
©Copyright 2021

Robert Amzi Jeffs



Morphisms, Minors, and Minimal Obstructions to Convexity of

Neural Codes

Robert Amzi Jeffs

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2021

Reading Committee:

Isabella Novik, Chair

Steven Klee

Rekha Thomas

Program Authorized to Offer Degree:
Mathematics



University of Washington

Abstract

Morphisms, Minors, and Minimal Obstructions to Convexity of Neural Codes

Robert Amzi Jeffs

Chair of the Supervisory Committee:
Robert R. & Elaine F. Phelps Professor Isabella Novik

Mathematics

We study open and closed convex codes from a geometric and combinatorial point of view.

We prove constructive geometric results that establish new upper bounds on the open and

closed embedding dimensions of intersection complete codes. We introduce a combinatorial

framework of morphisms and minors for the study of convex codes, and show that open and

closed embedding dimension are monotone invariants when codes are partially ordered by

minors (in particular, open or closed convex codes form a minor-closed family). We establish

new discrete geometry theorems and use them to exhibit infinite families of minimally non-

convex codes, including new local obstructions to convexity. We also describe families of

codes with novel embedding dimension behavior: arbitrary disparity between open and closed

embedding dimension, open embedding dimensions that are exponential in the number of

neurons in a code, and large increases in closed embedding dimension when adding a new

non-maximal codeword. We conclude with an extensive discussion of open questions.



TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Symbols and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Neuroscientific Motivation: Hippocampal Place Cells . . . . . . . . . . . . . 2

1.2 Mathematical Motivation: Nerve Complexes, d-Representability, and Helly-
Type Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Definitions: Codes, Realizations, and Embedding Dimensions . . . . . . . . . 7

1.4 Past Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Overview of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2: Embedding Dimensions of Intersection Complete Codes . . . . . . . . . 22

2.1 Embedding Dimensions of Simplicial Complexes . . . . . . . . . . . . . . . . 22

2.2 Closed Embedding Dimension is Bounded by Open Embedding Dimension . 24

2.3 A General Bound for Closed Embedding Dimension . . . . . . . . . . . . . . 28

Chapter 3: Morphisms of Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Morphisms and Their Basic Properties . . . . . . . . . . . . . . . . . . . . . 34

3.2 A Combinatorial Characterization of Morphisms . . . . . . . . . . . . . . . . 38

3.3 Isomorphism Classes and Reduced Codes . . . . . . . . . . . . . . . . . . . . 40

3.4 Morphisms and Intersection Complete Codes . . . . . . . . . . . . . . . . . . 46

3.5 Morphisms and Neural Rings . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Morphisms and Category Theory . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4: Minors of Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Definitions: Minors of Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Minors and Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



4.3 PCode, the Poset of Code Minors . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Minimally Non-Convex Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Covering Relations in PCode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 5: k-Flexible Sunflowers of Open Convex Sets and Applications . . . . . . 78

5.1 A Geometric Theorem Regarding k-Flexible Sunflowers of Open Convex Sets 79

5.2 Application 1: Arbitrary Disparity Between Open and Closed Embedding
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Application 2: Exponential Open Embedding Dimension . . . . . . . . . . . 90

5.4 Application 3: Monotonicity of Convexity is Strict in Every Dimension . . . 94

5.5 Application 4: Monotonicity of Convexity Fails With Arbitrarily Large Gap
for Closed Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Application 5: An Infinite Family of Locally Good Minimally Non-Open-
Convex Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Tangled Sunflowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8 Flexible Sunflower Codes Generalizing Sn and S∆ . . . . . . . . . . . . . . . 127

Chapter 6: Convex Union Representable Complexes and New Local Obstructions
to Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1 Collapsibility of Convex Union Representable Complexes . . . . . . . . . . . 132

6.2 Collapsible Complexes That Are Not Convex Union Representable . . . . . . 141

6.3 Equivalence of Open and Closed Convex Union Representability . . . . . . . 141

6.4 Constructible-Like Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Alexander Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Convex Union Representable Complexes With a Few Free Faces . . . . . . . 147

6.7 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8 New Local Obstructions to Open and Closed Convexity . . . . . . . . . . . . 155

Chapter 7: Discussion and Open Problems . . . . . . . . . . . . . . . . . . . . . . 158

7.1 Open Problems on Constructive Geometric Results . . . . . . . . . . . . . . 159

7.2 Open Problems on Morphisms and Minors . . . . . . . . . . . . . . . . . . . 160

7.3 Open Problems on Sunflowers of Open Convex Sets . . . . . . . . . . . . . . 163

7.4 Open Problems on Convex Union Representable Complexes . . . . . . . . . . 165

7.5 Other Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

ii



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

iii



LIST OF FIGURES

Figure Number Page

1.1 This figure appears in [GJAM+20], in which the authors study the activity of
place cells in a rat as it moves through a 3-dimensional environment. . . . . 3

1.2 A figure from [WYM18] of 3-dimensional place fields for place cells in flying
bats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 (a) A collection U = {U1, U2, U3, U4} of convex open sets in R2. (b) The nerve
〈123, 14, 24, 34〉 of U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The code C = {123,14,24,34, 23, 1, 2, 3, 4, ∅} as a partially ordered set, with
TkC(3) outlined in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 (a) An open convex realization U = {U1, U2, U3, U4} of the code C = {123,14,
24,34, 23, 1, 2, 3, 4, ∅}. (b) The atom U4 in this realization. . . . . . . . . . 11

1.6 (a) An open realization U = {U1, U2, U3} of C = {123, 13, 23, 1, 3, ∅} in the
plane. (b) The flattened realization V = {V1, V2, V3} of C in R1 (intervals
shown with horizontal separation for clarity). . . . . . . . . . . . . . . . . . . 13

1.7 (a) A closed realization X = {X1, X2, X3, X4, X5} in R2 of the code C from
Theorem 1.4.5. (b) An open realization in R2 of the code D from Theorem
1.4.6. Rather than label each set, we have labeled the atoms in the realization.
For example, U1 is the top half of the hexagon, and subsequent Ui are rotations
of U1 by multiples of 60 degrees about the center of the hexagon. See also
[CGIK16, Figures 2.1 and 2.2]. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 A table of the families of codes that appear in this work. . . . . . . . . . . . 21

2.1 An illustration of the construction used in Theorem 2.1.1. . . . . . . . . . . . 23

2.2 (a) An open set U ⊆ R2. (b) trim(U, ε) for a specific choice of ε. . . . . . . . 25

2.3 The objects used to prove non-degeneracy in Lemma 2.2.4. . . . . . . . . . . 27

2.4 An illustration of how Lemma 2.2.4 may fail when C is not intersection complete. 28

2.5 (a) A degenerate open realization U = {U1, U2, U3, U4} of an intersection com-
plete code. (b) The trimmed non-degenerate open realization V = {V1, V2, V3, V4}
of Lemma 2.2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



2.6 (a) The polytopal complex X with facets {X1, X2, X3, X4} in R3, with X1

transparent and facets split apart slightly to show structure. (b) The 1-
skeleton of X . (c) The closed realization Y = {Y1, Y2, Y3, Y4} of C. . . . . . . 33

3.1 The codes C and D, with proper trunks highlighted in grey. . . . . . . . . . . 35

3.2 (a) A non-reduced code C. (b) An isomorphic reduced code D. . . . . . . . . 45

3.3 Two simplicial complexes, with collections of trunks determining surjective
morphisms to the code C = {123, 1, 2, 3, ∅}. . . . . . . . . . . . . . . . . . . 48

4.1 (a) A realization of C. (b) The derived realization of f(C). . . . . . . . . . . 59

4.2 An informal illustration of PCode stratified by open and closed convexity.
Each dot represents a code, light grey lines represent relations in the poset,
and thick black lines represent the “boundaries” between different classes of
codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 The Hasse diagrams of C and the covered codes C(1) and C(4). . . . . . . . . . 71

4.4 The first five ranks of PCode. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Open k-flexible sunflowers with n petals in Rd for various choices of k, n, and
d. (a) k = 1, n = 3, d = 2. (b) k = 2, n = 5, d = 2. (c) k = 1, n = 4, d = 3.
(d) k = 1, n = 5, d = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Points that are not well-supported in a sunflower in R3. . . . . . . . . . . . . 81

5.3 An example in R2 of the objects used to prove Lemma 5.1.10. The bolded
segment of ∂U is contained in Ui, and has b as a limit point. . . . . . . . . . 82

5.4 An example in R2 of the objects used to prove Lemma 5.1.11. . . . . . . . . 83

5.5 Theorem 5.1.13 applied to the open k-flexible sunflowers of Figure 5.1. In
each case conv{p1, . . . , pn} is shown in black, and has nonempty intersection
with the center of the k-flexible sunflower in question. . . . . . . . . . . . . . 86

5.6 A construction showing that Theorem 5.1.13 fails for closed sunflowers. . . . 87

5.7 A construction proving Proposition 5.1.18 when d = 2 and k = 3. . . . . . . 88

5.8 A closed realization of Sn in R2. . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Open realizations (a), (b), and (c) of S1, S2, and S3 in dimensions 1, 2, and 3
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 A visualization of the codes S∆ in PCode. . . . . . . . . . . . . . . . . . . . 93

5.11 An open realization of P2 in R2. . . . . . . . . . . . . . . . . . . . . . . . . 98

5.12 A closed realization of C2 in R2. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.13 (a) The line segments L1, L2, and L3 and the codewords that appear along
them. (b) The triangles T1 and T2. . . . . . . . . . . . . . . . . . . . . . . . 103

v



5.14 A closed realization of A2 ∪ {12} = {1212,131,232, 11, 22, 12, 3, ∅} in R2.
Note that the realization is non-degenerate. . . . . . . . . . . . . . . . . . . 106

5.15 An informal illustration of a hypothetical open realization of C3 in R3. . . . . 109

5.16 The link of n+ 1 in ∆(Cn) when n = 3. . . . . . . . . . . . . . . . . . . . . . 111

5.17 The construction used to partially realize the code C(3)
2 in R2. Note that this

realization is degenerate, as the atoms of 12 and 13 are not full-dimensional. 116

5.18 A closed realization of Tn in R2. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.19 Open realizations (a), (b), (c), and (d) of T1, T2, T3, and T4 in dimensions 1,
2, 3, and 3 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.20 (a) An open realization U = {U1, U2, U1, U2} of T2 in R2. (b) The resulting
open realization V = {V1, V2, V3, V1, V2, V3} of T3 in R3. . . . . . . . . . . . . 122

5.21 (a) The arrangement of points used to prove Proposition 5.7.8. (b) A contra-
dictory line segment L = p2q3 ⊆ U3 that crosses p1q2 ⊆ U2. . . . . . . . . . . 125

5.22 The codes SC/D and SE/min for a fixed choice of m and k stratified by open
embedding dimension in PCode. Compare with Figure 5.10 which treats the
k = 1 case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 A 2-convex union representation U = {U1, U2, U3, U4} of 〈123, 124, 234〉. . . . 133

6.2 Collapsing the complex 〈123, 124〉 to a point. . . . . . . . . . . . . . . . . . . 134

6.3 Objects used to prove Theorem 6.1.7. The point p lies in Xγ = Wγ ∩ A>0 . . . 139

6.4 The collapsible complex Σ2 from [ABL17], which has the unique free face 12,
and is not convex union representable. . . . . . . . . . . . . . . . . . . . . . 142

6.5 (a) A 2-convex union representation U = {U1, U2, U3, U4} of 〈123, 124, 234〉,
with U1 outlined in bold. (b) The resulting 3-convex union representation
V = {V1, V2, V3, V4} of 2[4], with V1 outlined in bold. . . . . . . . . . . . . . . 147

6.6 A 2-convex union representation X = {X1, X2, X3, X4, X5} of ∂P \ v, where
P ⊆ R3 is the regular octahedron. . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1 (a) The simplicial complex 2[3], which is 1-convex union representable (b) The
barycentric subdivision of 2[3], which is not 1-convex union representable. . . 167

vi



SYMBOLS AND NOTATION

Symbols

∆,Γ Simplicial complexes

A,B, C, . . . ,S, T Codes

U ,V ,W Open realizations

X ,Y ,Z Closed realizations

Codes and Combinatorics

[n] The set of neurons {1, 2, . . . , n}

[n] The set of overlined neurons {1, 2, . . . , n}

∆(C) The simplicial complex of C

TkC(σ) The trunk of σ in C

nerve(U) The nerve of U

code(U) The code of U

Uσ The intersection
⋂
i∈σ Ui

Uσ The atom of σ in U

odim(C) The open embedding dimension of C

cdim(C) The closed embedding dimension of C

Code The category of codes together with morphisms

[C] The isomorphism class of C

D ≤ C D is a minor of C

PCode The poset of code minors

C(i) The i-th covered code of C

vii



Geometry and Topology

pq The line segment between points p and q

convA The convex hull of A

intA The topological interior of A

clA The topological closure of A

∂A The topological boundary of A

Bε(p) The closed ball of radius ε centered at p

H> (resp. H<) The positive (resp. negative) side of an oriented hyperplane H

〈σ1, . . . , σk〉 The simplicial complex generated by the faces σ1, . . . , σk

dim(∆) The dimension of a simplicial complex ∆

Lk∆(σ) The link of σ in ∆

St∆(σ) The closed star of σ in ∆

viii



ACKNOWLEDGMENTS

I am deeply grateful to my advisor Isabella Novik for her support, advice, and mentor-

ship during my graduate studies. She provided important concrete mathematical guidance,

particularly when I was first exploring the framework of morphisms and minors. Our conver-

sations and collaboration during the last few years have been formative (and transformative)

to my development as a researcher. Very importantly, she also connected me with others in

the discrete geometry community who in turn helped me further refine my ideas and pointed

me to rich new avenues of study.

Mohamed Omar and Nora Youngs first introduced me to convex neural codes. Their

enthusiasm and feedback during my undergraduate studies and the years following was a

vital source of inspiration and encouragement. Regular exchanges with Caitlin Lienkaemper

and Alex Kunin— fellow graduate students working on convex codes—sparked new ideas

and excitement, and helped ground my decisions about which problems to pursue.

Florian Frick asked a number of incisive questions about my work during a visit to

Carnegie Mellon University, prompting me to discover several of the key results in Chapter

5 of this text. Carina Curto likewise pointed me towards rich and fruitful approaches to my

research at several times during my graduate studies.

Anne Shiu deserves special thanks for her detailed and energetic feedback on my preprints

(and my research generally), and the work she has done to bring new students into the convex

neural codes community. Both made my research feel all the more worthwhile.

Countless others shaped the mathematical content of this work through conversations,

email exchanges, and questions at my talks. Among these, I am very grateful to Bruno

Benedetti, Olivia Borghi, Federico Castillo, Vladimir Itskov, Zvi Rosen, Alex Ruys de Perez,

ix



Jose Samper, and Tuomas Tajakka.

I am very grateful to Steve Klee and Rekha Thomas for agreeing to be on my reading

committee, and to Anna Karlin for serving as the graduate student representative on my

committee.

In addition to her vital support and encouragement during the more typical years of

my graduate work, I appreciate my partner Renata Kalnin for her patience with the past

year of my research, which has been conducted almost exclusively from the slightly cramped

bedroom of our apartment.

Finally, my family’s enthusiasm for my mathematical endeavors continues to make me

grateful and excited to continue my work.

Financially, my work was supported by the National Science Foundation through the

grants DMS-1664865 and DGE-176112.

x



DEDICATION

For my fellow union members in UAW Local 4121, whose fighting spirit has made it pos-

sible to survive graduate school emotionally, whose hard-won gains in wages and healthcare

have made it possible to survive graduate school financially, and whose organized power and

solidarity have provided some of the most concrete and practical lessons of my graduate

studies.

xi



1

Chapter 1

INTRODUCTION

How can convex sets be arranged in d-dimensional Euclidean space? This general question

captures a variety of more specific topics in discrete geometry, from Helly-type theorems, to

hyperplane arrangements, to simplicial complexes, to polytopes. This work deals with the

study of convex codes, a more recent topic under this umbrella, in which we wish to classify all

of the combinatorial intersection and covering patterns that may arise from a finite collection

of (usually open, sometimes closed) convex sets in Rd.

The study of convex codes was initiated in 2013 [CIVCY13], and strictly generalizes the

classical topic of d-representability of simplicial complexes. This relatively young area of

research has already generated a sizeable body of work, including many striking families of

examples, and results of possible general interest. An elegant classification of all convex codes

seems intractable for the moment, but progress on the problem will require the development

of novel and interesting tools in geometry and combinatorics. An efficient classification

of convex codes is unfortunately out of the question: recent work in [KLR20] shows that

recognizing convex codes is NP-hard (in fact, ∃R-hard).

In this work we approach the study of convex codes from a geometric and combinatorial

point of view. Our results come in three main categories. First, we provide constructive

geometric results which establish new bounds on the “embedding dimensions” of certain

families of codes. Second, we introduce and study a notion of “minors” for codes, providing

a general framework in which to study convex codes. Third, we prove new discrete geometry

results and apply them to generate many different families of codes which exhibit novel

geometric behavior.

To set the stage, we begin by recalling some motivation for the study of convex codes, from



2

both neuroscientific and mathematical perspectives (see Sections 1.1 and 1.2 respectively).

In Section 1.3 we provide the basic definitions of convex codes, embedding dimensions, and

other relevant terms. Section 1.4 gives a (necessarily incomplete) overview of the existing

literature on convex codes. Finally, we outline the structure of subsequent chapters and

summarize our main results in Section 1.5.

In this work we will assume familiarity with the fundamentals of Euclidean topology,

discrete geometry, and combinatorics: homotopy type, partially ordered sets, simplicial com-

plexes, hyperplanes, convex sets, polytopes, and so on. In many cases we provide a brief

reminder or reference for a concept that we require (such as cyclic polytopes in Chapter 2).

For any terms or results that we do not recall explicitly, two good references are [Mat02] and

[Zie95].

1.1 Neuroscientific Motivation: Hippocampal Place Cells

In 1971 O’Keefe and Dostrovsky [OD71] made a groundbreaking observation: certain neu-

rons in the hippocampus of rats were active primarily when the rat occupied a specific,

approximately convex, region of its environment. We call the region in which a neuron is

active its receptive field. These neurons can be thought of as encoding a “cognitive map”

of the rat’s environment, and were thus dubbed place cells. This phenomenon has been

observed in other sensory perception tasks such as flight paths of bats [WYM18], sense of di-

rection [KKM95], “grid cells” [MRM15], and visual recognition of angles [BYBOS95, WB74].

Non-visual stimuli such as smell also play a role in the behavior of place cells [ZMV15].

In each of these cases a stimulus space is covered by a collection of convex sets, and each

set is “recognized” by a unique neuron in the brain. A key question in this context is the

following: “how much topological and geometric structure of the stimulus space can place

cells accurately recognize or encode?” As we will see in Section 1.3, convex codes provide

a correspondence between the geometry of the environment and neural activity, and thus

allow us to study this question mathematically.



3

Figure 1.1: This figure appears in [GJAM+20], in which the authors study the activity of

place cells in a rat as it moves through a 3-dimensional environment.

Figure 1.2: A figure from [WYM18] of 3-dimensional place fields for place cells in flying bats.



4

1.2 Mathematical Motivation: Nerve Complexes, d-Representability, and Helly-
Type Theorems

The study of convex codes is also well-motivated from the perspective of discrete geometry.

In this section we will highlight several classical areas of work in discrete geometry that

are relevant to the study of convex codes, beginning with nerve complexes. Due to the

neuroscientific motivation for studying convex codes, it is customary in the literature to

refer to positive integers as “neurons” (corresponding to labeling a finite set of neurons in

an experiment with integers 1 through n).

Definition 1.2.1. We will let [n] denote the set {1, 2, . . . , n} consisting of the first n positive

integers. We will often refer to elements of [n] as neurons.

Despite the linguistic similarity, the term “nerve complex” is not a reference to place

cells—indeed, the term significantly predates the discovery of place cells.

Definition 1.2.2. Let U = {U1, . . . , Un} be a collection of open sets. The nerve of U is the

simplicial complex

nerve(U) :=

{
σ ⊆ [n]

∣∣∣∣⋂
i∈σ

Ui 6= ∅
}
.

One may view the nerve of U as a combinatorial object recording the “intersection infor-

mation” of the collection U . However, by virtue of being a simplicial complex, we may also

regard nerve(U) from a topological and geometric perspective. To obtain useful information

on this front, it often convenient to restrict our attention to collections U that are “topolog-

ically well-behaved.” More formally, we are interested in good covers, defined below. Since

we will often need to refer to regions of the form
⋂
i∈σ Ui, we use the more concise notation

Uσ :=
⋂
i∈σ Ui from here onwards. We adopt the convention that the empty intersection U∅

is equal to the “ambient space” that U sits inside of (usually Rd).

Definition 1.2.3. Let U = {U1, . . . , Un} be a collection of open sets. We say that U is a

good cover if Uσ is either contractible or empty for all nonempty σ ⊆ [n].



5

Note that any collection of convex open sets forms a good cover. When we have a good

cover U , the nerve of U captures the homotopy type of the space that U covers. There are a

variety of versions of this result, and consequently a variety of names for it, including “the

nerve lemma” and “the nerve theorem.” To our knowledge this type of result was first proved

in [Bor48], and we are interested in the version below.

Theorem 1.2.4 (Borsuk’s nerve lemma). Let U = {U1, . . . , Un} be a good cover. Then

nerve(U) is homotopy equivalent to
⋃
i∈[n] Ui.

Example 1.2.5. Figure 1.3 shows a collection U = {U1, U2, U3, U4} of convex open sets in R2,

and their nerve 〈123, 14, 24, 34〉. One may confirm that the nerve is homotopy equivalent to

the union of the sets in U , as implied by the nerve lemma.

Figure 1.3: (a) A collection U = {U1, U2, U3, U4} of convex open sets in R2. (b) The nerve

〈123, 14, 24, 34〉 of U .

One may also study good covers consisting of closed sets, and obtain the corresponding

closed version of the nerve lemma. Beyond homotopy type, nerves of good covers can also

capture other geometric and topological features of an object, such as the dimension of the

ambient space it lies in. This motivates the study of d-representable complexes.



6

Definition 1.2.6. Let ∆ ⊆ 2[n] be a simplicial complex. We say that ∆ is d-representable

if there exists a collection U = {U1, . . . , Un} of convex (not necessarily open or closed) sets

in Rd such that ∆ = nerve(U).

Above, we allow for possibility that some Ui are the empty set. As a result, some of

the “vertices” in [n] may not actually be faces of the nerve complex. This differs from

the convention that every simplicial complex must contain its vertices as faces, which is

sometimes adopted in other works. However, this will not cause any ambiguities for us.

