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1 Outline of the Talk

1. Text Examples & Motivations

2. A Dynamical System under Uncertainty with Perturbations
3. Building a GP Model for the Zeros

4. Numerical Results from GovPX Treasuries Data

5. Zero Curves from EpiSolutions, Inc

2 A Motivation for Geometric Progamming Model-
ing

The ordinary bootstrap method for computing forward rates from zero rates generates
posynomial equations as introduced in an area of optimization termed geometric pro-
gramming invented by Duffin, Peterson, and Zener [6].
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posynomial disc. fns e=#+{t—t0) =
2t — to) = Xy fiiv1(tivn —t;), where z;,11 = e J#+1 in Tables 2-4.

Note that the are n equations in m unknowns (n = m =5). Ordinary bootstrapping does
not work when n # m, eg., if there were no 0.5 time T-Bill.



Table 1: Hull Example Data

Time in Yrs | Annual Coupon | Market Price
0.25 0 97.5
0.50 0 94.9
1.00 0 90.0
1.50 8 96.0
2.00 12 101.6

Table 2: Continuous Discounting Expressions for Zero Rates z;

tl t2 tg t4 t5 Price
0.25 0.50 1.00 1.50 2.00 !
e 2551 0.975
e~ 572 0.949
e * 0.900
0de™52 | 4+.04e% | +1.04e 155 0.960
067522 | +.06e7% | +.06e~ 15 | +1.06e2% 1.016
0.10127 | 0.10469 | 0.10536 0.10681 0.10808 | < Zeros

Table 3: Posynomial Equations from Continuous Discounting: x; = e*

tl (2 t3 t4 t5 Price
025 | 0.50 1.00 1.50 2.00

;% 0.975

Ty 0.949

T3t 0.900

0.04z5° | 40.04z3" | +1.042, 1 0.960

0.0625° | +0.0623" | +0.06x; " | +1.06252 | 1.016

2.1 Some Methods for Computing the Zeros

Filipovi¢ [8] provides a table based upon a report from the Bank for International Settle-
ments listing zero curve extraction methods of 12 Central Banks, [1].
The state—of-the—art of the spline approach appears in Delbaen and Lorimier [3] and



Table 4: Forward Rates and Zero Rates

to tq to t3 ty ts
0 0.25 0.50 1.00 1.50 2.00
Change 0.25 0.25 0.50 0.50 0.50
Zeros 0.10127 | 0.10469 | 0.10536 | 0.10681 | 0.10808
forwards Jo1 J12 Jo3 34 J15
forwards | 0.10127 | 0.10811 | 0.10603 | 0.10971 | 0.11189

Table 5: Forward Rate Curve Fitting Procedures of 12 Central Banks

Central Bank Curve Fitting Procedure
Belgium Nelson—Siegel, Svensson
Canada Svensson
Finland Nelson—Siegel
France Nelson—Siegel, Svensson
Germany Nelson—Siegel, Svensson

Italy Nelson—Siegel

Japan Smoothing Splines
Norway Svensson

Spain Nelson—Siegel(before 1995), Svensson
Sweden Svensson

UK Svensson

USA Smoothing Splines

Lorimier [16]. The Nelson-Siegel and Svensson functions are the following ones.

Nelson—Siegel Forward Rate Function

FR(ﬁOa 617 627 7—1) = 60 + 61 e_t/Tl + 62 (t/Tl) e_t/Tl

Svensson Forward Rate Function

FR(Bo, Br. B2, B3, 11, 72) = Bo + Bre ™ + By (t/71) e/ + B3 (t/72) 7/



3 A Linear Differential Equation for the Forward Rate
under Uncertainty with Perturbations

First, with no uncertainty of any kind the DE for the price of a bond at time ¢, P(t,T),
paying 1 at time 7' is:

%P(tT) =r(t)P(t,T), P(t,t)=1, r(r) continuous for 7 > t. (2)

All the perfect certainty, zero—bond relationships can be derived from the solution to (2);

P, T)=e J 7@, (3)

P(t,T) is also referred to as the discount function DF(t,T), while function r(-) is the
instantaneous rate of increase of the bond price, namely,

"0 = ()

For convenience just in Table 6 we change notation with current time being 0 and the
future time now denoted by t.

Table 6: Relations among the Zeros at time 0, future t.

