We can now use the same arguments we used
to prove DT,g9 < 1if g € G,, to conclude that DTg < 1 on (0,z;). This
completes the proof that T'(G) C G.

Relation (7.1) shows that the operator T is continuous on G, and hence
T(G) C G. Schauder’s Fixed Point Theorem implies the existence of a
function f € G satisfying Tf = f. This means, in particular, that f €
C[0,z1] N C?(0,z1) and L;f = ¢, so f is a solution of (2.10). Since f is
differentiable and f € G, we know that f' < 1 on (0,21). In fact, f’ < 1.
The proof is identical to the proof of f, < 1. O
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