For a recent survey of d-representability (and nerves of collections of convex sets generally)

see [Tan13]. One key result in this area of work is that every simplicial complex is d-

representable for a large enough value of d. In particular, one can find a representation in a

dimension no larger than a linear function of the dimension of the complex.

Theorem 1.2.7 ([Weg67], [Pm85]). Let ∆ ⊆ 2[n] be a simplicial complex, and let d =

dim(∆). Then ∆ is (2d+ 1)-representable.

The result above provides an upper bound on the dimension in which a simplicial complex

is representable. Other results, such as Helly’s theorem below, provide lower bounds. Lower

bounds are particularly interesting when we are trying to infer information about a space

that is covered by convex sets. One way to read Helly’s theorem is that certain nerves cannot

arise until we are in a high enough dimension. If we are given nerve(U) without being told

U itself, Helly’s theorem can allow us to infer a lower bound on the dimension of the space

in which U lies.

Theorem 1.2.8 (Helly’s theorem). Suppose that ∆ ⊆ 2[n] is d-representable and n ≥ d+ 2.

If ∆ contains all possible faces of dimension d, then ∆ = 2[n].

Example 1.2.9. One may use Helly’s theorem to verify that the complex 〈123, 14, 24, 34〉

from Example 1.2.5 is not 1-representable. Indeed, this complex contains all possible 1-

dimensional faces (edges), but does not contain [4]. Thus R2 is the smallest dimension in

which this complex has a representation.



7

Helly’s theorem has many generalizations—“fractional” versions, “colorful” versions, and

others (see [ADLS17] for a recent overview). Helly-type theorems can generally be interpreted

as saying that certain nerves cannot arise in certain dimensions, i.e. certain complexes are

not d-representable for certain values of d. However, these theorems are not enough to fully

characterize d-representable complexes for a fixed value of d. In fact, even 2-representable

complexes do not have an elegant characterization, and the computational problem of rec-

ognizing them is NP-hard (see [Tan13, Section 4.1]).

Despite the apparent intractability of fully characterizing d-representable complexes, their

study has been fruitful and has motivated novel work in discrete and combinatorial geometry.

The study of convex codes is a strictly more general task than the study of d-representable

complexes. Where nerves capture only the “intersection information” of a collection U ,

codes capture the “intersection and covering information” of U . We will make this informal

statement precise in the following section.

1.3 Definitions: Codes, Realizations, and Embedding Dimensions

So far we have explained how simplicial complexes are used in existing literature to capture

intersection information from a collection U = {U1, . . . , Un}. As mentioned above, we are

interested in generalizing this framework to capture more geometric and topological infor-

mation from U . Correspondingly, we must work with more general combinatorial objects

than simplicial complexes. Our combinatorial objects of interest will be codes.

Definition 1.3.1. A code (sometimes called a combinatorial code or neural code) is a subset

of the power set 2[n]. Elements of a code are called codewords. The weight of a codeword

is the number of neurons it contains (i.e. its cardinality). We will often partially order

codewords by containment, and refer to maximal codewords, which are the codewords that

are not properly contained in any other codeword.

We will adopt the convention that every code contains the empty set as a code-

word. This convention is not universal in the convex neural code literature. In fact, many



8

of the results that we will prove in this work first appeared in papers where we did not adopt

this convention. For our work here, we believe this convention allows for cleaner and more

accurate statements.

One small consequence of this convention is that when we speak of a “subcode of C” we

do not simply mean a subset of C, we mean a subset of C that contains the empty set as an

element.

Codes are extremely general combinatorial objects, and may seem an unwieldy tool at

first. It is often helpful to return to the more familiar terrain of simplicial complexes, and

to this end we associate every code to a unique simplicial complex.

Definition 1.3.2. Let C ⊆ 2[n] be a code. The simplicial complex of C is

∆(C) := {σ ⊆ [n] | σ is contained in some codeword c of C}.

Equivalently, ∆(C) is the smallest simplicial complex containing C.

To further grapple with the combinatorial features of codes, we often refer to “trunks” in

a code. These generalize open stars in a simplicial complex, and will play a prominent role

in Chapters 3 and 4.

Definition 1.3.3. Let C ⊆ 2[n] be a code and let σ ⊆ [n]. The trunk of σ in C is the set

TkC(σ) := {c ∈ C | σ ⊆ c}.

A subset of C is called a trunk in C if it is empty, or equal to TkC(σ) for some nonempty

σ ⊆ [n]. When the code C is clear from context, we will simply write Tk(σ).

Definition 1.3.4. Trunks of the form Tk({i}) will be called simple trunks, and denoted

Tk(i).

Example 1.3.5. Consider the code

C = {123,14,24,34, 23, 1, 2, 3, 4, ∅}.



9

Figure 1.4: The code C = {123,14,24,34, 23, 1, 2, 3, 4, ∅} as a partially ordered set, with

TkC(3) outlined in grey.

The code C has four neurons and ten codewords. Figure 1.4 shows the Hasse diagram of

C, with the simple trunk TkC(3) highlighted in grey. Above, we have removed brackets and

commas from codewords to simplify our notation. For example, 23 refers to the codeword

{2, 3}. We have also bolded all maximal codewords. We will use both of these conventions

throughout our work.

Just as we used simplicial complexes to record intersection information about a collection

of sets via nerve complexes, we will use codes to capture more general information about U .

Definition 1.3.6. Let U = {U1, . . . , Un} be a collection of (not necessarily open, closed, or

convex) subsets of a set X. The code of U is the code

code(U) :=

{
σ ⊆ [n]

∣∣∣∣Uσ \ ⋃
j∈[n]\σ

Uj 6= ∅
}

on n neurons. Equivalently,

code(U) :=
{
σ ⊆ [n]

∣∣There exists p ∈ X with p ∈ Ui if and only if i ∈ σ
}
.

We say that U is a realization of code(U).



10

Note that nerve(U) = ∆(code(U)), and so codes generalize nerve complexes. Moreover,

observe that σ /∈ code(U) if and only if the region Uσ is covered by {Uj | j ∈ [n] \ σ}. This

is the sense in which codes capture “covering information” about a collection U .

We are primarily interested in the study of open convex realizations U sitting inside the

space X = Rd. From here onwards, the word “realization” will mean “convex realization.”

When we speak of realizations that are not necessarily convex, we will specify this explicitly.

There are some ambiguities in Definition 1.3.6 that we should briefly resolve. First,

observe that when speaking of code(U) we are not regarding U as a multiset, but as a

list. Although reordering U does not have a meaningful impact on the resulting code (we are

simply permuting the neurons) the ordering is important for bookkeeping purposes, especially

in some of our more involved proofs. Although it clashes with combinatorial standards, we

use the word “collection” when referring to realizations to emphasize that they are ordered

lists of objects sitting inside of an ambient space.

A second ambiguity in Definition 1.3.6 is that we are assuming every code contains ∅

as a codeword, but code(U) contains ∅ if and only if U does not fully cover the space X.

Thus we will only ever work with collections U that do not cover the ambient space X. In

the study of convex codes this is not a problem: we have X = Rd, and we may intersect

our realization U with a large ball without changing the resulting code (except by possibly

adding the empty codeword). In other words, we may without loss of generality restrict our

attention to bounded realizations (and we will often do so).

One way to view codes is the following. A collection U carves the space X into a number

of regions, and code(U) records these regions (though not their exact locations). Formally,

we call these regions “atoms” of the realization U .

Definition 1.3.7. Let U = {U1, . . . , Un} be a collection of (not necessarily open, closed, or

convex) subsets of a set X, and let σ ⊆ [n]. The atom of σ in U is the set

Uσ := Uσ \
⋃

j∈[n]\σ

Uj.



11

Equivalently,

Uσ := {p ∈ X | p ∈ Ui if and only if i ∈ σ}.

Note that with this notation we have code(U) = {σ ⊆ [n] | Uσ 6= ∅}. In other words,

code(U) tells us precisely which atoms in U are nonempty.

In the existing convex codes literature, the notation for atoms is typically different than

what we have presented above. For example, [CGIK16] uses the notation AUσ . We prefer Uσ

to existing conventions for its compactness and small number of symbols.

Example 1.3.8. Figure 1.5 shows an open convex realization U = {U1, U2, U3, U4} of the code

C = {123,14,24,34, 23, 1, 2, 3, 4, ∅} in R2, and one of the atoms in this realization.

Figure 1.5: (a) An open convex realization U = {U1, U2, U3, U4} of the code C = {123,14,

24,34, 23, 1, 2, 3, 4, ∅}. (b) The atom U4 in this realization.

Our primary question of interest is to classify which codes arise from collections of convex

(open or closed) sets in Rd. Note that this generalizes the study of d-representability: A

complex ∆ is d-representable if and only if there exists a code C such that C has a realization

in Rd and ∆ = ∆(C).

From the perspective of neuroscience, we have the following situation. Given a collection

of n place cells with receptive fields U = {U1, . . . , Un} in Rd, code(U) records which neurons



12

fire concurrently as an animal moves through space. Thus code(U) records exactly the neural

activity of an animal as it moves through the receptive fields in U . Classifying the spaces in

which we can realize code(U) thus amounts to answering the question we posed in Section

1.1: “how much topological and geometric structure of the stimulus space can place cells

accurately recognize?”

Note that if C has a realization in Rd, then C has a realization in any dimension larger than

d by taking cylinders over our sets. Thus we are most interested in the minimal dimension

in which a code has a realization.

Definition 1.3.9. The open embedding dimension of a code C, denoted odim(C), is the

smallest dimension in which C has an open convex realization (or ∞ if no such realization

exists). That is,

odim(C) := min
(
{d | C has an open convex realization in Rd} ∪ {∞}

)
.

The closed embedding dimension of C, denoted cdim(C), is defined similarly using closed

convex realizations. That is,

cdim(C) := min
(
{d | C has a closed convex realization in Rd} ∪ {∞}

)
.

Definition 1.3.10. Let C be a code. If odim(C) <∞ we say that C is an open convex code.

Likewise if cdim(C) <∞ we say that C is a closed convex code.

When we introduced d-representability we did not specify that our sets were open or

closed. Indeed, the study of d-representability does not change when we restrict from arbi-

trary convex sets to open convex sets, or closed convex sets. There is no a priori reason to

believe that the same should not be true in the study of codes. However, there are many

subtle and interesting differences between open convex codes and closed convex codes. As

one example, Theorem 5.2.2 and Proposition 5.2.3 will show that there may be an arbitrarily

large gap between the open and closed embedding dimensions of a code.



13

Example 1.3.11. Consider the code C = {123, 13, 23, 1, 3, ∅}. This code has an open realiza-

tion in R2, as shown in Figure 1.6(a). However, this realization can be flattened to realize

the same code in R1. Thus odim(C) = 1 in this case (note that odim(C) 6= 0 since C has more

than one codeword). In fact, all of the realizations shown in Figure 1.6 could be regarded as

closed realizations, so we have cdim(C) = 1 as well.

Figure 1.6: (a) An open realization U = {U1, U2, U3} of C = {123, 13, 23, 1, 3, ∅} in the plane.

(b) The flattened realization V = {V1, V2, V3} of C in R1 (intervals shown with horizontal

separation for clarity).

From the perspective of neuroscience, our main interest lies in the study of open convex

codes, since receptive fields are full-dimensional and somewhat noisy. Closed convex codes

are a natural class to study mathematically, as they have connections to polytopal complexes,

hyperplane arrangements, and other discrete geometric notions. In the next section we will

provide a brief overview of existing results in the study of open and closed convex codes, on

which our own work is built.

1.4 Past Results

While every simplicial complex is d-representable for a large enough value of d, not every

code is (open or closed) convex, even if we search for realizations in arbitrarily large dimen-



14

sion. Thus the task of classifying open convex codes (i.e. codes with finite open embedding

dimension) is a nontrivial task. A first step in this direction was the study of “local obstruc-

tions,” defined below. These obstructions were originally observed in [GI14], but we adopt

the notation and terminology of later the later work [CGJ+17].

In the following definition we reference collapsibility, a combinatorial notion that is

slightly more restrictive than contractibility. See Definition 6.1.3 and Example 6.1.4 in

Chapter 6 for more on collapsibility.

Definition 1.4.1 ([CGJ+17], [CFS19]). Let C ⊆ 2[n] be a code, and let σ ∈ ∆(C) \ C. If

Lk∆(C)(σ) is non-contractible, we say that C has a local obstruction at σ. If Lk∆(C)(σ) is

non-collapsible, we say that C has a local obstruction of the second kind at σ. If C has no

local obstructions we say that C is locally good, and if C has no local obstructions of the

second kind we say that C is locally great.

The word “local” here refers to the fact that these obstructions are defined using links

in ∆(C), and links capture the local geometry of a complex near a face. As one would hope,

local obstructions help us recognize when a code is not open or closed convex. The following

theorems capture this.

Theorem 1.4.2 ([CGJ+17]). Let C be a code, and suppose that odim(C) <∞ or cdim(C) <

∞. Then C is locally good.

Theorem 1.4.3 ([CFS19]). Let C be a code, and suppose that odim(C) <∞ or cdim(C) <∞.

Then C is locally great.

Since every collapsible complex is also contractible, every local obstruction is also a local

obstruction of the second kind. Thus Theorem 1.4.3 implies Theorem 1.4.2. It turns out

that local obstructions can be characterized topologically, as formalized in the theorem below.

Currently, there is not an analogous “geometric characterization” of locally great codes.

Theorem 1.4.4 ([CFS19]). A code is locally good if and only if it can be realized using a

good cover.



15

Good covers are more general than convex covers, and so we should expect that local

obstructions are not sufficient to characterize either open or closed convex codes. Indeed,

there is a rich and interesting theory of non-local obstructions to convexity, which we will

build on. The first non-local obstruction to open convexity was published in [LSW17].

Theorem 1.4.5 ([LSW17]). The code

C = {2345,123,134,145, 13, 14, 23, 34, 45, 3, 4, ∅}

has cdim(C) = 2 and odim(C) = ∞. In particular, this code is locally great, but not open

convex.

Theorem 1.4.6 ([CGIK16]). The code

D = {123,126,156,234,345,456, 12, 16, 23, 34, 45, 56, ∅}

has odim(D) = 2 and cdim(D) = ∞. In particular, this code is locally great, but not closed

convex.

The “problem” with the codes C and D in Theorems 1.4.5 and 1.4.6 can be seen in Figure

1.7. The closed realization of C forces the atom of 2345 to have empty interior, so we may

not replace our sets with their interiors without changing the resulting code. Similarly, the

open realization of D forces disjoint sets to share boundary points, so that replacing sets

with their closures would yield a different code. These pathologies motivated [CGIK16] to

define “non-degenerate” realizations.

Definition 1.4.7 ([CGIK16]). A collection U = {U1, . . . , Un} of convex (but not necessarily

open) sets in Rd is called non-degenerate if the following two conditions hold:

(i) For all c ∈ code(U), the atom U c is top-dimensional (i.e. its intersection with any open

set is either empty, or has nonempty interior).

(ii) For all nonempty σ ⊆ [n], we have
⋂
i∈σ ∂Ui ⊆ ∂Uσ.



16

Figure 1.7: (a) A closed realization X = {X1, X2, X3, X4, X5} in R2 of the code C from

Theorem 1.4.5. (b) An open realization in R2 of the code D from Theorem 1.4.6. Rather

than label each set, we have labeled the atoms in the realization. For example, U1 is the top

half of the hexagon, and subsequent Ui are rotations of U1 by multiples of 60 degrees about

the center of the hexagon. See also [CGIK16, Figures 2.1 and 2.2].

Such realizations have the property that if we simultaneously replace all sets by their

interiors or closures, we do not change the resulting code. In fact, recent work in [CJL+20]

shows that non-degenerate realizations are exactly the realizations with this property.

All the results we have discussed so far are “negative,” in the sense that they describe

certain obstructions to finding convex realizations of codes. Constructive or “positive” results

have been harder to come by, but some progress has been made for special classes of codes.

One such class is max-intersection complete codes.

Definition 1.4.8. Let C be a code. We say that C is intersection complete if the intersection

of any two codewords in C is again a codeword in C. We say that C is max-intersection

complete if the intersection of any number of maximal codewords in C is a codeword in C.

The (max-)intersection completion of a code is the smallest (max-)intersection complete code

that contains it. The intersection completion of C is denoted Ĉ.



17

Max-intersection complete codes are especially well-behaved from the perspective of con-

vexity. Not only are they both open and closed convex, but one may construct non-degenerate

realizations in a sufficiently large dimension.

Theorem 1.4.9 ([CGIK16]). Let C be a max-intersection complete code with m maximal

codewords, and let d = max{2,m − 1}. Then C has an (open or closed) non-degenerate

convex realization in Rd. In particular, odim(C) ≤ d and cdim(C) ≤ d.

The upper bound max{2,m− 1} is strikingly different from the upper bound 2d+ 1 for

representability of simplicial complexes (recall Theorem 1.2.7). While 2d+1 depends linearly

on the dimension of ∆ (and hence linearly on the number of vertices, or neurons, in ∆), the

number of maximal codewords may be very large compared to the number of neurons. One

might then expect that the bound max{2,m− 1} can be improved. We will see later that it

cannot, at least for open embedding dimension.

Another important positive result is that adding a new non-maximal codeword to a code

preserves open convexity. In fact, doing so does not increase the open embedding dimension

by more than one.

Theorem 1.4.10 (“Monotonicity of Open Convexity”, [CGIK16]). Let C ⊆ D be codes with

the same maximal codewords. Then odim(D) ≤ odim(C) + 1.

Monotonicity is a useful tool when building open realizations of a code. Rather than

build an open realiation of C, one can (at the cost of a dimension) get away with building a

realization of a code contained in C which has the same maximal codewords. Surprisingly,

the theorem above does not hold when open embedding dimension is replaced by closed

embedding dimension (this is the topic of Section 5.5).

Remark 1.4.11. In this section we have only scratched the surface of the convex codes lit-

erature. There is an entirely algebraic approach to understanding convex codes, which was

introduced in [CIVCY13] and further developed in works such as [GJS19, IKR20, RMS20,

GGPK+18, GNY16]. There are also many interesting geometric, topological, and combina-

torial works that we have not mentioned. For example, [Dav18] uses polytopes to explain



18

the combinatorial and algebraic structure of certain families of codes, [RZ17] characterizes

all (open or closed) convex codes in R1, and [MT20] characterizes codes that can be realized

by connected sets.

1.5 Overview of This Work

Our work builds on the existing neural code literature in several directions. In Chapter 2

we provide constructive results that expand the study of intersection complete codes. In

particular, we show that open and closed embedding dimensions are equal for simplicial

complexes (Theorem 2.1.1), that cdim(C) ≤ odim(C) whenever C is intersection complete

(Theorem 2.2.7), and finally that if C ⊆ 2[n] is intersection complete then

cdim(C) ≤ min{2d+ 1, n− 1}

where d = dim(∆(C)) (Theorem 2.3.7). The latter result is a generalization of [CGIK16,

Lemma 5.9], which establishes the n− 1 term in the bound.

Chapter 3 introduces and studies a combinatorial notion of morphism for codes. We

provide a combinatorial characterization of all morphisms (Theorem 3.2.3), and show that

every code is isomorphic to a unique “reduced” code, up to relabeling neurons (Theorem

3.3.13). We connect the combinatorial study of morphisms to the algebraic theory of neural

rings (Theorem 3.5.4), and we also show that the category of codes with morphisms is finitely

bicomplete (Theorem 3.6.7).

Chapter 4 shows that morphisms provide a useful framework in which to study open and

closed embedding dimensions. We define D to be a “minor” of C if there exists a surjective

morphism C → D, and we show that if D is a minor of C then one may use a (closed or

open) realization of C to build a (closed or open) realization of D (Theorem 4.2.2). As a

consequence, (closed or open) convex codes form a minor-closed family, and we may study

minimal obstructions to convexity in the form of “minimally non-convex” codes. We exhibit

an infinite family of minimally non-convex codes in Theorem 4.4.3, and a further family later

in Section 5.6. We study PCode, the set of isomorphism classes of codes partially ordered by



19

minors. We characterize the covering relation in PCode (Theorem 4.5.10), and we show that

PCode is a graded poset with rank function given by the number of proper nonempty trunks

in a code (Corollary 4.5.13).

In Chapter 5 we return to a slightly more concrete setting. We prove a general discrete

geometry theorem (Theorem 5.1.13), and apply this theorem to explain novel open and closed

embedding dimension bounds for over half a dozen families of codes. Among our families of

codes, some novel “firsts” are worth highlighting:

• The codes Sn are the first family in which open and closed embedding dimension differ

by an arbitrarily large finite amount,

• The codes En are the first family in which open embedding dimension grows exponen-

tially as a function of the number of neurons (in fact they are the first family in which

odim grows at anything larger than a linear rate), and

• The codes Cn exhibit the first infinite family of fundamentally distinct non-local ob-

structions to open convexity.

The families of codes that appear in our work and the phenomena that they exhibit are fully

summarized in Figure 1.8 at the end of this chapter. Two families do not appear in this

table: the codes SC/D and SC/min of Definition 5.8.1. These families generalize the families

S∆ and Sn respectively to a more complicated setting, which is investigated in Section 5.8.

Chapter 6 introduces the study of “convex union representable” complexes—simplicial

complexes which arise as the nerve of a collection of open convex sets whose union is convex.

Such complexes were studied to understand local obstructions to convexity in [CGJ+17] and

[CFS19]. We improve on past results by providing more refined combinatorial criteria that

such complexes must satisfy, thus allowing us to recognize new families of non-convex codes

(Corollary 6.8.3).

At the beginning of each chapter we explain which papers the results of that chapter

appear in. In general, we have streamlined and tweaked the presentation of our results



20

compared to their initial appearances. We hope that this work provides a more complete,

consistent, and elegant presentation of our various frameworks and results.

A myriad of open questions arise from our work. We have collected all of these in Chapter

7 for ease of reference.



21

Name Parametrized by Neurons Features or Results See

C∆

Simplicial

complexes ∆ ⊆ 2[n]
[n+ 1]

Minimally non-convex if

∆ is not convex union

representable (e.g. non-

collapsible, non-contractible)

Theorem

4.4.3

Sn n ≥ 1 [n+ 1]
odim(Sn) = n and

cdim(Sn) ≤ 2

Definition

5.2.1

S∆

Simplicial

complexes ∆ ⊆ 2[n]

with m facets

[n+ 1]
odim(S∆) = m and

cdim(Sn) ≤ n− 1

Definition

5.3.1

En n ≥ 2 [n+ 1]
odim(En) =

(
n−1

b(n−1)/2c

)
and

cdim(En) ≤ n− 1

Corollary

5.3.7

Pn n ≥ 1 [n+ 1] ∪ [n+ 2]
Monotonicity of convexity

is strict in dimension n

Definition

5.4.1

A0 [3] ∪ [5]
Monotonicity of convexity

fails for closed realizations

Theorem

5.5.2

An n ≥ 2 [n+ 1] ∪ [n]

Monotonicity of closed

convexity fails with

arbitrary finite gaps

Definition

5.5.5

Cn n ≥ 2 [n+ 1] ∪ [n+ 1]
Locally perfect and

minimally non-convex

Definition

5.6.1

Tn n ≥ 1 [n] ∪ [n]
dn/2e ≤ odim(Tn) ≤ n and

cdim(Tn) ≤ 2

Definition

5.7.1

Mk k ≥ 1 [k]
Maximum minor among

codes with k codewords

Proposition

4.3.7

Figure 1.8: A table of the families of codes that appear in this work.