Discount DF(t) = P(0,1)

Spot Rate SR(t)) = —(InDF(t))/t
DF(t)) = et SR(1)
Forward Rate FR(t)) = —&inDF(t)= 200
DF(t) = o fO‘ FR(s)ds
SR(t) = L [ FR(s)ds
FR(t) = ¢ 2550 4 SR(t)




We now return to the {t, 7'} time regime. We consider a T-differential model for
nonstochastic uncertainty under defining data perturbations within a class of unknown
admissible parameters. It is analogous to a class of SDE’s where differentiation is with
respect to the T variable, not the current time ¢. Table 7 presents some contrasts to the
way each approach treats various features.

Nonstochastic Uncertainty with Perturbations

fs,wlt) = f(t,s), s 2t (5)

4 (T|t) = a+ BF(TIE) +w(T), T >0, f(0,0,)=r(0)=ry, t=0,

where w(T') is an unknown function of the perturbations acting on the model, and the
coefficients, «, # and spot rate ry satisfy the following constraints.

O<a,<a<a* 0, <p[<[*<0,

(6)

0<r, <rg<r*

For illustration we consider here the class of impulse functions, where we denote the
number of corresponding perturbation variables by L with the associated breakpoints
given by:

{to,t1,....,tr}, where t; 1 < t;, i =1,L; ty = 0, the current time. (7)
Define the piecewise constant perturbation function, w(7’) by:

w(T) = w;, w, <w; <w*, forall T € [t; 4, t], i=1,L, (8)

where w,, w* are preassigned bounds for the perturbations.
Substituting (8) into (5) and applying the Cauchy formula gives the following expres-
sion for the forward rate function.

F(T,wlt) = roe?T + 5 (7T — 1) +

= - . BTt 1) _ _
+% Z (e_ﬁt]—l — e_ﬁt]) w] + wiLﬁll’ T c [ti—lyti] 1= 1’ L
j=1

The parameter vector w to be solved for in an optimization is the following list.

{7’0, a, B w;, 1 =1, L}, with (§ usually fixed in advance. (10)



3.1 Yield Expressions with Forward Rate Perturbations Vari-
ables

As Table 6 portays the spot rate function R(t,T") with ¢ = 0 has the following form.

(11)

=1/ B(T—t)_1)_ B(T—t}) B(T—t;_1) _
e —e k) tp—tg—1 (e -1 T_tzfl) )

T e [ti—lati] ) L= L—L7

3.2 A Price—Based Bond Data Optimization Problem

Assume that the observed data are the prices of the bonds, notes, and bills, which we
shall refer to in general simply as bonds. Assume that there are N number of bonds
and that for bond i let ne(i) denote the number of coupon payments occurring at times

{tij D] = 1,nc(i)} . Usually T; = t; ne(s)-Let,

denote the price of instrument ¢ having time to maturity, 7;, coupon rate ¢; and frequency
of coupon payments ¢;, which is typically 0.5 years.

For bond ¢ having coupon rate ¢; with frequency of coupon payments ¢; its current
price is therefore given by:

nc(i)

J=1

When expressed in term of the forward rate function, the modeled current price of
bond ¢ with respect to the forward rate function taking ¢t = 0.

T; ij
—ff(t,s)ds nc(i) — f f(t,s)ds
P(T;) = 100e © + Cigi ]2:21 e 0 , 1=1,N. (14)

The following definition places the given coupon and maturity dates within the ap-
propriate perturbation interval.



Definition 3.1 Given {tij}?i(f) T, i =1,N, set arg(ty;) [arg(T;)] = m, where t;; [T;]
is contained in the unique perturbation interval [tp,—1,ty]. Should t;; [T;] = t., then set

arg(ti;) [arg(T;)] = m, recognizing that t;; [T;] € [tm—1,tm]-

The following notation for the known coefficients in simplifies the mathematical ex-
pressions.

—a,(T, 8) = =L and — (T, 3) = <72 — L

B A B
B(T—t),_1) - . .
_ak(T7 ﬁ) = < * 152_66(T ) — ;k_la k= 17] —1 (15)
B(T—t;_1) _ —t; . .
—bi(t,5) = ¢ ! ;2 S8 R ;1‘1, i=1,N, so we can write,

Using these expressions (14) becomes

P,(T;,w) = 100x

exp (a,(T;, B) ro + aa(T;, B(t)) o+

arg(T;)—1
& ak(ﬂ, ﬁ)wk + barg(Ti)(ﬂa ﬂ)warg(Ti) (16)
ne(i) arg(ti;)—1
+ Ciqi '21 exp | a,(tij, B) ro + aa(tiy, B) o + kzl ax(tij, B)wy
]: =

Remark 3.1 As is well known, for example [11, Section 4.9], observed prices must in-
clude accrued interest, ie, one must use the so—called ”dirty prices”.