22

Chapter 2

EMBEDDING DIMENSIONS OF
INTERSECTION COMPLETE CODES

In this chapter we provide several bounds on the open and closed embedding dimensions

of intersection complete codes. All of these results first appeared in [Jef19a], from which the

content of this chapter is adapted. These bounds can be viewed as “positive” results: they

constructively guarantee that realizations exist under certain conditions. This contrasts the

results given in Chapters 5 and 6, which are “negative” in the sense that they describe new

obstructions to open and closed convexity of codes in various dimensions.

2.1 Embedding Dimensions of Simplicial Complexes

Simplicial complexes are a special case of intersection complete codes. For simplicial com-

plexes, open and closed embedding dimensions turn out to be equal. To our knowledge,

this result has been previously observed by researchers in the neural codes community, but

we provided the first written proof in [Jef19a, Theorem 1.4]. We duplicate this proof with

slightly more detail below.

Theorem 2.1.1. Let C ⊆ 2[n] be a simplicial complex. Then cdim(C) = odim(C).

Proof. In Theorem 2.2.7 we will show that cdim(C) ≤ odim(C) for all intersection complete

codes, not just simplicial complexes. Thus we need only prove that odim(C) ≤ cdim(C). Let

X = {X1, . . . , Xn} be a compact realization of C in Rcdim(C). For each nonempty codeword

c ∈ C, choose a point pc ∈ X c. By compactness, each pc is a positive distance from any Xi

not containing it. Likewise, any disjoint Xσ and Xτ are separated by a positive distance.

Choose ε > 0 so that it is less than half the minimum among all these distances, and let

U = {U1, . . . , Un} where each Ui is the Minkowski sum of Xi with an open ball of radius ε.



23

Note that all Ui are open and convex. By choice of ε, if pc /∈ Xi then pc /∈ Ui. Thus pc ∈ U c

for all nonempty c ∈ C, and C ⊆ code(U). Moreover, our choice of ε guarantees that if Xσ

and Xτ are disjoint, then so are Uσ and Uτ . This implies that if Xσ is empty then so is Uσ,

and so ∆(code(U)) ⊆ ∆(C) (recall that ∆(code(U)) consists of all σ with Uσ 6= ∅).

Putting these containments together, we have

C ⊆ code(U) ⊆ ∆(code(U)) ⊆ ∆(C) = C.

Thus code(U) = C. We have constructed an open realization of C from a closed realization,

proving the result.

Example 2.1.2. Consider the simplicial complex C = {123,14,34, 12, 13, 23, 1, 2, 3, 4, ∅}.

Here cdim(C) = odim(C) = 2, and Figure 2.1 demonstrates the construction used in Theo-

rem 2.1.1. Part (a) of the figure shows a closed realization X = {X1, X2, X3, X4} of C in R2

along with a choice of points pc for each nonempty codeword c. Part (b) shows the resulting

open realization U = {U1, U2, U3, U4} of C, obtained by adding a small open ball to each Xi.

Figure 2.1: An illustration of the construction used in Theorem 2.1.1.



24

2.2 Closed Embedding Dimension is Bounded by Open Embedding Dimension

In this section our main result is Theorem 2.2.7, which states that cdim(C) ≤ odim(C) for all

intersection complete codes C. We will prove this result constructively. In particular, Lemma

2.2.4 states that any open realization of an intersection complete code may be modified to

obtain a non-degenerate open realization. Results of [CGIK16] then allow us to replace the

sets in our realization by their closures without changing the realized code.

We first recall a useful characterization of intersection complete codes in terms of their

realizations. This fact has been observed before in various forms, for example [CGJ+19,

Theorem 1.9]. We provide our own proof for completeness.

Proposition 2.2.1. A code C ⊆ 2[n] is intersection complete if and only if the following

holds: for all σ ∈ ∆(C) \ C and all (not necessarily open, closed, or convex) realizations

U = {U1, . . . , Un} of C there is some i ∈ [n] \ σ with Uσ ⊆ Ui.

Proof. First suppose that C is intersection complete, and has a realization U = {U1, . . . , Un}.

Let σ ∈ ∆(C)\C and define c0 =
⋂
c∈TkC(σ) c. The trunk TkC(σ) is nonempty since σ ∈ ∆(C),

and c0 ∈ C since C is intersection complete. Moreover, σ is a proper subset of c0 since σ /∈ C.

Thus we may choose i ∈ c0 \ σ. We claim that Uσ ⊆ Ui. Indeed, since c0 is the unique

minimal element of TkC(σ), every codeword containing σ also contains i. This implies that

Uσ ⊆ Ui.

For the converse, we prove the contrapositive. Suppose that C is not intersection complete,

so there exist codewords c1 and c2 such that c1 ∩ c2 /∈ C. Define σ = c1 ∩ c2 and note

that σ ∈ ∆(C) \ C. Then choose any (not necessarily open, closed, or convex) realization

U = {U1, . . . , Un} of C, and let i ∈ [n] \ σ. Observe that i is contained in at most one of

c1 and c2, and so either Uc1 or Uc2 is not contained in Ui. Since Uc1 and Uc2 are subsets of

Uσ, we conclude that Uσ is not contained in Ui. This holds for all i ∈ [n] \ σ, proving the

result.

In Section 2.1 we converted closed realizations into open realizations by adding a small



25

open ball to every set in the realization. To convert open realizations to closed realizations

we will take the opposite approach, and uniformly shrink sets in a realization by a small

amount. To shrink sets we use the following “trimming” operation, which also appears in

[JOS+15].

Definition 2.2.2. Let U ⊆ Rd be any set and ε > 0. The trim of U by ε is the set

trim(U, ε) := {p ∈ U | Bε(p) ⊆ U},

where Bε(p) is the closed ball of radius ε centered at p.

Figure 2.2: (a) An open set U ⊆ R2. (b) trim(U, ε) for a specific choice of ε.

Figure 2.2 shows an open set U ⊆ R2, and trim(U, ε) for one choice of ε > 0. Observe

that trimming may create cusps on the boundary of the resulting set, and that it may cause

a set to become disconnected. However, trimming has a number of useful properties outlined

in Proposition 2.2.3 below, which we will subsequently make use of.

Proposition 2.2.3. Let U, V ⊆ Rd be any sets and ε > 0. The following hold:

(i) If U is open, then trim(U, ε) is open.

(ii) If U is convex, then trim(U, ε) is convex.



26

(iii) cl(trim(U, ε)) ⊆ U .

(iv) If U ⊆ V , then trim(U, ε) ⊆ trim(V, ε).

(v) trim(U ∩ V, ε) = trim(U, ε) ∩ trim(V, ε).

Proof. We first prove statement (i). Let p ∈ trim(U, ε). Since Bε(p) is a closed subset of U

and U is open, there exists δ > 0 such that Bε+δ(p) ⊆ U . This implies that the open ball of

radius δ centered at p is contained in trim(U, ε). Thus p is an interior point of trim(U, ε), so

trim(U, ε) is open.

For statement (ii), let p and q be points in trim(U, ε). By convexity of U , the Minkowski

sum C = pq + Bε(0) is contained in U . For any r on pq we have Bε(r) ⊆ C ⊆ U . Thus r

lies in trim(U, ε), proving that trim(U, ε) is convex.

To prove statement (iii), observe that cl(trim(U, ε)) ⊆ trim(U, ε/2) ⊆ U . Statement (iv)

is immediate from the definition of trimming, and the final statement follows from the fact

that Bε(p) is contained in both U and V if and only if it is contained in their intersection.

Lemma 2.2.4. Let C ⊆ 2[n] be an intersection complete code, and let U = {U1, . . . , Un}

be an open realization of C. Then there exists ε > 0 such that the collection V = {Vi :=

trim(Ui, ε) | i ∈ [n]} is a non-degenerate open realization of C.

Proof. For each nonempty codeword c, choose a point pc ∈ U c. Observe that we may choose

ε small enough that Bε(pc) ⊆ Uc for all nonempty codewords in C. We claim that this

suffices. Note by parts (i) and (ii) of Proposition 2.2.3 that all Vi are open and convex.

By choice of ε, pc ∈ Vc for all nonempty codewords c. In fact pc ∈ Vc for all nonempty

codewords c, and so C ⊆ code(V). Since Vi ⊆ Ui for all i ∈ [n], we see that code(V) does

not contain any maximal codewords that were not already present in C. To prove that

code(V) = C, it remains to show that σ /∈ code(V) for every σ ∈ ∆(C) \ C.

Proposition 2.2.1 implies that if σ ∈ ∆(C) \ C, then there exists i ∈ [n] \ σ with Uσ ⊆ Ui.

Parts (iv) and (v) of Proposition 2.2.3 tell us that

Vσ = trim(Uσ, ε) ⊆ trim(Ui, ε) = Vi.



27

Thus Vσ is covered by Vi, and σ is not a codeword of code(V). We conclude that code(V) = C.

To see that the Vi form a non-degenerate realization, we must check condition (ii) from

the definition of non-degeneracy (see Definition 1.4.7). For any nonempty σ ⊆ [n], let p be

a point in
⋂
i∈σ ∂Vi. By part (iii) of Proposition 2.2.3, the closure of any Vi is contained

in Ui, and so p lies in Uσ. In particular, Uσ is nonempty, and therefore so is Vσ. Thus we

may choose a point q ∈ Vσ, and consider the line segment pq. This situation is illustrated in

Figure 2.3. Since p is a boundary point of all Vi with i ∈ σ, the line segment pq is contained

in Vi except for the point p. But this implies that all points on the line segment except p lie

in Vσ. Thus p is a boundary point of Vσ, and condition (ii) of Definition 1.4.7 is satisfied.

Figure 2.3: The objects used to prove non-degeneracy in Lemma 2.2.4.

Remark 2.2.5. The proof of Lemma 2.2.4 suggests a slightly more general result. Given an

open realization U = {U1, . . . , Un} of a (possibly not intersection complete) code C, we could

trim sets in the realization to obtain a non-degenerate open realization V = {V1, . . . , Vn}

of a new code D. The arguments given above imply that C ⊆ D ⊆ ∆(C), and it would be

interesting to investigate the extent to which these containments are strict.

Example 2.2.6. Lemma 2.2.4 may fail when a code is not intersection complete. Consider

the open realization U = {U1, U2, U3} of the code C = {123, 12, 13, ∅} in R2 illustrated in

Figure 2.4(a). As part (b) of the figure illustrates, trimming this realization by any small

ε > 0 will introduce the additional codeword 1 to the realized code. Although one can find



28

realizations of C where trimming succeeds, some codes have the property that all of their

open realizations are degenerate (see [CGIK16, Section 2.3]), and for these codes trimming

will always fail.

Figure 2.4: An illustration of how Lemma 2.2.4 may fail when C is not intersection complete.

Theorem 2.2.7. Let C ⊆ 2[n] be an intersection complete code. Then cdim(C) ≤ odim(C).

Proof. Let U = {U1, . . . , Un} be an open realization of C in Rodim(C). By Lemma 2.2.4, we may

trim the sets in U to obtain a non-degenerate open realization. By [CGIK16, Theorem 2.10],

the closures of the trimmed sets form a closed realization of C. Thus cdim(C) ≤ odim(C).

Example 2.2.8. Figure 2.5 provides an illustration of Theorem 2.2.7 for the intersection com-

plete code C = {123,14,24,34, 23, 1, 2, 3, 4, ∅}. We begin with a degenerate open realization

U , and trim it slightly to obtain a non-degenerate open realization V . Taking closures of the

Vi, we can obtain a non-degenerate closed realization of C.

2.3 A General Bound for Closed Embedding Dimension

In this section we provide a recipe for trying to build a closed realization of a (not necessarily

intersection complete) code C ⊆ 2[n] with d = dim(∆(C)). As we will prove in Lemma 2.3.6,

this construction will succeed if and only if C is intersection complete. The dimension of our

realization is min{2d+ 1, n−1}, which is noteworthy because it is linear in both the number



29

Figure 2.5: (a) A degenerate open realization U = {U1, U2, U3, U4} of an intersection complete

code. (b) The trimmed non-degenerate open realization V = {V1, V2, V3, V4} of Lemma 2.2.4.

of neurons of C and linear in the dimension of the simplicial complex ∆(C). The n−1 portion

of the bound follows from past work (see [CGIK16, Lemma 5.9]), and so our contribution is

the 2d + 1 term. Our approach is based on the construction described in [Tan13, Theorem

3.1]. We describe our recipe in a series of steps, with proofs interspersed to justify steps.

Step 1: Fix a code C ⊆ 2[n], let d = dim(∆(C)), and let m = min{2d+ 1, n− 1}.

Step 2: Fix a pure, full-dimensional polytopal complex X with facets {X1, . . . , Xn}

in Rm such that any d+ 1 facets of X meet in a unique nonempty face.

We pause to justify the existence of such a complex.

Lemma 2.3.1. Let m = min{2d+ 1, n− 1}. There exists a pure, full-dimensional polytopal

complex X in Rm with facets {X1, . . . , Xn} such that any d+ 1 facets of X meet in a unique

nonempty face of X . In particular, code(X ) contains all σ ⊆ [n] with |σ| ≤ d+ 1.

Proof. First, recall that there exists a (d+1)-neighborly polytope in Rm+1 with n+1 vertices.

When m = 2d+ 1, one example is the cyclic polytope (see [Zie95, Corollary 0.8]), and when

m = n− 1 the n-simplex suffices. Let P ⊆ Rm+1 be a polytope dual to a (d+ 1)-neighborly



30

polytope with n + 1 vertices. Let F1, . . . , Fn, Fn+1 be the facets of P , and observe that any

d+1 facets of P meet in a unique face of P . Consider the Schlegel diagram of P in Rm based

at the facet Fn+1. For 1 ≤ i ≤ n, define Xi to be the image of Fi in the Schlegel diagram.

We claim that the complex X with facets {X1, . . . , Xn} is the desired polytopal complex.

Each Xi is full-dimensional since each Fi has dimension m. Furthermore, if σ ⊆ [n] and

|σ| ≤ d + 1, then (by (d + 1)-neighborliness of the dual of P ) the facets {Fi | i ∈ σ} of P

meet at a unique face of P , which implies that the facets {Xi | i ∈ σ} of X meet in a unique

face of X . A point in the relative interior of this face will not lie in any Xj with j /∈ σ, and

so σ ∈ code(X ). This proves the result.

With the complex X in hand, we are ready to construct our attempted realization of C

in the final steps below.

Step 3: For every σ ⊆ [n] with |σ| ≤ d+1, choose a point pσ in the relative interior

of the face Xσ of X .

Step 4: Define Y = {Y1, . . . , Yn} where Yi := conv{pc | c ∈ TkC(i)}.

We will prove in Lemma 2.3.6 that code(Y) = Ĉ. To arrive at this result we require

a series of technical lemmas regarding the geometric structure of the various Yi and their

relationship to the various Xi.

Lemma 2.3.2. Let σ ⊆ [n] with |σ| ≥ 2, and let i ∈ σ. Let H be a supporting hyperplane

for the proper face Xσ of Xi. Then Yi ∩H = conv{pc | c ∈ TkC(σ)}.

Proof. Consider the points {pc | c ∈ TkC(i)}, the convex hull of which is equal to Yi by

definition. Since Yi ⊆ Xi, we see that Yi ⊆ H≥. Thus Yi ∩ H is the convex hull of all

points in {pc | c ∈ TkC(i)} which lie in H. If c ∈ TkC(i) but σ 6⊆ c, then we may choose

j ∈ σ \ c, noting that pc /∈ Xj. In particular, pc ∈ Xi but pc /∈ Xσ. Thus pc lies in H> when

σ 6⊆ c. On the other hand, if σ ⊆ pc then pc ∈ Xσ ⊆ H. Thus Yi ∩H is the convex hull of

{pc | c ∈ TkC(σ)} as desired.

Lemma 2.3.3. Let σ ⊆ [n] be nonempty. Then Yσ = conv{pc | c ∈ TkC(σ)}.



31

Proof. Let C = conv{pc | c ∈ TkC(σ)}. Then C ⊆ Yσ since each pc with c ∈ TkC(σ) lies in

Yi for all i ∈ σ. For the reverse inclusion, we consider two cases. If σ = {i} then C = Yi and

the result is immediate. Otherwise, |σ| ≥ 2 and we may choose i ∈ σ and H a supporting

hyperplane for the face Xσ of Xi. Observe that Yσ ⊆ Yi ∩Xσ ⊆ Yi ∩H, and by Lemma 2.3.2

Yi ∩H = C, proving the result.

Lemma 2.3.4. Let σ and τ be nonempty subsets of [n]. Then Yσ is a face of Yτ if and only

if TkC(σ) ⊆ TkC(τ).

Proof. First suppose that TkC(σ) ⊆ TkC(τ). This implies that every codeword that contains

σ also contains τ , and so TkC(σ) = TkC(σ ∪ τ). Lemma 2.3.3 then implies that Yσ = Yσ∪τ ,

and so it suffices to prove that Yσ∪τ is a face of Yτ . Equivalently, we may reduce to the

case in which τ ⊆ σ. It will suffice to prove that Yσ is a face of all Yi with i ∈ τ . If

σ = {i} then τ = {i} and the result is immediate. Otherwise, |σ| ≥ 2, and for any i ∈ τ

we may choose a hyperplane H supporting the face Xσ of Xi. Lemma 2.3.2 implies that

H ∩ Yi = conv{pc | c ∈ TkC(σ)}, and Lemma 2.3.3 implies that this is Yσ. Thus Yi ∩H = Yσ

and Yσ is a face of Yi for all i ∈ τ as desired.

For the converse, we argue by contrapositive. If TkC(σ) 6⊆ TkC(τ) then there exists c ∈ C

with σ ⊆ c but τ 6⊆ c. Consider the point pc. Since τ 6⊆ c, there exists i ∈ τ \ c, and we see

that pc /∈ Xi. But Yτ ⊆ Yi ⊆ Xi, so pc /∈ Xτ . On the other hand, pc ∈ Xσ, so Xσ is not

contained in Xτ , proving the result.

Lemma 2.3.5. Let σ ⊆ [n] be nonempty. Then σ ∈ Ĉ if and only if the following holds:

TkC(σ) is nonempty and properly contains TkC(σ ∪ {i}) for all i ∈ [n] \ σ.

Proof. If σ is an intersection of codewords in C, then there must be a codeword containing

σ, and thus TkC(σ) is nonempty. If there exists i ∈ [n] \ σ such that TkC(σ) = TkC(σ ∪ {i}),

then every codeword of C containing σ also contains i. This is a contradiction, since σ is the

intersection of all codewords in C that contain it.

For the converse we consider two cases. If σ = [n] and TkC(σ) is nonempty then [n] ∈ C

and the result follows. Otherwise σ is a proper subset of [n]. Since TkC(σ) is nonempty



32

and properly contains TkC(σ ∪ {i}) for all i ∈ [n] \ σ, for every i ∈ [n] \ σ we may choose a

codeword ci with σ ⊆ ci and i /∈ ci. The intersection of all such ci is σ, proving the result.

Lemma 2.3.6. The collection Y = {Y1, . . . , Yn} is a closed realization of Ĉ. In particular,

Y is a realization of C if and only if C is intersection complete.

Proof. We argue for each nonempty σ ⊆ [n] that σ ∈ Ĉ if and only if σ ∈ code(Y). By

Lemma 2.3.5 it suffices to argue that σ ∈ code(Y) if and only if TkC(σ) is nonempty and

TkC(σ ∪ {i}) is a proper subset of TkC(σ) for all i ∈ [n] \ σ. By Lemma 2.3.4, this condition

is equivalent to the requirement that Yσ is nonempty, and Yσ∪{i} is a proper face of Yσ for all

i ∈ [n] \ σ. This is in turn equivalent to the statement that Yσ is nonempty and not covered

by {Yi | i ∈ [n] \ σ}, which happens if and only if σ ∈ code(Y), proving the result.

Theorem 2.3.7. Let C ⊆ 2[n] be an intersection complete code, and let d = dim(∆(C)).

Then cdim(C) ≤ min{2d+ 1, n− 1}.

Proof. In this section we have chosen a polytopal complex X in Rmin{2d+1,n−1}, and used it

to construct a collection Y = {Y1, . . . , Yn} of closed convex sets. Lemma 2.3.6 says that Y

realizes C if and only if C is intersection complete. This proves the result.

Example 2.3.8. Consider the intersection complete code C = {123,14,24,34, 23, 1, 2, 3, 4, ∅}

from Example 2.2.8. We have d = 2 and n = 4, and so min{2d+ 1, n− 1} = min{5, 3} = 3.

The polytopal complex X = {X1, X2, X3, X4} of Step 2 will be the Schlegel diagram of a

4-simplex, consisting of four tetrahedra subdividing a larger tetrahedron. Figure 2.6 shows

this complex, along with its 1-skeleton. The figure also shows a choice of points pc for every

nonempty codeword c, as in Step 3, and the resulting closed realization Y = {Y1, Y2, Y3, Y4}

from Step 4. In this realization Y1 is a triangle, while Y2, Y3, and Y4 are tetrahedra. Our

construction is not minimal in dimension, since Example 2.2.8 implies cdim(C) = odim(C) =

2.



33

Figure 2.6: (a) The polytopal complex X with facets {X1, X2, X3, X4} in R3, with X1 trans-

parent and facets split apart slightly to show structure. (b) The 1-skeleton of X . (c) The

closed realization Y = {Y1, Y2, Y3, Y4} of C.



34

Chapter 3

MORPHISMS OF CODES

In order to more easily study the properties of codes and their realizations, it is important

that we are able to compare codes to one another. This motivated us to define a notion of

morphism for codes in [Jef20], and this chapter lays out the basic combinatorial theory of

these morphisms. Importantly, we work with slightly different conventions and definitions

than those in [Jef20]. We have inserted remarks to this effect where relevant, and we hope

that the definitions we present here are an improvement on the original work.

The sections in this chapter proceed sequentially from concrete basics into more abstract

material. The first four sections provide important background for the remaining chapters,

while Section 3.5 and Section 3.6 delve into category theory related to morphisms, which we

will not make signifcant reference to in further chapters.