4 Making a Connection to Geometric Programming
Constructs

Let us first review the basic construction of a geometric programming model.

4.1 Posynomial Geometric Programming

Posynomial geometric programming G P is recognized as a very broad class of optimization
problems which is useful in many applications, see for example [6, 10].



Table 7: Contrasts: SDE-derived Properties to a Dynamical System under uncertainty
with perturbations

[tem Stochastic Dynamic
type of stochastic process unknown function from
uncertainty a class of perturbations
model for SDE DFE with nonstochastic
spot rate uncertainty & perturbations
norm of Expectation minimax or other norm
uncertainty other norm
nonarbitrage risk free measure constraints in an
condition extremal problem
moments of drift & volatility minimax amplitude
uncertainty of perturbations
other features computing non—negative forward construct additional
rates not always possible constraints
Consistency: Bork
and Filipovié, [9] attainable open question

The classical posynomial primal GP problem is the following one.

(GP) minimize go(t)

subject to gr(t) <1, k=1,2,...,p (17)

where
70 '
go(t) = D etf. thm (18)
=1
Nk
gt) = D> etitotim, k=1,2,..,p. (19)
t=ng_1+1

The exponents a;; are arbitrary real constants, and the coefficients ¢; are positive. GP
has a formal dual program having linear constraints and an objective function which is
concave under the logarithmic transformation. The interior point method [14] developed
to solve both primal and dual GP’s has been implemented and applied in this study.
GP itself is transformably convex under the change of variables t; = exp(z;), and convex
programming solution methods also apply.



4.2 Introducing Geometric Programming Structure into the Dy-
namical Term Structure Model

The primal G P variables of which there are L + 2 shall be denoted by {z;}. The specific
definition of these variables is as follows.

1 =€, 1o =€ and xoy; =€, =1, L. (20)

The number of geometric programming variables depends only on the spot rate vari-
able, the o variable, and the number of points in the partition of the planning horizon.
This number is independent of the number of bonds present.

Using this definition P;(7;,w) in (16) becomes:

PAT) = 100 x g9 gaa(Tid) (HZLgl(Ti,ﬂ)—l xak(Ti,m) barg(z) (T3:8) |

k2 Larg(T;,8)+2
ne(i) _ar(ti;,B) aa(ti;,B) 1rarg(ti;,B)—1 ax(ti;,B) barg(t; ;) (tij:B)
cigi gy @yt I T T g e = (21)

u; + Z;Li(f) U; ;, where the definition of the @ terms is clear.

Note that terms in (21) are posynomials, noting that each coefficient, such as ¢; is positive.
For convenience of primal G P constraints and related to (21), we define posynomials

{ui, w;ti=1,N,j=1, nc(z)} according to the following definition:

2

PZ(ZE) ]5_1(TZ) = U; + Z?i(ll) Uid, ie.,ui = ﬁz p_l(T‘Z) and uij = ﬁij p_l(T‘Z) (22)

Remark 4.1 It is conjectured that yield curve models of Nelson—Siegel type, together
with their extensions are amenable to equivalent geometric programming formulations for
determining the yield curve, provided that one or more of the parameters are fived. For
example, in [4] the authors found grounds for fixing the exponentail decay parameter A\, at
the value 0.002.

It is very likely that a GP model will arise if the two decay parameters t;, i = 1,2 in
the Eztended Nelson—Siegel-Svensson ENSS employed by Bolder and Stréliski [2, EQ15].

5 Structure of the GP Model

For purposes of this synopsis only a connection has been made to the constructs necessary
for development of a G P-optimization model. The the geometric programming model will
be presented during the talk and any request for a hard copy will be fulfilled.

Here are some of its features.



e The objective function is based upon the shortest observed yield to maturity, a mean
reversion ratio based upon the longest observed yield to maturity, and a measure of
smoothness placed upon the sought—for perturbations.

e There are one-sided inequality constraints relating computed prices to observed
prices. The direction of the inequalities is given in (17).

e Necessarily there are one-sided inequality constraints whose direction is reversed
from (17). In the GP literature these type of constraints are referred to as reversed
constraints, and they lead to nonconvexities. In general these are difficult to handle,
but here the structure of coupon payments and principal at termination suggests an
efficient heuristic based on arithmetic—geometric mean inequality approximations.