3.1 Morphisms and Their Basic Properties

Morphisms behave similarly to continuous functions. While continuous functions capture

topological information by requiring the preimage of an open set to be open, morphisms

capture combinatorial (and as we will see later, geometric and algebraic) information by

requiring the preimage of a trunk to be a trunk.

Definition 3.1.1. Let C and D be codes. A function f : C → D is a morphism if for

every proper trunk T ⊆ D the preimage f−1(T ) is a proper trunk in C. A morphism is an

isomorphism if it has an inverse function which is also a morphism.

One can observe immediately that the identity function on a code is a morphism, and

that the composition of two morphisms is again a morphism. Thus the class of codes together

with morphisms forms a category, which we investigate in later sections. It is also worth



35

noting that because f−1(D) = C, the preimage of any (possibly not proper) trunk under a

morphism is again a trunk.

Remark 3.1.2. When we introduced morphisms in [Jef20], we allowed the preimage of a

proper trunk to be a non-proper trunk. This was convenient in the context of that paper,

in which we did not assume that the empty codeword was present in every code. We have

added the word “proper” to Definition 3.1.1 because it allows for cleaner statements of certain

theorems and ensures several nice properties of morphisms. For example, Proposition 3.1.3

implies that the image of any morphism (as a function) is a subcode of the codomain. It

also endows the category of codes with an initial object (see Section 3.6 for details).

Proposition 3.1.3. Let f : C → D be a morphism. Then f(∅) = ∅.

Proof. Suppose that f(∅) = d 6= ∅ and consider the proper trunk TkD(d) in D. Note that

f−1(TkD(d)) is a trunk in C that contains the empty codeword. The only such trunk is C,

contradicting the fact that f is a morphism.

Although the definition of morphisms draws paralells with the definition of continuous

functions, they are not the same as continuous functions with respect to the topology gen-

erated by trunks. The following example describes a morphism that is a homeomorphism

with respect to the topology generated by trunks, but is not an isomorphism.

Example 3.1.4. Let C = {12,13, ∅} and D = {1,2, ∅}. The Hasse diagrams of these two

codes are shown in Figure 3.1, and the proper trunks in each code are highlighted in grey.

Note that C has three nonempty trunks, while D has only two.

Figure 3.1: The codes C and D, with proper trunks highlighted in grey.



36

Observe that there is a bijection f : C → D given by sending 12 7→ 1, 13 7→ 2, ∅ 7→ ∅.

One can check that f is a morphism by hand. However, the inverse function f−1 : D → C

is not a morphism. The preimage of the proper trunk TkC(1) = {12, 13} under this inverse

function is {1, 2}, which is not a proper trunk in D.

In the remainder of this section we establish some basic properties of trunks and mor-

phisms. Many of these results (such as Propositions 3.1.5, 3.1.6, and 3.1.7) will be used

repeatedly and sometimes implicitly throughout the remainder of the text.

Proposition 3.1.5. The intersection of two trunks is a trunk.

Proof. Let C ⊆ 2[n] be a code, and let T1 and T2 be trunks in C. If either T1 or T2 is empty,

then T1 ∩ T2 = ∅, which is by definition a trunk in C. Otherwise choose index sets σ1 and

σ2 such that T1 = TkC(σ1) and T2 = TkC(σ2). One may verify that T1 ∩ T2 = TkC(σ1 ∪ σ2),

which is a trunk.

Proposition 3.1.6 (Simple trunk criterion for morphisms). Let C ⊆ 2[n] and D ⊆ 2[m] be

codes. A function f : C → D is a morphism if and only if f−1(TkD(i)) is a proper trunk in

C for every i ∈ [m].

Proof. The forward implication follows from the definition of morphisms. For the reverse

implication, note that every proper trunk in D can be written as TkD(τ) for some nonempty

τ ⊆ [m]. Then observe that

f−1(TkD(τ)) = f−1

(⋂
i∈τ

TkD(i)

)
=
⋂
i∈τ

f−1(TkD(i)).

The righthand term is a finite intersection of proper trunks, which by Proposition 3.1.5 is a

proper trunk in C. Thus f is a morphism.

Proposition 3.1.7 (Morphisms are montone). Let f : C → D be a morphism. If c1, c2 ∈ C

are such that c1 ⊆ c2, then f(c1) ⊆ f(c2).

Proof. Consider the trunk f−1(TkD(f(c1))) in C. This trunk contains c1 by construction,

and since c1 ⊆ c2 we conclude that c2 also lies in this trunk. Hence f(c2) lies in TkD(f(c1)).

By definition, this implies that f(c1) ⊆ f(c2).



37

Remark 3.1.8. Note that Example 3.1.4 implies that not every monotone map between codes

is a morphism. In particular, the inverse function of the morphism described in this example

is monotone, but is not a morphism.

Proposition 3.1.9. Let C ⊆ 2[n] be a code and let D ⊆ C be a subcode. The inclusion

function ι : D → C is a morphism.

Proof. One may verify that ι−1(TkC(σ)) = TkD(σ) for every σ ⊆ [n], noting that TkD(σ) is

a proper trunk in D whenever TkC(σ) is a proper trunk in C (i.e. whenever σ is nonempty).

This proves the result.

Proposition 3.1.10 (Restricting the domain). Let f : C → D be a morphism and let E ⊆ C

be any subcode. The restricted function f |E : E → D is a morphism.

Proof. The map f |E is the composition of the inclusion morphism E ↪→ C with f , which is a

morphism.

Proposition 3.1.11 (Restricting the codomain). Let f : C → D be a morphism and let

E ⊆ D be any subcode containing f(C). The restricted function f : C → E is a morphism.

Proof. Since f(C) ⊆ E , any proper trunk TkE(σ) has the property that f−1(TkE(σ)) =

f−1(TkD(σ)), which is a proper trunk in C, proving the result.

Definition 3.1.12. Let C ⊆ 2[n] and let w : [n] → [n] be a permutation. Define a map

pw : C → 2[n] by pw(c) = {w(i) | i ∈ c}. The map pw is called a permutation morphism.

Proposition 3.1.13 (Permuting neurons is an isomorphism). Let C ⊆ 2[n] and let w : [n]→

[n] be a permutation. The permutation morphism pw : C → 2[n] of Definition 3.1.12 is a

morphism. It is an isomorphism onto its image, with inverse given by the restriction of pw−1

to this image.

Proof. To prove that pw is a morphism it suffices by Proposition 3.1.6 to show that p−1
w (Tk2[n](i))

is a proper trunk in C for all i ∈ [n]. One may compute that p−1
w (Tk2[n](i)) = TkC(w

−1(i)),



38

which is indeed a proper trunk in C. Let D ⊆ 2[n] be the image of C under pw, and observe

that the morphism pw−1 : 2[n] → 2[n] restricts to an inverse of pw : C → D. Thus pw is an

isomorphism onto its image as desired.

Definition 3.1.14. Let C ⊆ 2[n] be a code, and let σ ⊆ [n]. Define a function πσ : C → 2σ

by πσ(c) = c ∩ σ. This is called the restriction morphism defined by σ. We will refer to the

image of C under πσ as C restricted to σ, and denote it C|σ := πσ(C).

Proposition 3.1.15. The restriction morphism πσ described in Definition 3.1.14 is a mor-

phism.

Proof. To prove that πσ is a morphism it suffices by Proposition 3.1.6 to show that π−1
σ (Tk2σ(i))

is a proper trunk in C for all i ∈ σ. One may verify that π−1
σ (Tk2σ(i)) = TkC(i), proving the

result.

Example 3.1.16. Recall the codes C = {12,13, ∅} and D = {1,2, ∅} from Example 3.1.4.

Let σ = {2, 3}, and observe that C|σ = {2,3, ∅}. The code C|σ is isomorphic to D via a

permutation morphism that sends 2 7→ 1 and 3 7→ 2.

3.2 A Combinatorial Characterization of Morphisms

Proving that a function is a morphism is generally not too arduous, particularly with the

aid of Proposition 3.1.6. However, constructing a morphism from scratch is not an obviously

straightforward task. The following definition and proposition provide a general recipe for

constructing morphisms. In fact, Theorem 3.2.3 tells us that every morphism arises from

this recipe. This also provides a new way to show that a function is a morphism: one needs

only show that the function arises from the recipe below.

Definition 3.2.1. Let C ⊆ 2[n] be a code, and let {T1, . . . , Tm} be a collection of proper

trunks in C. Define a function f : C → 2[m] by

f(c) = {j ∈ [m] | c ∈ Tj}.

The function f is called the morphism determined by the trunks {T1, . . . , Tm}.



39

The word “collection” above indicates that we are regarding {T1, . . . , Tm} as an ordered

multiset, similar to how we regard a realization as an ordered multiset. Note that the function

f records the indices of the trunks that a codeword c lies in. In other words, the function

f records how the trunks {T1, . . . , Tm} intersect and cover one another inside C, similar to

how the association between points in a realization and codewords tells us how sets in the

realization intersect and cover one another.

We allow the case m = 0 in this definition, in which case the collection of trunks in

question is empty, and the morphism they determine is the map c 7→ ∅. The map c 7→ ∅

also arises from the case when the collection of trunks is nonempty, but every trunk in the

collection is itself empty.

Proposition 3.2.2. The function described in Definition 3.2.1 is a morphism.

Proof. By Proposition 3.1.6 we need only check that f−1(Tk2[m](j)) is a proper trunk in C for

all j ∈ [m]. By construction f(c) ∈ Tk2[m](j) if and only if c ∈ Tj. Thus f−1(Tk2[m](j)) = Tj

for all j ∈ [m], and so f is a morphism.

In fact, up to restricting the codomain appropriately, every morphism arises in this way.

Moreover, the following theorem tells us exactly which trunks determined a given morphism

f : C → D. This result will be particularly useful to a number of our proofs, since it reduces

questions about the morphism f to questions about how trunks intersect and cover one

another in C.

Theorem 3.2.3 (Every morphism is determined by trunks). Let C ⊆ 2[n] and D ⊆ 2[m] be

codes and let f : C → D be a morphism. Then f is the morphism determined by the trunks

{T1, . . . , Tm} where Tj = f−1(TkD(j)), and we restrict the codomain of f from 2[m] to D.

Proof. We must show that f(c) = {j ∈ [m] | c ∈ Tj} for all c ∈ C. Equivalently, we must

show that f(c) ∈ TkD(j) if and only if c ∈ Tj. For the forward implication, observe that

f(c) ∈ TkD(j) implies that c ∈ f−1(TkD(j)) = Tj. The converse follows from the fact that

if c ∈ Tj then f(c) ∈ f(Tj) ⊆ TkD(j). This proves the result.



40

Example 3.2.4. Recall the codes C = {12,13, ∅} and D = {1,2, ∅} from Example 3.1.4.

Also recall the bijective morphism f : C → D given by 12 7→ 1, 13 7→ 2, ∅ 7→ ∅. One

can compute that f is the morphism determined by the collection of trunks {T1, T2}, where

T1 = TkC(2) = {12} and T2 = TkC(3) = {13}.

3.3 Isomorphism Classes and Reduced Codes

Our main result in this section is that every isomorphism class of codes has a “nice” repre-

sentative, which is unique up to permutation of neurons (see Theorem 3.3.13). By “nice,” we

mean that the representative does not contain any unnecessary or redundant information.

The following three definitions make this precise.

Definition 3.3.1. A neuron i ∈ [n] is trivial in a code C ⊆ 2[n] if TkC(i) = ∅. Equivalently,

i is trivial in C if and only if it does not appear in any codeword of C.

Definition 3.3.2. Let C ⊆ 2[n] be a code, let i ∈ [n] be a nontrivial neuron in C, and let

σ ⊆ [n] be such that i /∈ σ. Then i is redundant to σ if TkC(i) = TkC(σ). For any i ∈ [n] we

call i simply redundant if there exists σ so that i is redundant to σ.

Definition 3.3.3. A code is called reduced if it does not have any trivial or redundant

neurons.

Example 3.3.4. Our two running example codes C = {12,13, ∅} and D = {1,2, ∅} are both

reduced. However, the code E = {124, 1, 2, ∅} ⊆ 2[4] is not reduced: the neuron 3 is trivial,

and the neuron 4 is redundant to σ = {1, 2}. If we restrict E to {1, 2}, we obtain the reduced

code E|{1,2} = {12, 1, 2, ∅}.

Reduced codes are the main topic of this section. To begin investigating them, we require

one further definition: irreducible trunks. Irreducible trunks will help us connect the neurons

in a code with the actual combinatorics of trunks in the code, as Proposition 3.3.6 and

Theorem 3.3.7 begin to establish.



41

Definition 3.3.5. Let C ⊆ 2[n] be a code. A nonempty proper trunk T ⊆ C is called

irreducible if it is not the intersection of two trunks that properly contain it.

Proposition 3.3.6 (Irreducible trunks are simple). Let C ⊆ 2[n] be a code and let T be an

irreducible trunk in C. Then T = TkC(i) for some i ∈ [n].

Proof. Write T = TkC(σ) for some nonempty σ, noting that we can do so because T is proper

and nonempty. We have that T =
⋂
i∈σ TkC(i). Since T is irreducible, at least one of the

terms in this intersection must be equal to T itself. Thus T = TkC(i) as desired.

Theorem 3.3.7. Let C ⊆ 2[n] be a code. Then C is reduced if and only if the map i 7→ TkC(i)

is a bijection between neurons and the irreducible trunks in C.

Proof. First suppose that C is reduced. We argue that Tk(i) is irreducible for all i ∈ [n]. Note

that Tk(i) is nonempty since C has no trivial neurons. To prove that Tk(i) is irreducible, we

just have to show it is not the intersection of two trunks properly containing it. Suppose for

contradiction that Tk(i) = Tk(σ) ∩ Tk(τ) where Tk(σ) and Tk(τ) properly contain Tk(i).

Since the containment is proper, we have that i /∈ σ ∪ τ . But Tk(σ)∩Tk(τ) = Tk(σ ∪ τ), so

i is redundant to σ ∪ τ . Since C is reduced this is a contradiction.

Combined with Proposition 3.3.6, we conclude that the set of simple trunks is exactly

the set of irreducible trunks. To prove that i 7→ TkC(i) is a bijection we must show that no

two neurons map to the same simple trunk. Suppose for contradiction that Tk(i) = Tk(j)

for some i 6= j. Then i is redundant to {j}, which is a contradiction since C is reduced. This

proves the forward implication.

For the converse, suppose that i 7→ Tk(i) is a bijection between neurons and irreducible

trunks, and let i ∈ [n] be arbitrary. Since Tk(i) is irreducible, it is nonempty, and i is

not trivial. Suppose for contradiction that i were redundant to some σ ⊆ [n]. Note that

σ must be nonempty, and so we may write Tk(i) =
⋂
j∈σ Tk(j). Since the map i 7→ Tk(i)

is injective, Tk(i) 6= Tk(j) for all j ∈ σ, so in particular Tk(i) is properly contained in all

Tk(j) in the intersection. But then we can group the terms in the intersection appropriately



42

so that Tk(i) is the intersection of two trunks that properly contain it, contradicting its

irreducibility. This proves the result.

Classifying reduced codes and isomorphism classes also requires us to better understand

surjective morphisms, which will make a reappearance in Chapter 4. As Theorem 3.3.9 below

shows, there are a number of ways to recognize when a surjective morphism is in fact an

isomorphism.

Proposition 3.3.8. Let f : C → D be a surjective morphism. Then the map T 7→ f−1(T ) is

an injective map from the set of trunks in D to the set of trunks in C. In particular, C has

at least as many trunks as D.

Proof. Suppose that T and S are trunks in D such that f−1(T ) = f−1(S). Surjectivity of f

then implies that T = f(f−1(T )) = f(f−1(S)) = S, proving the result.

Theorem 3.3.9. Let f : C → D be a surjective morphism. Then the following are equivalent:

(i) f is an isomorphism,

(ii) The map T 7→ f−1(T ) is a bijection between trunks in D and trunks in C,

(iii) The map T 7→ f−1(T ) is a surjection between trunks in D and trunks in C, and

(iv) C and D have the same number of trunks.

Proof. First note that (i) implies (ii) because the inverse morphism f−1 : D → C is bijective.

To prove that (ii) implies (i) we must first argue that f is bijective as a function. By

hypothesis f is surjective, so we need only show injectivity. Let c1 and c2 be codewords in

C be such that f(c1) = f(c2). Since f induces a bijection on trunks, there exist trunks T

and S in D such that f−1(T ) = TkC(c1) and f−1(S) = TkC(c2). Since f(c1) = f(c2) and f

is surjective, we have the following:

T = f(f−1(T )) = f(TkC(c1)) = f(TkC(c2)) = f(f−1(S)) = S.



43

Since T = S and f induces a bijection on trunks we conclude that TkC(c1) = TkC(c2),

which implies c1 = c2. Thus f is a bijection. One may then verify that the inverse function

f−1 : D → C is a morphism, again using surjectivity of f . This implies that f is an

isomorphism as desired.

The equivalence of items (ii)-(iv) is more straightforward. Clearly (ii) implies (iii), and

(iii) implies (iv) because by Proposition 3.3.8 the map T 7→ f−1(T ) is injective. Finally, the

fact that (iv) implies (ii) again follows from Proposition 3.3.8.

This result also confirms the useful and intuitive fact that isomorphisms induce a bijection

on trunks. As a first application of this theorem, we see that isomorphic reduced codes are

unique up to permutation of neurons.

Corollary 3.3.10. Let C ⊆ 2[n] and D ⊆ 2[m] be codes, and let f : C → D be an isomorphism.

If both C and D are reduced, then f is a permutation isomorphism.

Proof. By Theorem 3.3.9, the isomorphism f induces a bijection between trunks in C and

trunks in D. This bijection preserves containments and intersections of trunks, and so it

restricts to a bijection between the irreducible trunks in C and irreducible trunks in D.

Theorem 3.3.7 implies that the sets of irreducible trunks in C and D are in bijection with

[n] and [m] respectively. Thus f induces a bijection w : [n]→ [m] where w(i) = j whenever

f(TkC(i)) = TkD(j). One may then verify that f(c) = {w(i) | i ∈ c}, so f is the permutation

isomorphism induced by w, proving the result.

Our final goal in this section is to prove Theorem 3.3.13 below, which tells us that every

code is isomorphic to a reduced code, and that reduced codes use the “fewest” neurons

possible to represent the information in a code. We first require a small supporting lemma.

Lemma 3.3.11. Let C ⊆ 2[n] be a code, and suppose that n is a redundant neuron. Then

the restriction morphism π : C → C|[n−1] given by c 7→ c ∩ [n− 1] is an isomorphism.

Proof. Since π is surjective, it suffices by Theorem 3.3.9 to show that the map T 7→ π−1(T )

is a surjection on trunks. Since n is a redundant neuron, we may choose σ ⊆ [n − 1] such



44

that TkC(n) = TkC(σ). Let T ⊆ C be any trunk. If T is empty, then it is the preimage of

the empty trunk in C|[n−1]. Otherwise, we may write T = TkC(τ) for some τ ⊆ [n]. In fact,

we may assume that τ ⊆ [n − 1]: if n ∈ τ , then we may replace τ by (τ \ {n}) ∪ σ. Then

observe that TkC(τ) = π−1(TkC|[n−1]
(τ)). Thus T 7→ π−1(T ) is a surjection on trunks, and π

is an isomorphism.

Definition 3.3.12. Let C ⊆ 2[n] be a code. The minimum neuron number of C is the smallest

m such that C is isomorphic to a subcode of 2[m].

Theorem 3.3.13. Every code C is isomorphic to a reduced code. This reduced code is unique

up to permutation of neurons, and it is a subcode of 2[m] where m is the minimum neuron

number of C.

Proof. By Lemma 3.3.11, we may repeatedly permute and then delete redundant neurons

from C to obtain an isomorphic code with no redundant neurons. We may likewise permute

and delete all trivial neurons, obtaining a reduced code that is isomorphic to C. By Corollary

3.3.10 this reduced code is unique up to permutation isomorphism.

Let D ⊆ 2[n] be a reduced code and let m be the minimum neuron number of D, noting

that m ≤ n. Since D is reduced, Theorem 3.3.7 implies that n is the number of irreducible

trunks in D. Proposition 3.3.6 then implies that m ≥ n. Thus m = n and the result

follows.

Working with a reduced codes is generally more convenient than working with an arbitrary

code—for example, trying to draw a realization of a code is generally more straightforward

when working with fewer neurons. We will see in Section 4.2 that when two codes are

isomorphic, realizations of one can be built from the other, which makes this result somewhat

practical. Note that the proof above provides a rough algorithm for computing a reduced code

that is isomorphic to a given code: simply search for redundant and trivial neurons and delete

them repeatedly until none are left. This result also yields a combinatorial characterization

of the minimum neuron number.



45

Figure 3.2: (a) A non-reduced code C. (b) An isomorphic reduced code D.

Corollary 3.3.14. Let C ⊆ 2[n] be a code. The minimum neuron number of C is equal to

the number of irreducible trunks in C.

Proof. Let D ⊆ 2[m] be a reduced code isomorphic to C. Note that the number of irreducible

trunks in C is an isomorphism invariant, so D has the same number of irreducible trunks.

Theorem 3.3.13 says that m is the minimum neuron number of C, while Theorem 3.3.7 tells

us that [m] is in bijection with the irreducible trunks in D. This proves the result.

Example 3.3.15. Here is a slightly more complex example. Consider the code

C = {14689,1478,4679,128,24, 469, 79, 2, 4, 9, ∅} ⊆ 2[9].

This code is not reduced for the following reasons:

• The neurons 3 and 5 are trivial.

• The neuron 1 is redundant to {8}.

• The neuron 8 is redundant to {1}.

• The neuron 6 is redundant to {4, 9}.

This code is isomorphic to the reduced code D = {134,135,345,12,23, 34, 45, 2, 3, 4, ∅}.

Figure 3.2 shows that Hasse diagrams of these two codes, and the bijection between the

codes implicit in the figure yields the desired isomorphism.



46

3.4 Morphisms and Intersection Complete Codes

In Chapter 2 we saw that working with intersection complete codes allowed us to leverage a

number of useful geometric constructions. Trunks and morphisms likewise admit additional

results and structure when we restrict our scope to intersection complete codes. We start

with a characterization of intersection complete codes in terms of their trunks.

Lemma 3.4.1. Let C be a code. The following are equivalent:

(i) C is intersection complete,

(ii) the map c 7→ TkC(c) is a bijection from C to the set of nonempty trunks in C, and

(iii) every nonempty trunk in C has a unique minimal element.

Proof. We first show that item (i) implies item (ii). The map c 7→ TkC(c) is injective whether

or not C is intersection complete, since c is the unique minimal element of TkC(c). To see

that the map is surjective when C is intersection complete, let T be any nonempty trunk.