The latter two sets of inequalites are referred to as arbitrage constraints in related opti-
mization approaches.

A valuable reference on the interest rate conventions for many countries is the Krgin
book [15]. The widespread, world-wide use of the Nelson—Siegel, Svensson, and spline
methods is summarized in [8, TABLE 1]; see also [7]. The topic of forecasting the term
structure is addressed in Diebold and Li’s paper [4]. Another approach to forecasting in a
dynamical systems model under uncertainty with perturbations is discussed in [13, 14.10
CHAPTER NOTES].

Many computations have been performed, but they will be summarized and reported
later, particularly focusing on comparative studies with results appearing in [3],[16], [2],
[17],and [12].

Some of the numerical implementations of the geometric programming models devel-
oped in this paper have a sparse dual-problem matrix having 1,174 rows, 4,804 columns,
504,733 nonzeros, and degree of difficulty of 3650, see Duffin, Petersen, Zener [6] and
Dutftin, [5].

6 Geometric Programming Computation on Hypo-
thetical Bond Data

A simple example along with an extracted spot rate curve is presented in Tables 8, 9,
and 10. It is merely meant to illustrate a particularly simple calculation with rather
incomplete data. While the accuracy is acceptable, not enough bonds have been included
to obtain a less volatile spot rate curve. A more complete bond market for this case has
developed in the ensuing months.

In addition Japanese Treasury data for the Trading Date 20021113 were obtained from
the web site of the Japan Securities Dealers Association(JSDA at www.jsda.org). The
data contained only five-year, ten-year and 20-year Japanese Government Bonds whose
liquidity is not questioned and whose total number is 164.

10



In our numerical experiments with the Japanese data we followed the actual/actual
day count convention (analogous to Wall Street Journal data) from which bond ”dirty
prices” were calculated. For checking purposes we calculated the Internal Rate of Returns
(IRR) and found agreement with all those appearing in the JSDA data. (With respect
to Wall Street Journal data there were a small number of bonds for which there was not
approximate agreement with the published IRR's).

Analogous to Nelson-Siegel and results of other methods we compute a forward rate
function which is used to obtain ”computed bond prices” (as well as the spot rate curve).
Comparing the 164 computed bond prices for the Japanese Government Bonds to calcu-
lated ”dirty prices” (from observed clean prices) gave a Mean Absolute Percentage Error
(MAPE) of 0.0100. Here yield to maturity shall simply mean the zero spot rate.

Table 8: Hypothetical Bond Data with Computed Bond Present Values

Bond

Bond
Price

Bond
Maturity
Date(yrs)

Annual
Coupon

Coupon
Number

Coupon
Date

Computed
Present
Values

98.85

0.08

98.8500

96.25

0.25

96.2500

104.95

3.54

16.5

0.041
0.541
1.041
1.541
2.041
2.541
3.041
3.541

104.9420

101.81

4.211

16.5

© 00 IO UL WN 0O Uik Wi -

0.211
0.711
1.211
1.711
2.211
2.711
3.211
3.711
4.211

101.8043
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Table 9: Features of the Computed Solution: Listing the components of the Present

Value(PV) of principal & coupon parts: Comparing with Observed Prices

Bond 3 | Maturity Date | 3.5400 | Price PV is 54.804181
Coupon 1 Date Paid 0.0410 | Coupon PV is 8.198429
Coupon 2 Date Paid 0.5410 | Coupon PV is 7.717684
Coupon 3 Date Paid 1.0410 | Coupon PV is 7.064156
Coupon 4 Date Paid 1.5410 | Coupon PV is 6.437797
Coupon 5 Date Paid 2.0410 | Coupon PV is 5.879267
Coupon 6 Date Paid 2.5410 | Coupon PV is 5.379349
Coupon 7 Date Paid 3.0410 | Coupon PV is 4.934747
Coupon 8 Date Paid 3.5410 | Coupon PV is 4.526479
Computed Full Price Bond 3 is 104.94209 vs OBS 104.95000