Then T = TkC(c) where c is the intersection of all codewords in T .

The fact that (ii) implies (iii) follows from the observation made above that c is the

unique minimal element of TkC(c), so it remains to show that item (iii) implies item (i). For

this, let c1 and c2 be codewords in C and let σ = c1 ∩ c2. Then TkC(σ) contains a unique

minimal codeword c3. The codeword c3 contains σ by definition. On the other hand, it is

contained in both c1 and c2 since it is minimal in TkC(σ). Hence c3 ⊆ c1 ∩ c2 = σ. We

conclude that c3 = σ and so C is intersection complete.

The following theorem explains the relevance of morphisms to intersection complete codes:

intersection completeness is preserved in the image of a morphism, and likewise for max-

intersection completeness. Perhaps more remarkable is Corollary 3.4.3, which tells us that

intersection complete codes are exactly the images of simplicial complexes. Given an inter-

section complete code C, little is understood about the set of simplicial complexes ∆ that

admit a surjective morphism ∆→ C. This may be an interesting area of further study.



47

Theorem 3.4.2. The image of an intersection complete code under a morphism is intersec-

tion complete. The image of a max-intersection complete code is max-intersection complete.

Proof. Let f : C → D be a surjective morphism of codes and suppose that C is intersection

complete. By Lemma 3.4.1 every nonempty trunk in C has a unique minimal element, and

it will suffice to prove the same is true of D. Let T ⊆ D be a nonempty trunk. Then f−1(T )

has a unique minimal element. Since morphisms are monotone by Proposition 3.1.7, the

same must be true of f(f−1(T )). But f(f−1(T )) = T , so T has a unique minimal element

and D is intersection complete.

To prove the result for max-intersection complete codes, let E ⊆ C be the subcode of C

consisting of maximal codewords in C and all their intersections. The subcode f(E) ⊆ D

is intersection complete by the first part of the theorem, and so it suffices to argue that

every maximal codeword in D is contained in f(E). If d is a maximal codeword in D, then

f−1(TkD(d)) = f−1({d}). This is a trunk in C, and any maximal element of this trunk is a

maximal codeword in C that maps to d. This proves the result.

Corollary 3.4.3. A code C is intersection complete if and only if it is the image of a

simplicial complex.

Proof. Let C ⊆ 2[n] be a code. If C is the image of a simplicial complex, then it is intersection

complete by Theorem 3.4.2. For the converse, suppose that C is intersection complete and let

{c1, . . . , cm} be the codewords of C that are irreducible with respect to intersection (i.e., no

ci is the intersection of two other codewords not equal to ci). Observe that every codeword

in C can be written as an intersection of the various ci. Then let ∆ = 2[m] \ [m], and consider

the map f : ∆→ C defined by f(σ) =
⋂
i∈[m]\σ ci.

Observe that since [m] /∈ ∆, the intersection
⋂
i∈[m]\σ ci defining f(σ) is never indexed

over the empty set, and so f is a well-defined function from ∆ to C. Moreover, f is clearly

surjective since every codeword in C is an intersection of various ci. We further claim that

f is a morphism. To see this, for j ∈ [n] define τj = {i ∈ [m] | j /∈ ci}. We claim that

f−1(TkC(j)) = Tk∆(τj). Indeed, for any face σ ∈ ∆ we see that f(σ) contains j if and only if



48

all ci with i /∈ σ have j ∈ ci, which is equivalent to τj ⊆ σ. By Proposition 3.1.6 this proves

that f is a morphism.

Example 3.4.4. Consider the intersection complete code C = {123, 1, 2, 3, ∅}. The codewords

in C that are irreducible with respect to intersection are c1 = 1, c2 = 2, c3 = 3 and c4 = 123.

Thus the construction used in Corollary 3.4.3 implies that C admits a surjective morphism

from the simplicial complex 2[4] \ {1234}. However, C admits a surjective morphism from

a smaller simplicial complex, namely 2[3]. The morphism 2[3] → C is given by sending

123 7→ 123, 12 7→ 1, 13 7→ 2, 23 7→ 3 and all other codewords mapping to the empty codeword.

The Hasse diagrams of the simplicial complexes 2[4] \ {1234} and 2[3] are shown in Figure

3.3 along with the Hasse diagram of C. The trunks that determine the surjective morphisms

from these simplicial complexes to C are highlighted in grey.

Figure 3.3: Two simplicial complexes, with collections of trunks determining surjective mor-

phisms to the code C = {123, 1, 2, 3, ∅}.

3.5 Morphisms and Neural Rings

As mentioned previously, the class of codes together with morphisms forms a category. In

this section we will use this category to explain how codes and morphisms can be interpreted

algebraically in the context of neural rings. We will not make use of any advanced category

theory: we require only the notions of (contravariant) functors, and equivalence of categories.



49

For some related work studying morphisms and neural rings, see [CK20] in which the authors

provide a characterization of neural rings and the monomial maps between them.

Definition 3.5.1. We will let Code denote the category of codes together with morphisms.

Our main result is Theorem 3.5.4, which states that when we equip neural rings with

a certain type of ring homomorphism, the category they form is equivalent to Code. To

begin, we review some of the basic definitions related to neural rings.

Let F2 be the two element field. Recall that any polynomial p(x1, . . . , xn) ∈ F2[x1, . . . , xn]

defines a function p : 2[n] → F2, where evaluation of p at a codeword c is given by replacing

xi by 1 if i ∈ c, and by 0 otherwise.

Definition 3.5.2 ([CIVCY13]). Let C ⊆ 2[n] be a code. The vanishing ideal of C is

IC := {p ∈ F2[x1, . . . , xn] | p(c) = 0 for all c ∈ C} ⊆ F2[x1, . . . , xn].

The neural ring of C is the quotient ring RC := F2[x1, . . . , xn]/IC, together with the coordinate

functions xi ∈ RC.

Every neural ring can be regarded simply as a finite Boolean algebra, but the additional

information of which elements correspond to coordinate functions allows us to recover in-

formation about the associated code. For example, we can recover the number of neurons,

which is simply the number of coordinate functions. More strongly, [CIVCY13] proves that

the neural ring uniquely determines its associated code, and vice versa.

A useful fact about the neural ring of a code C is that it is isomorphic to the ring of

functions from C to F2. Thus to prove that two elements of a neural ring are equal, it suffices

to show that they are the same when regarded as functions from C to F2.

Before presenting our main result, we require a few more definitions. For any σ ⊆ [n],

the monomial
∏

i∈σ xi will be denoted xσ. For any σ ⊆ [n], we define the indicator function

of σ as

ρσ :=
∏
i∈σ

xi
∏
j /∈σ

(1− xj) ∈ F2[x1, . . . , xn].



50

Note that the function ρσ has the property that it evaluates to 1 only at σ. Finally, we

must equip the class of neural rings with a class of morphisms. We will use monomial maps,

defined below.

Definition 3.5.3. Let RC and RD be neural rings with coordinate functions {x1, . . . , xn}

and {y1, . . . , ym} respectively. A monomial map from RD to RC is a ring homomorphism

φ : RD → RC with the property that for every nonempty τ ⊆ [m], either φ(yτ ) = 0, or there

exists nonempty σ ⊆ [n] such that φ(yτ ) = xσ.

Theorem 3.5.4. Let NRing be the category whose objects are neural rings, and whose

morphisms are monomials maps. There is a contravariant equivalence of categories R :

Code→ NRing given by associating a code to its neural ring, and associating a morphism

f : C → D to the ring homomorphism R(f) : RD → RC given by precomposition with f .

Proof. We will let f ∗ : RD → RC denote R(f) for any morphism f : C → D. We start by

showing that R gives us a well defined function from morphisms C → D to monomial maps

RD → RC. We must show that if f : C → D is a morphism of codes, then f ∗ : RD → RC

is a monomial map. It will suffice to show for all j ∈ [m] that f ∗(yj) = 0 or there exists

nonempty σ ⊆ [n] with f ∗(yj) = xσ.

To this end, suppose that yj is such that f ∗(yj) 6= 0. Then observe that the codewords

c ∈ C where f ∗(yj) evaluates to 1 are exactly those in f−1(TkD(j)). Indeed, we have the

following chain of equivalences:

f ∗(yj)(c) = 1 ⇔ (yj ◦ f)(c) = 1 ⇔ yj(f(c)) = 1 ⇔ j ∈ f(c) ⇔ c ∈ f−1(TkD(j)).

If the trunk f−1(TkD(j)) is empty, then f ∗(yj) = 0. Otherwise, there exists nonempty

σ ⊆ [n] such that f−1(TkD(j)) = TkC(σ). In this case, f ∗(yj) = xσ as functions, since f ∗(yj)

is equal to 1 exactly on those codewords that contain σ. Thus f ∗ is a monomial map.

So far we have shown that R is a functor. To show that it is an equivalence of categories

we must show that it is faithful and full. To prove that R is faithful, suppose f and g are two

distinct morphisms from a code C to a code D. We must show that f ∗ and g∗ are distinct



51

ring homomorphisms from RD to RC. To this end let c ∈ C be such that f(c) 6= g(c). Then

consider the indicator function ρf(c) : D → Fn2 , recalling that this function evaluates to 1 on

a codeword if and only if that codeword is equal to f(c). Then consider f ∗(ρc) and g∗(ρc).

The function f ∗(ρc) takes c to 1, while g∗(ρc) takes it to 0. This proves that f ∗ and g∗ are

distinct ring homomorphisms, and so the map from HomCode(C,D) to HomNRing(RD, RC)

induced by R is injective as desired.

It remains to show that R is full. Let φ : RD → RC be a monomial map. We must

show φ = f ∗ for some morphism f : C → D. We construct the appropriate morphism f by

specifying a set of proper trunks that determine it, as in Definition 3.2.1. Every yj maps

to either zero, or some monomial xσj where σj ⊆ [n] is nonempty. Let f : C → 2[m] be the

morphism determined by the trunks {T1, . . . , Tm} where

Tj =

∅ if φ(yj) = 0,

TkC(σj) if φ(yj) = xσj .

Observe that all of these trunks are proper since all σj are nonempty. We claim that f(C) ⊆

D, so we can regard f as a morphism C → D. Let c be a codeword in C, and consider the

indicator function ρf(c) ∈ F2[x1, . . . , xm], which is 1 on f(c) and zero everywhere else. We

can then consider ρf(c) as an element of RD = F2[x1, . . . , xm]/ID. Note that

φ(ρf(c)) = φ

( ∏
i∈f(c)

yi
∏
j /∈f(c)

(1− yj)
)

=
∏
i∈f(c)

xσi
∏
j /∈f(c)

(1− xσj).

Now, φ(ρf(c)) will yield 1 when evaluated at c since xσi(c) = 1 if and only if c ∈ Ti, which

happens if and only if i ∈ f(c). We conclude that ρf(c) is nonzero in RD and so f(c) ∈ D.

Thus we can restrict f to a morphism from C to D.

Finally, we claim that f ∗ : RD → RC is the same monomial map as φ. It suffices to argue

that f ∗(yj) = φ(yj) for all j ∈ [m]. Observe that f ∗(yj) = 0 if and only if Tj is empty, which

implies that φ(yj) = 0. This leaves the case that f ∗(yj) 6= 0, or equivalently Tj 6= ∅. In

this case, we need only argue that f ∗(yj) is equal to 1 when evaluated at some c ∈ C if and

only if xσj is 1 when evaluated at c. But the latter condition is equivalent to saying that



52

c ∈ Tj, which is equivalent to the statement that f ∗(yj)(c) = 1 since f ∗(yj)(c) = yj(f(c)).

Therefore f ∗ = φ, and the functor R is full as desired. We conclude that R is a contravariant

equivalence of categories.

3.6 Morphisms and Category Theory

In this section we turn to more abstract properties of the category Code. Our main goal

is to prove Theorem 3.6.7, which states that Code is finitely bicomplete. In other words,

all finite diagrams in this category have both limits and colimits. This result is meant to

provide some evidence that our framework of morphisms is relatively sound, at least from

a theoretical perspective. For the reader who is less experienced with category theory, we

recommend [AHS06], which is available online and includes definitions for the concepts that

we reference in this section.

To prove that Code is finitely bicomplete it suffices to exhibit terminal and initial objects,

together with four constructions: pairwise products, pairwise coproducts, equalizers, and

coequalizers. We provide all of these in sequence below. Except for products, none of these

will appear in later sections or chapters. Products make a reappearance in Proposition 4.3.8,

since they have a constructive geometric interpretation.

Definition 3.6.1. Let C ⊆ 2σ and D ⊆ 2τ be codes, and assume without loss of generality

that σ and τ are disjoint. The product of C and D is the code

C × D := {c ∪ d | c ∈ C, d ∈ D} ⊆ 2σ∪τ .

Proposition 3.6.2 (Existence of Products). The product defined in Definition 3.6.1, together

with the restriction morphisms πσ : C ×D → C and πτ : C ×D → D, is the product of C and

D in the category Code.

Proof. Let E be any code and let f : E → C and g : E → D be morphisms. Define a function

f × g : E → C × D by (f × g)(e) = f(e) ∪ g(e). Note that this is the unique function such



53

that the following diagram commutes:

E C

D C × D

f

g
f×g

πσ

πτ

It remains to show that f × g is a morphism. Let T be a proper trunk in C × D. If T = ∅,

then its preimage under f × g will be empty, and hence a trunk in E . If T is nonempty,

we may write it as TkC×D(σ′ ∪ τ ′) where σ′ ⊆ σ, τ ′ ⊆ τ , and at least one of σ′ and τ ′ is

nonempty. One may then compute that

(f × g)−1(T ) = f−1(TkC(σ
′)) ∩ g−1(TkD(τ ′)).

Since at least one of σ′ and τ ′ is nonempty, at least one of the terms in the intersection

above will be a proper trunk, and so the preimage of T under f × g is a proper trunk in E

as desired. This proves the result.

Definition 3.6.3. Let C ⊆ 2σ and D ⊆ 2τ be codes, and assume without loss of generality

that σ and τ are disjoint. For every pair (S, T ) of proper trunks with S ⊆ C and T ⊆ D, let

i(S,T ) be a new neuron. The coproduct of C and D is the code

C t D := {c ∪ {i(S,T ) | c ∈ S} | c ∈ C} ∪ {d ∪ {i(S,T ) | d ∈ T} | d ∈ D}

on the set of neurons σ ∪ τ ∪ {i(S,T ) | S ⊆ C, T ⊆ D proper trunks.}.

Proposition 3.6.4 (Existence of Coproducts). The coproduct defined in Definition 3.6.3,

together with the morphisms ιC : C → CtD and ιD : D → CtD defined by ιC(c) = c∪{i(S,T ) |

c ∈ S} and ιD(d) = d ∪ {i(S,T ) | d ∈ T}, is the coproduct of C and D in the category Code.

Proof. Let E be any code and let f : C → E and g : D → E be morphisms. Define a function

f t g : C t D → E by

(f t g)(a) =

f(c) if a = c ∪ {i(S,T ) | c ∈ S},

g(d) if a = d ∪ {i(S,T ) | d ∈ T}.



54

Note that this function is well defined because the only case in which the two conditions

defining f t g overlap is c = d = ∅, and under both conditions we have (f t g)(∅) = ∅.

Moreover, observe that ftg is the unique function such that the following diagram commutes:

C t D C

D E

ftg
f

ιC

ιD

g

It remains to show that f t g is a morphism. Let Q be a proper trunk in E , let T ′ = f−1(Q),

and let S ′ = g−1(Q). One may then compute that

(f t g)−1(Q) = {ιC(c) | c ∈ S ′} ∪ {ιD(d) | d ∈ T ′}.

This is exactly TkCtD(i(S′,T ′)), which is a proper trunk in C t D. Thus f t g is a morphism

and the result follows.

Proposition 3.6.5 (Existence of Equalizers). Let f, g : C → D be morphisms. Let E = {c ∈

C | f(c) = g(c)}. The code E together with the inclusion E ↪→ C is the equalizer of f and g

in the category Code.

Proof. Let E ′ be any code and let h : E ′ → C be such that f ◦ h = g ◦ h. Observe that

h(E ′) ⊆ E , and that the restricted morphism h : E ′ → E is the unique morphism making the

following diagram commute:

E C D

E ′

f

g

h
h

This proves the result.

Proposition 3.6.6 (Existence of Coequalizers). Let f, g : C → D be morphisms. Let

{T1, . . . , Tm} be the collection of all proper nonempty trunks in D such that f(c) ∈ Tj if

and only if g(c) ∈ Tj for all c ∈ C and j ∈ [m]. Let h : D → 2[m] be the morphism deter-

mined by {T1, . . . , Tm}, and let E ⊆ 2[m] be the image of h. The code E together with the

morphism h : D → E is a coequalizer of f and g in the category Code.



55

Proof. Let E ′ ⊆ 2[n] be any code and let h′ : D → E ′ be such that h′ ◦ f = h′ ◦ g. Let

{S1, . . . , Sn} be the set of proper trunks that determine h′, and observe that each Si has the

property that f(c) ∈ Si if and only if g(c) ∈ Si. In other words, every Si is equal to some

Tj. Up to permutation of [m] we may assume that n ≤ m and Si = Ti for all i ∈ [n].

Then consider the restriction morphism π[n] : E → 2[n]. One may compute that π[n](h(d)) =

h′(d) for any codeword d in D. Thus π[n] restricts to a morphism E → E ′, making the fol-

lowing diagram commute:

C D E

E ′

f

g

h

h′
π[n]

In fact π[n] is the unique function making this diagram commute. This proves the result.

Theorem 3.6.7. The category Code is finitely bicomplete.

Proof. We have seen in the propositions above that Code has products, coproducts, equal-

izers, and coequalizers. To show that Code is finitely bicomplete, we need only exhibit an

initial and terminal object. We claim that the code C = {∅} suffices for both (i.e. C is a zero

object). Indeed, if D is any code then the only morphism from D to C is the constant map,

and the only morphism C → D is the map sending ∅ 7→ ∅.



56

Chapter 4

MINORS OF CODES

In this chapter we bring morphisms to bear on our main problem of interest: classifying

the open and closed embedding dimensions of codes. In particular, we use morphisms to

define a totally combinatorial notion of minors for codes, analogous to minors of graphs or

matroids. Our notion of minor does not generalize these traditional minors, but it does

provide a framework in which to investigate convexity. As we will see in Theorem 4.3.4,

essentially every “geometric realizability” property of codes is closed under taking minors.

4.1 Definitions: Minors of Codes

We have already seen in results like Theorem 3.3.9 and Theorem 3.4.2 that surjective mor-

phisms preserve important structure in codes. Minors are defined with this in mind. Al-

though the definition below is completely combinatorial, we will see in Section 4.2 that it

has important geometric consequences.

Definition 4.1.1. Let C and D be codes. We say that D is a minor of C, and write D ≤ C,

if there exists a surjective morphism f : C → D. A proper minor of C is a minor that is not

isomorphic to C.

Remark 4.1.2. When we defined minors in [Jef20], we also defined any trunk in a code to

be a minor of the code. Our conventions in this work allow us to omit this, significantly

simplifying the definition of minors. The following proposition tells us that this omission

does not actually impact the definition.

Proposition 4.1.3. Let C be a code and let T be a trunk in C. Then the code T ∪ {∅} is a

minor of C.



57

Proof. Let D = T ∪ {∅}, and consider the function f : C → D given by

f(c) =

c if c ∈ T ,

∅ otherwise.

Clearly this function is surjective, and for every i ∈ [n] one may compute that f−1(TkD(i)) =

T ∩ TkC(i), which is a proper trunk in C. By Proposition 3.1.6 f is a morphism, and we

conclude that D is a minor of C as desired.

Example 4.1.4. Consider the code C = {12,13, ∅}. We saw in Example 3.1.4 that there is a

surjective morphism from C to the code D = {1,2, ∅}. Thus D is a minor of C. In fact, we

claim that up to isomorphism C has five total minors, which are:

{12,13, ∅}, {1,2, ∅}, {12,2, ∅}, {1, ∅}, {∅}.

Note that any minor of C has no more than three codewords, and the above set of codes

consists of all codes with no more than three codewords (up to isomorphism). Thus we

only have to exhibit surjective morphisms from C to any of the above codes. Appropriate

morphisms can be found by hand: for example, the morphism C → {12,2, ∅} is given by

deleting neuron 3.

Interestingly, C is the unique code (up to isomorphism) with the property that every

code with no more than 3 codewords is a minor of C. We will generalize this phenomenon

in Proposition 4.3.7.

4.2 Minors and Realizations

Minors allow us to replace codes with new, modified codes. The following definition allows us

to replace realizations with new, modified realizations. Theorem 4.2.2 tells us that these two

modification processes are actually analogous. In other words, derived realizations provide

a geometric interpretation of code minors.



58

Definition 4.2.1. Let U = {U1, . . . , Un} be a (not necessarily open, closed, or convex)

realization of a code C ⊆ 2[n]. A derived realization of U is a collection V = {Vj := Uσj | j ∈

[m]} for some choice of nonempty index sets σ1, . . . , σm.

Theorem 4.2.2 (Fundamental Theorem of Minors). Let U = {U1, . . . , Un} be a (not neces-

sarily convex, open, or closed) realization of a code C ⊆ 2[n]. Let {TkC(σ1), . . . ,TkC(σm)} be a

collection of proper trunks in C, let f : C → 2[m] be the morphism determined by these trunks,

and let D be the minor f(C) of C. Then the derived realization V = {Vj := Uσj | j ∈ [m]} is

a realization of D.

Proof. We must show for all nonempty τ ⊆ [m] that Vτ 6= ∅ if and only if τ = f(c) for some

codeword c in C. Fix a nonempty index set τ ⊆ [m]. Then Vτ is nonempty if and only if

there exists a point p in the stimulus space that lies in exactly the Vj with j ∈ τ . Such

a point p would belong to an atom in the realization U , and by construction this must be

the atom of a codeword c in C with the property that σj ⊆ c exactly when j ∈ τ . Such

codewords are exactly those with the property that f(c) = τ . Thus τ ∈ f(C) = D if and

only if τ ∈ code(V). This proves the result.

Example 4.2.3. Consider the simplicial complex code C = {123,14,34, 12, 13, 23, 1, 2, 3, 4, ∅}.

Let us choose σ1 = {1, 2}, σ2 = {1, 3}, σ3 = {2, 3}, σ4 = {3}, and σ5 = {4}, and for i ∈ [5]

define Ti = TkC(σi). We see that

T1 = {123, 12} T2 = {123, 13} T3 = {123, 23}

T5 = {14, 34, 4} T4 = {123, 34, 13, 23, 3}

Let f : C → 2[5] be the morphism determined by the collection of trunks {T1, T2, T3, T4, T5}.