Bond 4 | Maturity Date | 4.2110 | Price PV is 48.985847
Coupon 1 Date Paid 0.2110 | Coupon PV is 7.937794
Coupon 2 Date Paid 0.7110 | Coupon PV is 7.526568
Coupon 3 Date Paid 1.2110 | Coupon PV is 6.878219
Coupon 4 Date Paid 1.7110 | Coupon PV is 6.267708
Coupon 5 Date Paid 2.2110 | Coupon PV is 5.727960
Coupon 6 Date Paid 2.7110 | Coupon PV is 5.234255
Coupon 7 Date Paid 3.2110 | Coupon PV is 4.803750
Coupon 8 Date Paid 3.7110 | Coupon PV is 4.405024
Coupon 9 Date Paid 4.2110 | Coupon PV is 4.037245
Computed Full Price Bond 4 is 101.80437 vs OBS 101.81000

12




Table 10: Computed Yield to Maturity at Selected Times

time(yrs) | Yield to Maturity
0.04100 0.15294
0.08000 0.14458
0.21100 0.18283
0.25000 0.15288
0.54100 0.07470
0.71100 0.09928
1.04100 0.10925
1.21100 0.11267
1.54100 0.15398
1.71100 0.14821
2.04100 0.17413
2.21100 0.16798
2.54100 0.16488
2.71100 0.16359
3.04100 0.16673
3.21100 0.16522
3.54100 0.16988
3.71100 0.16874
4.21100 0.16947
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7 Forms of GovPX Data During June 03

Typical forms of the Treasury Data from the GovPX source are presented in the next two
subsections.

7.1 Bills Data During June 03

Table 11: CUSIP 912795NT4 Bill Maturity 10/23/2003

PART1 00013 Record Number

PART2 | 912795NT4 Cusip

PART3 | 10/23/2003 Maturity

PART4 0.000 Coupon

PART5 | T3MONR * Product Type, Alias, Active Code, Settlement
PART6 | 08/05/2003 Last Trade Date

PART7 15:52:20 Last Trade Time

PARTS T H-Hit or T-Take

PART9 0.9250 Last Trade Price

PART10 0 Aggregate Volume

PART11 0.9300 Bid Price

PART12 0.9200 Ask Price

PART13 0.9250 Mid Price

PART14 0.942 Mid Yield

PART15 - 0.0050 Price Change same time yesterday
PART16 -5 Yld Chg BP are 1/10ths of a bp same time yesterday
PART17 0.9575 High Price

PART18 0.8975 Low Price

PART19 0.9250 Tokyo Open Price

*T-N-B: TBill TNote TBond Aias: 10Y identifies security trading sector
Active Code: N-Off-the-Run, A-Active, W-When Issued
Settlement: C-Cash,N-Next Day, W-When-Issued, R-Next Day

7.2 Notes and Bonds Data During June 03

14



Table 12: CUSIP 912810FE3 Bond Maturity 08/15/2028

PART1
PART?2
PART3
PART4
PART5
PART6
PART7
PARTS
PART9
PART10
PART11
PART12
PART13
PART14
PART15
PART16
PART17
PART18
PART19

0166
912810FE3
08,/15,/2028

5.500
B30YN
10/25/2001
00:00:00
T
101.48437500
0

99.79687500
99.85937500
99.82812500

5.513
- 1.32812500
+ 98

101.64062500
99.48437500

101.42187500

Record Number
Cusip
Maturity
Coupon
* Product Type, Alias, Active Code, Settlement
Last Trade Date
Last Trade Time
H-Hit or T-Take
Last Trade Price
Aggregate Volume
Bid Price
Ask Price
Mid Price
Mid Yield
Price Change same time yesterday
Yld Chg BP are 1/10ths of a bp same time yesterday
High Price
Low Price
Tokyo Open Price

*T-N-B: TBill TNote TBond Aias: 10Y identifies security trading sector
Active Code: N-Off-the-Run, A-Active, W-When Issued
Settlement: C-Cash,N-Next Day, W-When-Issued, R-Next Day

7.3 Computed Zero Curve Current Time Monday 061003

In this recent run there were a total of 137 T—Bills, Notes, and Bonds having deleted the

callable issues.
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e0d061003 mape = 0.043
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Figure 1: Zero Curve October 6,2003 GovPX Data 137 Bills, Notes & Bonds

Remark 7.1 Given the maturity date under semi—annual coupon payments as appearing
wn Table 12, we can establish all the required coupon payment dates. The very last one just
before the settlement date (called the current time) is used for the dirty price calculation,
and all those after the current time are used in the bond’s present value calculation.
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