We can compute that

f(C) = {1234,45, 24, 34, 1, 4, 5, ∅}.

We saw in Example 2.1.2 that C has an open realization U = {U1, U2, U3, U4} in R2. Figure

4.1 shows this realization, and the derived realization V = {Vj := Uσj | j ∈ [5]} of f(C) as

guaranteed by Theorem 4.2.2.



59

Figure 4.1: (a) A realization of C. (b) The derived realization of f(C).

4.3 PCode, the Poset of Code Minors

Note that the relation “is a minor of” is not a partial order on the class of all codes. The only

property that does not hold is antisymmetry: isomorphic codes are minors of one another,

but need not be equal. To create an appropriate partially ordered set of code minors, we

should thus work with isomorphism classes of codes.

Definition 4.3.1. For a code C, we let [C] denote the isomorphism class of C in Code. If

[C] and [D] are isomorphism classes of codes, we write [D] ≤ [C] and say that [D] is a minor

of [C] whenever D is a minor of C.

Definition 4.3.2. The poset of code minors is the set of isomorphism classes of codes,

together with the relation ≤, and is denoted PCode.

Proposition 4.3.3. PCode is a partially ordered set.



60

Proof. Note that since isomorphisms are surjective, the relation ≤ is well-defined on isomor-

phism classes of codes. Since the identity function is a morphism, the relation ≤ is also

reflexive. To prove antisymmetry, let C and D be codes with [C] ≤ [D] and [D] ≤ [C]. Then

there exist surjective morphisms f : C → D and g : C → D. Proposition 3.3.8 implies that C

and D have the same number of trunks, and Theorem 3.3.9 implies that f is an isomorphism.

Thus [C] = [D] as desired.

For transitivity, suppose that [E ] ≤ [D] ≤ [C]. Then there exist surjective morphisms

f : C → D and g : D → E . The composition g ◦ f : C → E is a surjective morphism, and so

[E ] ≤ [C]. Thus the relation ≤ is a partial order.

We will often abuse notation and refer to codes, rather than isomorphism classes, inside

PCode. When we are speaking of isomorphism-invariant properties of codes this does not

cause any ambiguity. The following theorems fully explain the relevance of minors to the

study of convexity and other properties of codes. Specific families of examples and further

content in this direction will primarily appear in Sections 4.4, 5.6, and 5.8.

Theorem 4.3.4. Fix d ∈ N ∪ {∞}. The following classes of codes are minor-closed. In

other words, each of these classes of codes forms a downset in PCode.

(i) Codes with odim(C) < d.

(ii) Codes with cdim(C) < d.

(iii) Codes with an (open or closed) non-degenerate realization in dimension less than d.

(iv) Codes with an (open or closed) good cover realization in dimension less than d.

(v) Intersection complete codes.

(vi) Max-intersection complete codes.



61

Proof. For item (i), let U be an open convex realization of a code C in dimension less than

d. Note that any derived realization of U is also open and convex. Theorem 4.2.2 implies

that every minor of C has such a derived realization, proving the result. The same holds

for (ii), (iii), and (iv): one needs only observe that derived realizations preserve convexity,

closedness, non-degeneracy, and good covers.

For items (v) and (vi), Theorem 3.4.2 proves the result.

Very roughly, Theorem 4.3.4 tells us that we can think of PCode as being stratified into

different “layers” consisting of codes with different embedding dimensions. In the simplest

case, we could look at just two layers: open convex codes, and codes that are not open convex

(with the former lying “below” the latter). Analogously, one could imagine codes with finite

closed embedding dimension lying “below” codes with closed embedding dimension equal

to infinity. Figure 4.2 provides a very informal illustration of this situation. The figure is

misleading in a number of ways (in particular, there are not finitely many codes which are

both open and closed convex), but it can provide a useful intuitive guide. For a more detailed

and technically correct illustration of PCode, see Figure 4.4 at the end of this chapter.

Corollary 4.3.5. The following code invariants are isomorphism invariants, and are mono-

tone on PCode. In other words, if D is a minor of C, then the value of each invariant on C

is at least as large as its value on D.

(i) Open embedding dimension.

(ii) Closed embedding dimension.

(iii) Non-degenerate embedding dimension.

(iv) Good cover embedding dimension.

Proof. If any of these invariants was not monotone, we would obtain codes C and D with

[D] ≤ [C] and the invariant taking a larger value on D. This would contradict the corre-

sponding item in Theorem 4.3.4.



62

Figure 4.2: An informal illustration of PCode stratified by open and closed convexity. Each

dot represents a code, light grey lines represent relations in the poset, and thick black lines

represent the “boundaries” between different classes of codes.

Remark 4.3.6. Notice that Theorem 4.2.2 implies that there are many more minor-closed

“realizability” properties. Essentially, “realizability in dimension less than d by a family of

sets F” is a minor-closed property as long as the family F is closed under intersections. The

following are potentially interesting candidates for the family F , and could be a subject of

future work:

• (Open or closed) axis-parallel boxes,

• Polytopes whose normal vectors come from a fixed set of vectors,

• Polytopes generally, and

• Affine subspaces.

Finally, it is worth noting that codes with no more than k maximal codewords also

form a minor-closed family, since every maximal codeword has a maximal preimage under



63

a surjective morphism. This family may warrant further investigation for small values of k,

given recent work in [JSS20] that classifies the convexity of codes with no more than three

maximal codewords.

Below we prove a related and somewhat surprising fact: the minor-closed family of codes

with no more than k total codewords has a unique maximal element Mk in PCode. Note

that this generalizes Example 4.1.4, which treated the case k = 3. One can think of the code

Mk as analogous to a discrete topological space on k points.

Also note that an analogous result does not hold for the family of codes with no more

than k maximal codewords: both {12,13, ∅} and {12,13, 1, ∅} have two maximal codewords,

but neither is a minor of the other.

Proposition 4.3.7. For any natural number k, define a code

Mk := {[k] \ {i} | i ∈ [k − 1]} ∪ {∅} ⊆ 2[k].

If C is any code with no more than k codewords, then C is a minor of Mk. In other words,

Mk is the unique maximal code among all codes with no more than k codewords.

Proof. For i ∈ [k − 1], define mi = [k] \ {i}. Note that for any σ ⊆ [k − 1], the collection

of codewords {mi | i ∈ σ} is a proper trunk in Mk, namely it is the trunk of [k] \ σ. Now

let C be any code with no more than k codewords. Label the nonempty codewords of C by

c1, . . . , cl, where l ≤ k − 1. Define a function f : Mk → C by f(mi) = ci for all i ∈ [l],

and f(m) = ∅ for all other m ∈ Mk. Observe that f is surjective, and the preimage of any

proper trunk in C is a collection of various mi with i ∈ [l]. Since any subset of the mi is a

proper trunk inMk, the function f is a morphism. This proves that C is a minor ofMk, as

desired.

To conclude this section, we use minors to prove a result regarding products of codes (see

Definition 3.6.1).

Proposition 4.3.8. Let C ⊆ 2σ and D ⊆ 2τ be codes, where σ and τ are disjoint. Then

max{odim(C), odim(D)} ≤ odim(C × D) ≤ odim(C) + odim(D),



64

and the analogous inequalities hold for closed embedding dimension.

Proof. To see that max{odim(C), odim(D)} ≤ odim(C × D), recall that both C and D are

minors of C × D. It remains to prove that odim(C × D) ≤ odim(C) + odim(D). If either

odim(C) or odim(D) is infinite, this is trivial. Otherwise, let d1 = odim(C) and d2 = odim(D).

Then let U = {Ui | i ∈ σ} be an open realization of C in Rd1 , and let V = {Vj | j ∈ τ}

be an open realization of D in Rd2 . For i ∈ σ define Wi = Ui × Rd2 , and for j ∈ τ define

Wj = Rd1 × Vj (here we are identifying Rd1 with the first d1 coordinates in Rd1+d2 , and Rd2

with the last d2 coordinates). We claim that W = {Wk | k ∈ σ ∪ τ} is an open realization of

C × D.

To see this, let p be any point in Rd1+d2 , let p1 ∈ Rd1 be the first d1 coordinates of p,

and let p2 ∈ Rd2 be the remaining coordinates. For i ∈ σ observe that p ∈ Wi if and only if

p1 ∈ Ui. Symmetrically, we see for j ∈ τ that p ∈ Wj if and only if p2 ∈ Vj. We conclude that

codewords in code(W) are exactly those of the form c∪d where c is a codeword in C and d is a

codeword in D. Thus code(W) = C×D. This proves that odim(C×D) ≤ odim(C)+odim(D)

as desired.

4.4 Minimally Non-Convex Codes

Minor-closed properties of graphs, such as planarity, can be classified by a finite list of

forbidden minors. Likewise, some minor-closed families of matroids—such as regular or

graphic matroids—admit a characterization in terms of finitely many forbidden minors. To

understand convexity of codes, we wish to investigate the forbidden minors of convexity, or

minimally non-convex codes, which are defined below. Unlike the case of graphs, we will see

in Theorem 4.4.3 and Corollary 4.4.5 that there are not finitely many forbidden minors for

convexity. It is a wide open question whether the set of all minimally non-convex codes can

be partitioned into a finitely many well-understood families.

Definition 4.4.1. Let C be a code. We will say that C is minimally non-convex if C is not

an open convex code, but every proper minor of C is open convex.



65

Remark 4.4.2. Note that Definition 4.4.1 refers only to open convex codes. One could likewise

define forbidden minors for closed convex codes, but our primary direction of investigation

will be the open case. Where we do need to mention forbidden minors of closed convexity, we

refer to them as minimally non-closed-convex codes. In a few cases we also make reference

to codes that are minimally non-d-convex, i.e. they are not open convex in Rd, but all of

their proper minors are.

To begin with, we exhibit a relatively straightforward family of minimally non-convex

codes. We will see a further family in Section 5.6. Note that the proof of Theorem 4.4.3

relies on Lemma 4.5.4 which appears in the following section. Since we do not make further

use of Theorem 4.4.3 beyond its proof, this does not cause any issues.

Theorem 4.4.3. Let ∆ ⊆ 2[n] be a simplicial complex, and let

C∆ := {σ ∪ {n+ 1} | σ is a nonempty face of ∆} ∪ {∅} ⊆ 2[n+1].

If ∆ is not collapsible, then C∆ is minimally non-convex.

Proof. Observe that C∆ has a local obstruction of the second kind at σ = {n+ 1} since n+ 1

is not a codeword, and Lk∆(C∆)(n+ 1) = ∆. Thus C∆ is not open convex, and it will suffice

to show that every proper minor of C∆ is convex. In fact, we will show a stronger result:

every proper minor of C∆ is intersection complete. Let D∆ = C∆ ∪ {{n + 1}}, and observe

that D∆ is an intersection complete code.

Now let D ⊆ 2[m] be a proper minor of C∆, and let f : C∆ → D be a surjective non-

isomorphism determined by a collection {T1, . . . , Tm} of proper trunks in C. For each j ∈ [m],

let σj ⊆ [m] be a nonempty index set such that Tj = TkC(σj). Finally, let f : D∆ → 2[m]

be the morphism determined by the collection of proper trunks {T 1, . . . , Tm} in D∆, where

T j = TkD∆
(σj). We will show that D = f(D∆). Since D∆ differs from C∆ only by the

codeword {n+ 1}, it suffices to show that f({n+ 1}) = f(c) for some codeword c in C∆.

By Lemma 4.5.4 there exists a neuron i ∈ [n + 1] such that TkC∆(i) is equal to an

intersection of the varios Tj. We consider two cases. If i = n + 1, then no Tj is equal to



66

TkC∆(n+1), and so no T j contains {n+1}. We then have f({n+1}) = ∅ = f(∅). Otherwise

i ∈ [n], and every Tj either properly contains TkC∆(i) (and hence is equal to TkC∆(n + 1)),

or does not contain the codeword {i, n+ 1}. From this we see that f({i, n+ 1}) = {j ∈ [m] |

σj = {n+ 1}} = f({n+ 1}).

We have shown that D = f(D∆). Since D∆ is intersection complete, so is D, and we

conclude that all proper minors of C∆ are convex. This proves the result.

Remark 4.4.4. In Chapter 6 we will see that we can replace the phrase “not collapsible” in

Theorem 4.4.3 by “not convex union representable,” a more general condition.

Corollary 4.4.5. The set of minimally non-convex codes is infinite. As a consequence,

PCode contains infinite antichains.

Proof. There are infinitely many non-isomorphic codes of the form C∆ since there are in-

finitely many non-collapsible simplicial complexes with a different number of faces. Iso-

morphism classes of minimally non-convex codes form an antichain in PCode, proving the

result.

4.5 Covering Relations in PCode

We have just seen in Corollary 4.4.5 that PCode contains infinite antichains. In this section

we further investigate the basic structure of PCode. Our most important result is Theorem

4.5.10, which describes the covering relation in PCode. This is a useful tool for proving

that certain codes are minimally non-convex: rather than prove that all proper minors of a

non-convex code C are open convex, one needs only prove this for the (much smaller) set of

minors covered by C.

The statement of Theorem 4.5.10 is relatively straightforward, and readers who wish to

apply it without delving into its proof are encouraged to skip to Definition 4.5.7. Proving the

result will require a significant amount of abstract machinery, and we begin by introducing

some terminology and technical lemmas.



67

Definition 4.5.1. Let C ⊆ 2[n] be a code, and let {T1, . . . , Tm} be a collection of proper

trunks in C. A trunk T in C is generated by {T1, . . . , Tm} if there exists nonempty τ ⊆ [m]

such that T =
⋂
j∈τ Tj.

Lemma 4.5.2. Let C ⊆ 2[n], D ⊆ 2[m], and E ⊆ 2[l] be codes. Let f : C → D be a surjective

morphism and let g : C → E be a morphism. Let {T1, . . . , Tm} and {S1, . . . , Sl} be the

collections of proper trunks in C that determine f and g respectively. Then there exists a

morphism h : D → E such that g = h ◦ f if and only if every for every k ∈ [l] the trunk

Sk is either empty, or generated by {T1, . . . , Tm}. In other words, there exists a morphism

h making the following diagram commute if and only if the nonempty trunks determining g

are generated by the trunks determining f :

C D

E

f

g
h

Proof. We prove the forward direction first. Let k ∈ [l], and let {R1, . . . , Rl} be the proper

trunks in D that determine the morphism h : D → E . Recall that Sk = g−1(TkE(k)). Since

g = h ◦ f , we may compute

Sk = f−1
(
h−1(TkE(k))

)
= f−1(Rk).

If Sk is nonempty, then so is Rk, so there exists nonempty τ ⊆ [m] with Rk = TkD(τ). We

continue our computation:

f−1(Rk) = f−1(TkD(τ)) = f−1

(⋂
j∈τ

TkD(j)

)
=
⋂
j∈τ

f−1(TkD(j)) =
⋂
j∈τ

Tj.

Thus Sk is generated by {T1, . . . , Tm} as desired.

We now prove the converse. Suppose that for every nonempty Sk there exists nonempty

τk ⊆ [m] with Sk =
⋂
j∈τk Tj. Consider the morphism h : D → 2[l] determined by the proper

trunks {R1, . . . , Rl} in D where Rk = TkD(τk). We first claim that h(D) ⊆ E . To see this,

let d be a codeword in D. By surjectivity of f , there exists a codeword c in C such that



68

f(c) = d. Observe that by construction f−1(Rk) = Sk, and so c ∈ Sk if and only if d ∈ Rk.

We now compute:

h(d) = h(f(c))

= {k ∈ [l] | f(c) ∈ Rk}

= {k ∈ [l] | c ∈ f−1(Rk)}

= {k ∈ [l] | c ∈ Sk}

= g(c).

This computation proves that h(D) ⊆ E , and moreover that h ◦ f = g as desired.

As a first consequence of this lemma, we provide a corollary that helps us recognize when

two minors of a given code are isomorphic.

Corollary 4.5.3. Let C ⊆ 2[n], D ⊆ 2[m], and E ⊆ 2[l] be codes. Let f : C → D and

g : C → E be surjective morphisms. Let {T1, . . . , Tm} and {S1, . . . , Sl} be the collections of

proper trunks in C that determine f and g respectively. If these collections generate the same

trunks in C, then D and E are isomorphic.

Proof. By Lemma 4.5.2 there exist morphisms h1 : D → E and h2 : E → D such that the

following diagrams commute:

C D

E

f

g
h1

C D

E

f

g
h2

One may compute that h1 and h2 are mutual inverses, so D and E are isomorphic.

Note that the converse of the above corollary is false: for any code C 6= {∅}, there

are a variety of morphisms C → {∅} whose determining trunks are distinct. As a further

application of Lemma 4.5.2, we see that any surjective morphism that is determined by

a collection of trunks that generates all simple trunks must in fact be an isomorphism.

Stated differently, a collection of trunks that determines a surjective non-isomorphism cannot

generate all simple trunks. The following lemma captures this observation formally.



69

Lemma 4.5.4. Let C ⊆ 2[n] and D ⊆ 2[m] be codes. Let f : C → D be a surjective morphism

determined by a collection {T1, . . . , Tm} of proper trunks in C. Then f is not an isomorphism

if and only if there exists a neuron i ∈ [n] such that TkC(i) is not generated by {T1, . . . , Tm}.

Proof. Let id : C → C denote the identity function, noting that id is the morphism determined

by the collection of simple trunks in C. Consider the following commutative diagram:

C D

C

f

id
f−1

By Lemma 4.5.2, the existence of an inverse morphism f−1 : D → C is equivalent to the

statement that all simple trunks are generated by {T1, . . . , Tm}. This proves the result.

With these technical tools, we have a finer control over the existence and behavior of

morphisms. Our final result will also rely on the following notion of irreducibility for neu-

rons. Note that being redundant and not being irreducible are distinct notions for neurons,

although they have similarities. Up to deleting neurons which have equal trunks (i.e. identi-

cal behavior), one can view irreducible neurons as those which are necessary to generate (in

the sense of intersecting trunks) the activity of all other neurons.

Definition 4.5.5. Let C ⊆ 2[n] be a code. A neuron i ∈ [n] is called irreducible in C if the

simple trunk TkC(i) is irreducible in the sense of Definition 3.3.5.

Proposition 4.5.6. Let C ⊆ 2[n] be a code. The collection of trunks

{TkC(i) | i ∈ [n] is irreducible in C}

generates all proper nonempty trunks in C.

Proof. Let T be a proper nonempty trunk in C. Then T =
⋂
i∈σ TkC(i) for some nonempty

σ ⊆ [n]. If any i ∈ σ is not irreducible, then we may replace TkC(i) by an intersection of two

trunks that properly contain it. These trunks will be generated by simple trunks not equal

to TkC(i), and by repeating such replacements we may reduce to the case where σ consists

of only irreducible neurons, as desired.



70

We are now ready to state our main definition. Below, we use neurons decorated by an

overline for notational convenience. In particular, i and i are distinct neurons.

Definition 4.5.7. Let C ⊆ 2[n] be a code. Fix a neuron i ∈ [n], and let fi : C → 2[n]∪[n] be

the morphism determined by the collection of proper trunks {T1, . . . , Tn, T1, . . . , Tn} where

Tj =

TkC(j) if TkC(j) 6= TkC(i)

∅ otherwise

and Tj =

TkC({i, j}) if TkC({i, j}) 6= TkC(i)

∅ otherwise

for all j ∈ [n]. The i-th covered code of C is the code C(i) := fi(C). The morphism fi : C → C(i)

is called the i-th covering morphism of C.

Example 4.5.8. Consider the code C = {123,14,24,34, 1, 2, 3, 4, ∅}. We will examine the

covered codes C(i) for each neuron i. Since C is invariant under permutation of the neurons

1, 2, and 3, we have C(1) ∼= C(2) ∼= C(3). For i = 1, we have T1 = T1 = ∅, and

T2 = TkC(2) = {123, 24, 2}, T3 = TkC(3) = {123, 34, 3}, T4 = TkC(4) = {14, 24, 34, 4},

T2 = TkC({1, 2}) = {123}, T3 = TkC({1, 3}) = {123}, T4 = TkC({1, 4}) = {14}.

We can then compute that

C(1) = {2323,44,24,34, 2, 3, 4, ∅}.

For i = 4, we have T4 = T4 = ∅, and

T1 = TkC(1) = {123, 14, 1}, T2 = TkC(2) = {123, 24, 2}, T3 = TkC(3) = {123, 34, 3},

T1 = TkC({1, 4}) = {14}, T2 = TkC({2, 4}) = {24}, T3 = TkC({3, 4}) = {34}.

This allows us to compute that

C(4) = {123,11,22,33, 1, 2, 3, ∅}.

The Hasse diagrams of C, C(1), and C(4) are shown in Figure 4.3.



71

Figure 4.3: The Hasse diagrams of C and the covered codes C(1) and C(4).

As we will see in the following lemma, the collection of trunks that determine the i-th

covering morphism is constructed so that when i is irreducible it generates every trunk except

for TkC(i). Intuitively, the image of C under the morphism fi should thus capture almost

(but not all) of the structure of C. In other words, C should cover C(i), which we will confirm

in Theorem 4.5.10.

Lemma 4.5.9. Let C ⊆ 2[n] be a code, let i ∈ [n] be a neuron, and let {T1, . . . , Tn, T1, . . . , Tn}

be the collection of proper trunks described in Definition 4.5.7. If i is irreducible, this col-

lection of trunks generates all proper nonempty trunks in C except for TkC(i). If i is not

irreducible, then this collection of trunks generates all proper nonempty trunks in C.

Proof. Let T be a proper nonempty trunk in C that is not equal to TkC(i). We will show

that T is generated by the collection of trunks described in Definition 4.5.7, regardless of

whether i is irreducible. We start by writing T =
⋂
j∈σ TkC(j) where σ ⊆ [n] is nonempty,

and σ 6= {i}. We may then consider two cases. If T ⊆ TkC(i) then we may assume that

i ∈ σ, and that TkC(j) 6= TkC(i) for every j ∈ σ \ {i}. In this case, fix some j ∈ σ \ {i},

define τ = σ \{i, j}, and observe that T = Tj ∩
⋂
k∈τ Tk. In the second case that T 6⊆ TkC(i),

we automatically have TkC(j) 6= TkC(i) for all j ∈ σ. Then T =
⋂
j∈σ Tj. In both cases, T

is generated by the appropriate set of trunks.

It remains to show that, when TkC(i) is nonempty, the collection of trunks from Definition

4.5.7 generates TkC(i) if and only if i is not irreducible. Since every Tj is either empty or a



72

proper subset of TkC(i), the collection {T1, . . . , Tn, T1, . . . , Tn} generates TkC(i) if and only

if the collection {T1, . . . , Tn} does. But every Tj is either empty or not equal to TkC(i), so

this is equivalent to the statement that i is not irreducible.

We can now prove our main result. This result provides two useful methods for recognizing

when a code C covers a code D. One may show that D is ismorphic to one of the covered

codes C(i) defined above, or one may exhibit a surjective morphism C → D and simply count

the trunks in C and D. Moreover, this result allows us to directly construct all the codes

that a given code covers.

Theorem 4.5.10. Let C ⊆ 2[n] be a code and let D ⊆ 2[m] be a minor of C. Then the

following are equivalent:

(i) [C] covers [D] in PCode,

(ii) D is isomorphic to C(i) for some irreducible neuron i ∈ [n], and

(iii) C has exactly one more trunk than D.

Proof. We will start by proving that item (i) implies item (ii). If [C] covers [D] then there

exists a surjective non-isomorphism g : C → D, determined by a set of proper trunks

{S1, . . . , Sm} in C. Lemma 4.5.4 implies that there exists some simple trunk TkC(i) that

is not generated by {S1, . . . , Sm}, and by Proposition 4.5.6 we may assume that i is irre-

ducible.

Now, let fi : C → C(i) be i-th covering morphism. The neuron i is irreducible and so by

Lemma 4.5.9 the trunks determining fi generate every nonempty proper trunk in C except

for TkC(i). In particular, Lemma 4.5.4 tells us that fi is not an isomorphism, while Lemma

4.5.2 tells us that there exists a morphism h : C(i) → D such that the following diagram

commutes:

C C(i)

D

fi

g
h



73

Observe that h must be surjective, and so we have D ≤ C(i) < C. Since C covers D, we

conclude that D is isomorphic to C(i) as desired.

Next we prove that item (ii) implies item (iii). Let i ∈ [n] be an irreducible neuron, and

let fi : C → C(i) be the i-th covering morphism of C. We saw above that when i is irreducible,

fi : C → C(i) is not an isomorphism, and so C has strictly more trunks than C(i).

Moreover, Proposition 3.3.8 tells us that the map T 7→ f−1
i (T ) is an injective map from

trunks in C(i) to trunks in C. This map preserves intersections, and has the property that

TkC(i)(j) 7→ Tj and TkC(i)(j) 7→ Tj for all j ∈ [n]. In particular, the image of this map

includes all trunks generated by the collection {T1, . . . , Tn, T1, . . . , Tn}. Lemma 4.5.9 tells us

that this includes all proper nonempty trunks except for TkC(i). The empty trunk and the

trunk C are also clearly in the image of this map. Thus the map T 7→ f−1
i (T ) is an injective

map from trunks in C(i) to all trunks in C except for TkC(i). We conclude that C has exactly

one more trunk than C(i).

Finally, we prove that item (iii) implies item (i). Since D is a minor of C with strictly

fewer trunks, Theorem 3.3.9 implies that D is not isomorphic to C. Suppose for contradiction

that [C] does not cover [D], so there exists a code E with D < E < C. Either E has the same

number of trunks as D, or E has the same number of trunks as C. Theorem 3.3.9 implies

that E is isomorphic to D in the former case, and that E is isomorphic to C in the latter

case. In either case, we obtain a contradiction, proving the result.

We will apply this theorem extensively in Section 5.6. For now, we highlight two imme-

diate consequences.

Corollary 4.5.11. Let C ⊆ 2[n] be a code. Then C covers no more than n codes in PCode.

Example 4.5.12. Although there are n distinct covered codes for a given code C ⊆ 2[n], many

of these may be isomorphic to one another, particularly when C has a great deal of symmetry.

As an extreme example, let C ⊆ 2[n] be the compete k-skeleton of the (n− 1)-simplex. Then

C is invariant under permutation of neurons, and so all C(i) are isomorphic. Thus C covers

only one code in PCode.



74

Corollary 4.5.13. PCode is a graded poset, with rank function given by the number of

nonempty proper trunks in a code.

Proof. Proposition 3.3.8 ensures that this rank function is compatible with the partial order

in PCode generally, and Theorem 4.5.10 implies that it decreases by exactly one in any

covering relation. Furthermore, note that the unique minimal element {∅} in PCode has

rank zero.

Example 4.5.14. Figure 4.4 shows the Hasse diagram of the first five ranks of PCode. A few

words are in order about the notation in this figure. The various ranks are highlighted in

grey boxes, and codes that are not intersection complete are shown with a dashed border.

A valid covering relation in the figure corresponds to a path between two codes that never

turns at an acute angle. Equivalently, a covering relation arises from any path that proceeds

monotonically downwards.

It is also worth explaining how we computed these codes and the covering relations be-

tween them. We began by computing all intersection complete codes with no more than

four nonempty proper trunks. Lemma 3.4.1 tells us that nonempty trunks in an intersec-

tion complete code are in bijection with codewords, so we needed only compute the set of

intersection complete codes with no more than five codewords. Up to isomorphism, inter-

section complete codes are in bijection with meet semilattices, and so we used an existing

list1 of small semilattices to find all 24 intersection complete codes with no more than five

codewords.

To find the remaining non-intersection complete codes, we used a general fact: nonempty

trunks in a code C are always in bijection with elements of Ĉ. Thus every code with no

more than four nonempty proper trunks can be obtained from an intersection complete

code with no more than five codewords by removing some nonempty codewords. Among

the relevant intersection complete codes, there are very few codewords that can be deleted

1In fact we used the following list of lattices, and the fact that semilattice can be obtained from a lattice
by removing the top element: http://math.chapman.edu/~jipsen/posets/lattices77.html.



75

without changing the intersection completion of the resulting code. We computed the six

possibilities by hand.

All that remained was to compute the covering relations between all of these codes. We

used Theorem 4.5.10 to do so, yielding the poset in Figure 4.4.

This figure highlights several noteworthy structural features of PCode, and raises some

questions:

• PCode is not a lattice: Note that the codes {12, 1, ∅} and {1,2, ∅} do not have a

least upper bound. In particular, both these codes are covered by {12, 1, 3, ∅} and

{12,13, 1, ∅}.

• Most small codes contain symmetry: Any code C ⊆ 2[n] covers up to n codes of

the form C(i). It will cover fewer than n whenever we have C(i) and C(j) isomorphic

for some i 6= j. Among the codes in the figure, this happens for all but four codes:

{12,23, 1, 2, ∅}, {12,23, 1, ∅}, {123,14, 12, ∅}, and (trivially) {1, ∅}. In general, it

would be interesting to know the proportion of codes of a given rank for which all C(i)

are distinct. More generally, one could ask the following probabilistic question: given

a random code C ⊆ 2[n], how many codes do we expect it to cover in PCode?

• Are intervals in PCode unimodal? One could examine the intervals of minors in

PCode, in particular counting the number of codes at each rank in a given interval. It

is natural to wonder whether the resulting list of integers is unimodal. This is true

for every interval in the figure, but since these intervals are very small this does not

provide much evidence for the general case.

Remark 4.5.15. There is one respect in which Theorem 4.5.10 is lacking: it only characterizes

the covering relation in PCode “from above.” That is, given a code C, this theorem does not

provide a recipe to nicely enumerate the codes that cover C. We have come close to achieving

such a result in unpublished work, though we have not found a way to make the classification



76

elegant beyond the limited case of intersection complete codes. We welcome any readers who

are interested in such a result to get in touch (email is best) for discussion and collaboration.



77

Rank 4

Rank 3

Rank 1

Rank 0

Rank 2

Figure 4.4: The first five ranks of PCode.



78

Chapter 5

k-FLEXIBLE SUNFLOWERS OF OPEN CONVEX SETS
AND APPLICATIONS

In this chapter we study arrangements of convex sets called “sunflowers.” All of the sets

in a sunflower have a nonempty common intersection, but not too many meet outside of this

common intersection (see Definition 5.1.1 below). Note that sunflowers of finite sets have

been studied combinatorially in the context of the “sunflower conjecture”, see for example

[ALWZ20, ER60]. Our work is purely geometric, and only treats sunflowers of convex sets.

These arrangements provide a wide range of novel results regarding the discrepancies between

open and closed embedding dimensions of codes.

We begin in Section 5.1 by establishing a general discrete geometry theorem (Theorem

5.1.13) that relates the geometric structure of an open convex sunflower to the dimension of

the ambient space it sits in. Importantly, this theorem does not apply to sunflowers of closed

convex sets. In subsequent sections we highlight five distinct applications of this theorem,

each consisting of a family of codes whose embedding dimensions are understood via this

theorem. In Section 5.7 we present a family of codes whose embedding dimensions can be

partially characterized by this theorem. Finally, we generalize some of our families of codes

in Section 5.8.

The content of this chapter comes from several papers. Most of the content (Sections 5.1,

5.2, 5.3, 5.7, 5.8) comes from [Jef19a]. Section 5.6 contains the chronologically first general

application of sunflowers to the study of convex codes, which appeared in [Jef19b]. The

results in Section 5.4 come from joint work with Caitlin Lienkaemper and Nora Youngs in

[JLY20], and the results in Section 5.5 come from joint work with Brianna Gambacini, Sam

Macdonald, and Anne Shiu in [GJMS20].



79

5.1 A Geometric Theorem Regarding k-Flexible Sunflowers of Open Convex
Sets

We begin by formally defining sunflowers, as well as more general arrangements called k-

flexible sunflowers.

Definition 5.1.1. Let U = {U1, . . . , Un} be a collection of convex sets. We say that U is

a sunflower if Ui ∩ Uj = U[n] 6= ∅ for all 1 ≤ i < j ≤ n. Equivalently, U is a sunflower if

code(U) contains [n] and all other codewords have weight at most one.

Definition 5.1.2. Let U = {U1, . . . , Un} be a collection of convex sets. We say that U is a

k-flexible sunflower if Uσ = U[n] 6= ∅ for every σ ⊆ [n] with |σ| ≥ k + 1. Equivalently, U is a

k-flexible sunflower if code(U) contains [n] and all other codewords have weight at most k.

Definition 5.1.3. If U = {U1, . . . , Un} is a k-flexible sunflower, we say that the Ui are petals,

and U[n] is the center of U .

Note that a sunflower is simply a 1-flexible sunflower. As indicated in the definition

above, we will only consider sunflowers of convex sets. Moreover, we almost always work

with sunflowers of open convex sets.

Remark 5.1.4. In terms of neuroscientific motivation, flexible sunflowers are natural to in-

vestigate. Allowing codewords beyond singletons, but of a fixed weight, accounts for some

tolerance to error in data gathering and captures a wider range of codes. We hope that

flexible sunflowers and our subsequent results may aid in the analysis of experimental data.

Example 5.1.5. Figure 5.1 shows four different open k-flexible sunflowers. In part (c), the

center of the sunflower is an open cube, and three of the petals are Minkowski sums of the

cube with line segments in the three coordinate directions. The fourth petal is the Minkowski

sum of the cube with a line segement in the direction (−1,−1,−1). Part (d) of the figure

is constructed similarly using an open triangular prism for the center, and letting the five

petals be Minkowski sums of the prism with line segments in the facet normal directions.



80

Figure 5.1: Open k-flexible sunflowers with n petals in Rd for various choices of k, n, and d.

(a) k = 1, n = 3, d = 2. (b) k = 2, n = 5, d = 2. (c) k = 1, n = 4, d = 3. (d) k = 1, n = 5,

d = 3.



81

To build up to our main theorem, we require one more definition and several technical

lemmas.

Definition 5.1.6. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd with center

U . A point b ∈ ∂U is called well supported if b does not lie in cl(∂U ∩Ui) \Ui for any i ∈ [n].

Remark 5.1.7. In [Jef19a] we used a slightly different (but equivalent) definition of well

supported points. We prefer the definition above because it allows us to avoid difficulties

that arise from examining boundaries in a subspace topology.

Example 5.1.8. Figure 5.2 shows the open sunflower from Figure 5.1(c), highlighting in black

the points in the boundary of the center that are not well-supported.

Figure 5.2: Points that are not well-supported in a sunflower in R3.

Lemma 5.1.9. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd with center U .

Then well supported points form a dense subset of ∂U .

Proof. For each i ∈ [n], let Xi = cl(∂U ∩ Ui) \ Ui. Well supported points are exactly those

in ∂U that do not lie in any Xi. Thus it will suffice to show that each Xi has a dense

complement in ∂U .



82

Let p be any point in ∂U . To show that ∂U \ Xi is dense in ∂U , we must show that p

lies in the closure of ∂U \Xi. It suffices to examine the case where p ∈ Xi. In this case, p

lies in the closure of ∂U ∩ Ui, but not in Ui. In particular, p lies arbitrarily close to points

in ∂U ∩ Ui. But ∂U ∩ Ui is a subset of ∂U \ Xi. Thus p lies arbitrarily close to points in

∂U \Xi, and hence lies in the closure of this set. This proves the result.

In the remainder of this section we adopt the convention that supporting hyperplanes for

a convex set are always oriented so that the set lies on the positive side of the hyperplane.

Lemma 5.1.10. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd with center

U , and let b ∈ ∂U be well supported. Let Hb be a supporting halfspace for U at b, and let

σ = {i ∈ [n] | b /∈ Ui}. Then Ui ⊆ H>
b for all i ∈ σ.

Proof. Suppose not, so that there exists i ∈ σ for which Ui is not contained in H>
b . Since

Ui is open, we may assume that there exists a point p ∈ Ui strictly on the negative side of

Hb. Then choose any point q ∈ U , and consider the line segment qb. All points on this line

segment other than b lie in U . For each r ∈ qb with r 6= b, note that the line segment pr is

contained in Ui and intersects ∂U since it begins in the interior of U and ends outside of U .

Figure 5.3: An example in R2 of the objects used to prove Lemma 5.1.10. The bolded

segment of ∂U is contained in Ui, and has b as a limit point.



83

The set of these intersection points is a subset of Ui ∩ ∂U whose closure contains b (see

Figure 5.3 for an illustration in R2). In particular, b lies in cl(∂U ∩ Ui). But since b /∈ Ui,

we have that b ∈ cl(∂U ∩Ui) \Ui. This contradicts the fact that b is well supported, proving

the result.

Lemma 5.1.11. Let U ⊆ Rd be a convex open set. Let B be a dense subset of the boundary

of U , and for each b ∈ B let Hb be a supporting hyperplane to U at b. Then
⋂
b∈BH

>
b is

contained in cl(U).

Proof. Consider any point p /∈ cl(U). It will suffice to show that p /∈
⋂
b∈BH

>
b . In particular,

we will show that there exists b ∈ B such that p /∈ H>
b .

Since p lies a positive distance away from U , the intersection of int(conv({p} ∪ U)) with

∂U is a relatively open subset of ∂U , and thus contains some b ∈ B. Since int(conv({p}∪U))

is open, the line segment pb can be extended so that it ends at a point q ∈ U , as shown in

Figure 5.4.

Figure 5.4: An example in R2 of the objects used to prove Lemma 5.1.11.

Now, consider the supporting hyperplane Hb. We have U ⊆ H>
b . In particular, H>

b

contains q but not b. Since b lies between q and p, we see that H>
b does not contain p. Thus

p /∈
⋂
b∈BH

>
b and the lemma follows.



84

Finally, we recall Tverberg’s theorem. After stating this theorem, we are ready to prove

Theorem 5.1.13, our main result.

Theorem 5.1.12 (Tverberg’s theorem). Let d ≥ 1, r ≥ 2, and n = (d+ 1)(r − 1) + 1. For

any set of points P = {p1, . . . , pn} in Rd, there is a partition of P into r parts P1, . . . , Pr

such that
⋂r
i=1 convPi 6= ∅.

Theorem 5.1.13 (Flexible Sunflower Theorem). Let U = {U1, . . . , Un} be an open k-flexible

sunflower in Rd. Suppose that n ≥ dk + 1, and for each i ∈ [n] let pi ∈ Ui. Then

conv{p1, . . . , pn} contains a point in the center of U .

Proof. It suffices to prove the first statement for n = dk + 1. Let U denote the center of U .

Suppose for contradiction that the theorem does not hold, so that conv{p1, . . . , pn} does not

contain a point in U . Since the Ui are open, we may move each pi a fixed distance ε away

from a chosen point p ∈ U , and choose a separating hyperplane H between conv{p1, . . . , pn}

and U such that H does not contain any boundary point of U . Moreover, we can replace

each pi by the intersection of the line segment pip with H, so that all pi lie inside H.

Now, H has dimension d − 1, and n = ((d − 1) + 1)k + 1. Thus we may apply Tver-

berg’s theorem with parameter r = k + 1 to our points {p1, . . . , pn}. We obtain a partition

P1, . . . , Pk+1 such that
⋂k+1
i=1 convPi 6= ∅. Choose any point p′ lying in this intersection, and

observe that p′ ∈ H. Note that the point p′ does not lie in U , and so p′ lies in at most k

petals of U .

Let B be the set of well supported points in ∂U , and choose supporting halfspaces {Hb |

b ∈ B} as per Lemma 5.1.10. By Lemma 5.1.10, each H>
b contains all pj except for at most

k. In particular, for every b ∈ B there must be some Pi such that H>
b contains all points in

Pi, and hence also their convex hull. Thus p′ ∈ H>
b for all b ∈ B. But by Lemma 5.1.11,

this implies that p′ ∈ U . Since p′ ∈ H and H was constructed not to contain U or any of its

boundary points, this is a contradiction.

Below we state an immediate corollary in the case k = 1. This version was proved in



85

[Jef19b], before the general case. For most of the applications in this chapter, we will only

need this k = 1 version of the theorem.

Note that when k = 1 the application of Tverberg’s theorem in the proof above reduces

to an application of Radon’s theorem. This proof technique was first suggested to us in 2018

by Zvi Rosen for the k = 1 case. At the time we instead used a more convoluted proof.

Corollary 5.1.14 (Sunflower Theorem). Let U = {U1, . . . , Un} be an open sunflower in Rd.

Suppose that n ≥ d + 1, and for each i ∈ [n] let pi ∈ Ui. Then conv{p1, . . . , pn} contains a

point in the center of U .

Example 5.1.15. Figure 5.5 shows Theorem 5.1.13 in action for the open k-flexible sunflowers

illustrated earlier in Figure 5.1. In all cases n ≥ dk + 1, and so the theorem applies.

Remark 5.1.16. Corollary 5.1.14 and Theorem 5.1.13 have equivalent formulations in terms

of “slicing” petals with affine subspaces of certain dimensions. For example, see [Jef19b,

Corollary 2.2].

Example 5.1.17. Theorem 5.1.13 fails dramatically for closed k-flexible sunflowers. Indeed,

for any n we may construct a closed sunflower X = {X1, . . . , Xn} in R2 consisting of line

segments that meet at a common point, and choose points pi ∈ Xi for all i ∈ [n] such that

conv{p1, . . . , pn} does not intersect the center of X . This is shown in Figure 5.6.

The inequality n ≥ dk+1 in Theorem 5.1.13 is tight in the following sense: for every d ≥ 2

and every k ≥ 1 there exists an open k-flexible sunflower in Rd with n = dk petals for which

the conclusion of the theorem fails. The following proposition formalizes this observation.

Proposition 5.1.18. Let d ≥ 2 and k ≥ 1. Then there exists an open k-flexible sun-

flower U = {U1, . . . , Un} in Rd with n = dk, and points p1 ∈ U1, . . . , pn ∈ Un such that

conv{p1, . . . , pn} does not contain a point in the center of U .

Proof. For k = 1, we begin with an open unit hypercube in Rd centered at the origin, and

let Ui be the Minkowski sum of this hypercube with a line segment from the origin to a large



86

Figure 5.5: Theorem 5.1.13 applied to the open k-flexible sunflowers of Figure 5.1. In each

case conv{p1, . . . , pn} is shown in black, and has nonempty intersection with the center of

the k-flexible sunflower in question.



87

Figure 5.6: A construction showing that Theorem 5.1.13 fails for closed sunflowers.

positive multiple of ei. We can see that the Ui form an open convex sunflower with d petals,

and our desired pi are just the large multiples of ei.

For k ≥ 2, we can take the sunflower described above and duplicate each of the d petals

k times. This creates a k-flexible sunflower, and the same choice of pi (with each duplicated

k times) proves the result.

Remark 5.1.19. One might argue that the construction used to prove Proposition 5.1.18 is

unsatisfying, since many of the petals involved are equal. One could address this as follows.

Start with the usual coordinate-direction sunflower whose center is a unit hypercube, as

described in the proof. If k = 1 we are done. Otherwise, choose a cyclic permutation w

of [d], for example i 7→ i + 1 mod d. Then, we can duplicate each petal in our coordinate-

direction sunflower k times, but when duplicating the i-th petal we “skew” it slightly in the

direction of −ew(i). If each duplicated petal is skewed a different amount, our petals are

distinct and diverge from one another. As long as we skew an appropriately small amount,

this yields the desired k-flexible sunflower. Figure 5.7 illustrates this modified construction.

We conclude with a corollary which examines the extremal case in which we have an open

k-flexible sunflower U = {U1, . . . , Un} with n = dk petals for which Theorem 5.1.13 fails. In

this case Theorem 5.1.13 implies code(U) must contain at least one codeword of weight k,

but we can actually say something slightly stronger:



88

Figure 5.7: A construction proving Proposition 5.1.18 when d = 2 and k = 3.

Corollary 5.1.20. Let U = {U1, . . . , Un} be an open k-flexible sunflower in Rd. Suppose

that n = dk, and there exist points p1, . . . , pn such that pi ∈ Ui and conv{p1, . . . , pn} does

not contain a point in the center of U . Then code(U) contains at least d distinct codewords

of weight k.

Proof. We work by induction on k. When k = 1 the result is clear since if there are fewer

than d codewords of weight k in code(U) then some Ui is equal to the center of U , and

so some pi lies in the center of U , a contradiction. For k ≥ 2, suppose for contradiction

that code(U) contains fewer than d codewords of weight k. For each of these codewords c,

select some petal Ui with i ∈ c. Deleting these Ui yields a (k − 1)-flexible sunflower, and

since we have deleted fewer than d petals our new (k − 1)-flexible sunflower has more than

d(k−1) petals. But the same choice of pi yields a collection of points whose convex hull does

not contain a point in the center of this (k − 1)-flexible sunflower, contradicting Theorem

5.1.13.



89

5.2 Application 1: Arbitrary Disparity Between Open and Closed Embedding
Dimensions

Our first application of the sunflower theorem is to characterize the open and closed embed-

ding dimensions of a family of intersection complete codes. Interestingly, the open and closed

embedding dimensions diverge from one another in this family of codes. Previous tools in the

literature for bounding open embedding dimension—for example Leray dimension or Helly’s

theorem [CV16]—are not able to exactly characterize the open embedding dimension of the

codes below. This demonstrates that our sunflower theorem has some nontrivial immediate

value.

Definition 5.2.1. For n ≥ 1, define Sn ⊆ 2[n+1] to be the code consisting of the following

codewords: [n], all singleton sets, all pairs {i, n+ 1} for 1 ≤ i ≤ n, and the empty set.

Note that Sn is an intersection complete code. The sunflower theorem can be restated as

follows.

Theorem 5.2.2 (Sunflower Theorem, Code Version). For all n ≥ 1, we have odim(Sn) = n.

Proof. When n = 1, we have Sn = {12, 1, 2, ∅}, which can be realized by two overlapping

open intervals in R1. For n ≥ 2, Sn has n + 1 maximal codewords, and so by [CGIK16,

Theorem 1.2] Sn has an open realization in Rn. We will show that this is the smallest

dimension possible using open convex sets.

Suppose for contradiction that there exists an open realization U = {U1, . . . , Un+1} of Sn
in Rn−1. Observe that {U1, . . . , Un} forms a sunflower, and Un+1 intersects Ui for all i ∈ [n],

but Un+1∩U[n] = ∅ since [n+1] is not a codeword in Sn. Thus for each i ∈ [n] we may choose

pi ∈ Ui ∩ Un+1. The convex hull conv{p1, . . . , pn} is contained in Un+1 and so does not meet

U[n]. But Corollary 5.1.14 implies that this convex hull must meet U[n], a contradiction.

Proposition 5.2.3. For all n ≥ 2 we have cdim(Sn) = 2. Furthermore, cdim(S1) = 1.

Proof. Observe that S1 can be realized by two overlapping closed line segements in R1. To

see that cdim(Sn) = 2 for all n ≥ 2, first observe that the code {12,13,23, 1, 2, 3, ∅} is a



90

minor of Sn and has closed embedding dimension equal to two. Thus cdim(Sn) ≥ 2. To

prove that cdim(Sn) ≤ 2, we construct a closed realization X = {X1, . . . , Xn+1} in R2 as

follows. Let {X1, . . . , Xn} be line segments meeting at a common point as in Figure 5.6.

Then let Xn+1 be a line segment meeting all other Xi that does not pass through their

common meeting point. This yields the desired realization, as illustrated in Figure 5.8.

Figure 5.8: A closed realization of Sn in R2.

Example 5.2.4. Let us examine Sn for small values of n. We have

S1 ={12, 1, 2, ∅},

S2 ={12,13,23, 1, 2, 3, ∅},

S3 ={123,14,24,34, 1, 2, 3, 4, ∅}.

Figure 5.9 illustrates open realizations of these codes in R1, R2, and R3 respectively. Theorem

5.2.2 says that these realizations are minimal in dimension.

Taken together, these results show that the gap between open and closed embedding

dimension of a code may be arbitrarily large, even when we are working with intersection

complete codes. Note that this contrasts d-representability of simplicial complexes, a frame-

work in which closed and open sets are interchangeable.

5.3 Application 2: Exponential Open Embedding Dimension

In the previous section we saw that open and closed embedding dimensions may differ from

one another. In this section we go a step further, and show that the open embedding



91

Figure 5.9: Open realizations (a), (b), and (c) of S1, S2, and S3 in dimensions 1, 2, and 3

respectively.

dimension of a code C ⊆ 2[n] can grow as an exponential function of n, even if closed

embedding dimension remains linear in n.

In particular, will associate to every simplicial complex ∆ ⊆ 2[n] an intersection complete

code S∆ ⊆ 2[n+1]. As long as ∆ has at least two facets, the open embedding dimension of

S∆ is exactly the number of facets in ∆, which can be large as a function of n.

Definition 5.3.1. Let ∆ ⊆ 2[n] be a simplicial complex. Define S∆ ⊆ 2[n+1] to be the code

S∆ := (∆ ∗ (n+ 1)) ∪ {[n]},

where ∆ ∗ (n+ 1) denotes the cone over ∆ with apex n+ 1.

Note that the code Sn of Definition 5.2.1 is equal to S∆ where ∆ = {1, . . . ,n, ∅}. We

start with some straightforward structural observations about the code S∆.

Proposition 5.3.2. Let ∆ ( 2[n] be a simplicial complex with m facets. Then S∆ is inter-

section complete and has m+ 1 maximal codewords. In particular, odim(S∆) ≤ max{2,m}.

Proof. First note that S∆ \ {[n]} is a simplicial complex. Adding a single codeword to a

simplicial complex always yields an intersection complete code, so S∆ is intersection complete.

Let F1, . . . , Fm be the facets of ∆. Observe that the maximal codewords of S∆ are either

facets of ∆∗ (n+1), or equal to [n]. The facets of ∆∗ (n+1) are just Fi∪{n+1} for i ∈ [m].



92

Since ∆ ( 2[n], [n] is also a maximal codeword of S∆, so S∆ has m+1 maximal codewords in

total. The bound odim(S∆) ≤ max{2,m} then follows immediately from [CGIK16, Theorem

1.2].

In fact, the bound max{2,m} in the above proposition is tight, as we will show below.

One consequence of this result is that the construction used to prove [CGIK16, Theorem 1.2]

is best possible in terms of dimension, at least when we are working with general intersection

complete codes.

Proposition 5.3.3. Let ∆ ( 2[n] be a simplicial complex with m facets. Then Sm is a minor

of S∆.

Proof. Label the facets of ∆ as {σ1, . . . , σm}, and define σm+1 = {n + 1}. For i ∈ [m + 1]

define Ti = TkS∆
(σi), and let f : S∆ → 2[m+1] be the morphism determined by the collection

of trunks {T1, . . . , Tm+1}. We claim that f(S∆) = Sm. For any codeword c ∈ S∆, we can

compute that

f(c) =



[m] if c = [n],

{i,m+ 1} if c = σi ∪ {n+ 1} for some i ∈ [m],

{i} if c = σi for some i ∈ [m],

{m+ 1} if c = σ ∪ {n+ 1} where σ is a proper face in ∆,

∅ if c = σ where σ is a proper face in ∆.

These possibilities exactly correspond to the codewords of Sm. Thus f(S∆) = Sm and the

result follows.

Theorem 5.3.4. Let ∆ ( 2[n] be a simplicial complex with m ≥ 2 facets. Then odim(S∆) =

m.

Proof. By Proposition 5.3.2 we know that odim(S∆) ≤ m. Corollary 4.3.5, Proposition 5.3.3,

and Theorem 5.2.2 together tell us that odim(S∆) ≥ odim(Sm) = m, proving the result.



93

Figure 5.10: A visualization of the codes S∆ in PCode.

Remark 5.3.5. One way to think of Proposition 5.3.3 is as follows. The set

{S∆ | ∆ is a simplicial complex with m facets}

inherits a partial order from PCode, and with this inherited order Sm is the unique minimal

element of the set. Theorem 5.3.4 says that for m ≥ 2 all of these live in the “layer” of codes

with open embedding dimension m. An informal visualization of this situation is shown in

Figure 5.10.

We highlight two immediate and striking consequences of Theorem 5.3.4 below.

Corollary 5.3.6. For any n ≥ 2 and 1 ≤ m ≤
(

n−1
b(n−1)/2c

)
, there exists an intersection

complete code on n neurons with m+ 1 maximal codewords, and open embedding dimension

equal to m.

Proof. For m = 1, the code {1, ∅} suffices. For m ≥ 2 we apply Theorem 5.3.4. Among

all
(

n−1
b(n−1)/2c

)
subsets of [n − 1] with size b(n − 1)/2c, we may select m. Letting ∆ be the

simplicial complex with these subsets as its facets, we see that S∆ is the desired code.

Corollary 5.3.7. For any n ≥ 2, let En := S∆ ⊆ 2[n] where ∆ is the (b(n−1)/2c−1)-skeleton

of the simplex 2[n−1]. Then odim(En) =
(

n−1
b(n−1)/2c

)
, and cdim(En) ≤ n − 1. In particular,

odim(En) grows exponentially as a function of n, while cdim(En) is no more than linear.



94

Proof. Note that the (b(n − 1)/2c − 1)-skeleton of the simplex 2[n−1] has m =
(

n−1
b(n−1)/2c

)
facets, which grows exponentially as a function of n. The fact that cdim(En) ≤ n− 1 follows

from Theorem 2.3.7 since En is intersection complete.

Remark 5.3.8. From the perspective of the neuroscience which motivates the study of convex

codes, Corollary 5.3.7 has the following interpretation: theoretically, n neurons may “recog-

nize” dimensions that are exponentially large in n. Whether such a phenomenon ever occurs

in experimental data could be an interesting avenue of investigation.

These results are qualititatively surprising from a mathematical perspective. The codes

S∆ are “almost” simplicial complexes (we have added the single codeword [n] to a simplicial

complex), but their open embedding dimensions grow exponentially faster than that of any

simplicial complex. These codes also provide the first example of codes whose embedding

dimension (open or closed) is larger than n− 1.

Example 5.3.9. The smallest value of n for which
(

n−1
b(n−1)/2c

)
> n − 1 is n = 5. In this case

6 =
(

n−1
b(n−1)/2c

)
> n− 1 = 4, and

E5 ={1234,125,135,145,235,245,345,

12, 13, 14, 15, 23, 24, 25, 34, 35, 45,

1, 2, 3, 4, 5, ∅}.

Corollary 5.3.7 implies that odim(E5) = 6. We do not know whether it is possible for

embedding dimension to exceed one less than the number of neurons with fewer than six

neurons, i.e. whether there exists a code C ⊆ 2[5] such that 4 < odim(C) <∞. Recent work

in [GP20] characterizes which codes on five neurons are open convex, but not their exact

embedding dimensions.

5.4 Application 3: Monotonicity of Convexity is Strict in Every Dimension

In Section 1.4 we recalled the “monotonicity of open convexity” result from [CGIK16, The-

orem 1.3]. This result states that if C ⊆ D are codes with the same maximal codewords,



95

then odim(D) ≤ odim(C) + 1. In general, this bound need not be tight. For example, if

C = {123, 12, 2, 3, ∅} and D = {123, 12, 13, 2, 3, ∅}, we have odim(C) = odim(D) = 1.

It is natural to ask whether we can improve odim(C) + 1 to a smaller quantity, such as

odim(C). In this section we will see that we cannot improve this bound, no matter what

value odim(C) takes. In other words, no matter what the open embedding dimension of

a code is, it is possible that the open embedding dimension will strictly increase when we

add a new non-maximal codeword. This result was first obtained in joint work with Caitlin

Lienkaemper and Nora Youngs (see [JLY20]) and we duplicate our proof below with slight

modification of notation and one additional illustration.

We will prove our result by examining a particular family of codes, defined below. As we

did in Section 4.5 (in particular Definition 4.5.7), we make use of neurons decorated by an

overline to simplify our notation. When σ ⊆ [n], we let σ = {i | i ∈ σ}, and the neurons in

σ are distinct from those in σ.

Definition 5.4.1. Let n ≥ 1. The n-th prism code, denoted Pn, is the code on neurons

{1, 2, . . . , n+ 1} ∪ {1, 2, . . . , n+ 2} which has the following codewords:

(i) All subsets of ([n+ 1] \ {i}) ∪ {i} for all i ∈ [n+ 1], and

(ii) [n+ 2].

Observe that Pn is intersection complete and has n+ 2 maximal codewords. We start by

characterizing the open embedding dimension of Pn.

Proposition 5.4.2. For all n ≥ 1, we have odim(Pn) = n.

Proof. Note that every n-subset of [n+1] appears in some codeword of Pn but [n+1] does not

appear in any codeword. This implies that the receptive fields of the neurons 1, 2, . . . , n+ 1

in any realization of Pn will have a nerve that is the boundary of a n-simplex. This can only

occur in dimension n or higher (see [Tan13, Section 1.2] or [CV16] for further details), and

so odim(Pn) ≥ n. To prove that odim(Pn) ≤ n, we must exhibit an open realization of Pn
in Rn.



96

For n = 1, we have P1 = {12,12,123, 1, 2, 1, 2, ∅}. In this case an open realization

is given by U1 = (−3,−1), U2 = (2, 4), U1 = (0, 3), U2 = (−2, 1), U3 = (0, 1). From here

onwards we will assume n ≥ 2.

First choose points p1, . . . , pn where pi = ei in Rn. Also choose pn+1 = −1, the vector

whose entries are all −1. For i ∈ [n + 1] define Fi to be the facet conv{pj | j 6= i} of the

n-simplex conv{p1, . . . , pn+1}, and let Ui to be the Minkowski sum of Fi with a small ball

of radius ε. Choose a small n-simplex with center of mass at the origin and facet normal

vectors equal to the various pi, and let U denote its interior. For i ∈ [n+ 1] define Ui to be

Minkowski sum of U with a ray in the direction of pi. Lastly, define Un+2 to be equal to U .

Observe that we may choose U small enough that its closure is contained in the interior of

conv{p1, . . . , pn+1}. We may then choose ε small enough that the various Ui do not intersect

U . Let D ⊆ 2[n+1]∪[n+2] denote the code of the realization U = {U1, . . . , Un+1, U1, . . . , Un+2}.

We claim that D has the same maximal codewords as Pn, and that D ⊆ Pn.

Let us first determine the maximal codewords that arise in D. One maximal codeword

is [n+ 2], which arises only inside U . The codeword([n + 1] \ {i}) ∪ {i} arises in a small

neighborhood of the point pi, and it is maximal since this neighborhood can be separated

from Ui and all Uj with j 6= i by a hyperplane with normal vector equal to pi. This shows

that the maximal codewords of Pn arise as maximal codewords in D.

We must argue that no other maximal codewords arise. Clearly the only maximal code-

word containing n+ 2 is [n+ 2] since U = Un+2 is disjoint from all Ui. The other possibilities

are a maximal codeword that contains [n+ 1] or a maximal codeword that contains {i, i} for

some i ∈ [n+ 1]. The former is impossible since we have chosen ε small enough that various

Ui do not intersect U and thus do not all meet at a single point. The latter is impossible

because Ui and Ui are separated by a hyperplane parallel to Fi. Thus the maximal codewords

arising in D are exactly those in Pn.

We next show that the non-maximal codewords in D are codewords in Pn. First let

us consider the codewords of D that do not contain any i ∈ [n + 1]. By construction

the various Ui only overlap inside U , and so the only codewords of this type in D are the



97

singleton codewords {i} for i ∈ [n + 1], which arise near the face of cl(U) with normal

vector pi (and Un+2 = U , so {n+ 2} does not arise as a singleton codeword). Any other

codeword of D contains a neuron i ∈ [n+1] and is thus contained in some maximal codeword

([n+ 1] \ {i}) ∪ {i}. But Pn contains all subsets of ([n+ 1] \ {i}) ∪ {i} and so we conclude

that D ⊆ Pn.

We now modify our realization U = {U1, . . . , Un+1, U1, . . . , Un+2} to obtain a realization

of Pn by applying techniques of [CGIK16, Section 5.4]. Since we are working in Rn we

may choose an open ball B whose boundary contains every pi. Let us replace every set in

our realization by its intersection with B. The resulting code is still contained in Pn, and

since B contains the interior of conv{p1, . . . , pn+1} it still has the same maximal codewords.

Moreover, the atoms of the maximal codewords ([n+ 1] \ {i})∪{i} now have closures which

intersect the boundary ∂B of B in a relatively open subset. The proof technique of [CGIK16,

Lemma 5.7] together with the fact that n ≥ 2 implies that we may repeatedly “shave off”

pieces of the sets in our realization near this region to add the desired non-maximal codewords

contained in {1, 2, . . . , n+ 1, i} \ {i}, obtaining a realization of Pn in Rn.

Example 5.4.3. Figure 5.11 shows an open realization of

P2 ={123,123,123,1234, 12, 13, 23, 12, 13, 21, 23, 31, 32, 1, 2, 3, 1, 2, 3, ∅}

in R2 as given by the proof of Proposition 5.4.2. The “shaved off” regions arise at the

rounded corners, realizing the codewords 12, 13, and 23. Observe that we could not modify

this realization to add 4 as a codeword since any extension of U4 outside the central triangle

would overlap U1, U2, or U3. We will formalize this observation in Theorem 5.4.4.

Theorem 5.4.4. Let n ≥ 1. Then odim(Pn ∪ {{n+ 2}}) = n + 1. That is, adding a

non-maximal codeword to Pn may increase its open embedding dimension.

Proof. Let C = Pn∪{{n+ 2}}. By monotonicity of convexity and Proposition 5.4.2 we know

that odim(C) ≤ n+ 1. It remains to show that there is no realization of C in Rn.



98

Figure 5.11: An open realization of P2 in R2.

Suppose for contradiction that there exists an open realization U = {U1, . . . , Un+1, U1, . . . , Un+2}

of C in Rn. Since the only codeword in C containing i and j for i 6= j is [n+ 2], the sets

U1, . . . , Un+2 form a sunflower in Rn. Call its center U , and for each i between 1 and n + 1

choose a point pi in the intersection Ui ∩
⋂
j 6=i Uj. Since the region Ui ∩

⋂
j 6=i Uj is open, we

may assume that the pi are in general position, so that their convex hull is an n-simplex.

Corollary 5.1.14 tells us that conv{p1, . . . , pn+1} contains a point in U . In fact, we claim

that this convex hull contains the entirety of U . If not, then U would have to cross one of



99

the facets of the simplex conv{p1, . . . , pn+1} (since we are working in Rn). By choice of pi

each of these facets is contained in some Uj. Since U is disjoint from all Uj, it cannot cross

any of these facets. Thus U is contained in conv{p1, . . . , pn+1}.

Since {n+ 2} is a codeword in C, we may choose a point p ∈ Un+2 \ U , and examine a

generic line segment L from p to a point in U . The line L crosses ∂U at a well-supported

point b (recall Definition 5.1.6). Let Hb be a supporting hyperplane for U at b. By Lemma

5.1.10 all Ui with i ∈ [n + 1] lie on the same side of Hb as U . In particular, Hb separates p

from pi for all i ∈ [n+ 1], and so p does not lie in conv{p1, . . . , pn+1}.

Since U is contained in conv{p1, . . . , pn+1}, the line L crosses the boundary of this simplex.

Since L is contained in Un+2 this implies that Un+2 intersects some Ui. But the only codewords

of C containing n+ 2 are {n+ 2} and [n+ 2], so this is a contradiction. Thus C is not convex

in Rn and the result follows.

These results help us better understand monotonicity of open convexity for codes. In the

following section, we turn our attention to the question of whether the same results hold for

closed embedding dimension. As we will see, the answer to this question is “no” in a variety

of ways.

5.5 Application 4: Monotonicity of Convexity Fails With Arbitrarily Large
Gap for Closed Convexity

The monotonicity of convexity theorem of [CGIK16] states that if C ⊆ D are codes with the

same maximal codewords, then odim(D) ≤ odim(C) + 1. The authors in [CGIK16] indicated

that they did not know whether the same result held for closed embedding dimension. In this

section we show that this result is not true for closed embedding dimension. More strongly,

we will show that adding a new non-maximal codeword to a code C can increase its closed

embedding dimension by any amount (including increasing it to infinity).

These results were first obtained in joint work with Brianna Gambacini, Sam MacDonald,

and Anne Shiu [GJMS20]. Here we present these results with slightly abridged proofs, and

slightly different notation for consistency with the rest of this work. Our first main result



100

is Theorem 5.5.2, which provides an example of a code whose closed embedding dimension

increases from 2 to infinity with the addition of a single non-maximal codeword. After this,

we prove Theorem 5.5.6, which shows that closed embedding dimension may increase from

2 to n for any finite choice of n ≥ 3.

We require a lemma regarding a code C2, which we will use to prove our first theorem.

Our use of the name C2 for this code will become clear in Section 5.6, where we will define a

family of codes {Cn | n ≥ 2} and investigate their open realizations. For now we require only

a supplemental lemma regarding closed realizations of this code. Recall that a convex set

Y ⊂ Rd is full-dimensional if its affine hull is Rd. Note that a convex set is full-dimensional

if and only if it has nonempty interior.

Lemma 5.5.1. The code

C2 = {1233,132,231,123, 13, 23, 1, 2, 3, ∅}

has closed embedding dimension equal to two, and every closed realization X = {X1, X2, X3,

X1, X2, X3} of C2 in R2 is such that X123 is not full-dimensional.

Proof. A closed realization of C2 in R2 is shown in Figure 5.12. One cannot form a closed

realization in R1 because ∆(C2) has a nontrivial first homology group.

Figure 5.12: A closed realization of C2 in R2.



101

To prove the rest of the lemma, let X = {X1, X2, X3, X1, X2, X3} be a closed realization

of C2 in R2. We will show that X123 is not full-dimensional. Below, we let Ui denote the

interior of Xi for i ∈ [3].

Suppose for contradiction that X123 is full-dimensional. Then X1, X2, and X3 are full-

dimensional, and we see that {U1, U2, U3} is an open sunflower.

Next, X3 is disjoint from X123 and so there exists a line L properly separating the two

sets. Since each of {X1, X2, X3} intersects both X3 and X123, the line L passes through Ui for

each i ∈ [3]. But now {U1, U2, U3} is an open sunflower in R2, and the line L passes through

all three petals, but not the center of this sunflower. This contradicts Corollary 5.1.14, and

so X123 is not full-dimensional.

With this lemma, we are ready to prove our first main result.

Theorem 5.5.2 (Closed convexity is non-monotone). Consider the code

A0 = {1233,1325,2314,12345, 13, 23, 14, 25, 3, ∅}.

This code has closed embedding dimension equal to 2, but A0 ∪ {345} has closed embedding

dimension equal to ∞.

Proof. Notice that A0 is isomorphic to the code C2 from Lemma 5.5.1; we have simply added

neurons 4 and 5 which duplicate 1 and 2 respectively. Thus cdim(A0) = cdim(C2) = 2.

Now let A∗0 = A0∪{345}, and suppose for contradiction that there is a closed realization

X = {X1, X2, X3, X1, X2, X3, X4, X5}

of A∗0 in Rd. We see that d = 1 is impossible since ∆(A∗0) has nontrivial first homology

group. Thus we may assume that d ≥ 2.

Let p1 ∈ X2314, p2 ∈ X1325, and p3 ∈ X345 \X12345 (so, pi ∈ Xi and the three points are

distinct). Let A be a 2-dimensional affine subspace of Rd containing p1, p2, and p3. Define

Yi = Xi ∩A and Yi = Xi ∩A for all i and i. We claim that Y = {Y1, Y2, Y3, Y1, Y2, Y3, Y4, Y5}



102

is a realization of A∗0 in A (i.e. in R2), and moreover that Y123 is full-dimensional in this

realization.

Clearly the code of Y is contained in A∗0 since X realizes A∗0. So, we must show that

every codeword from A∗0 arises inside A. By choice of p1, p2, and p3, A automatically contains

points that realize the codewords 2314, 1325, and 345.

Consider the line segment L1 from p3 to p2. This line segment is contained entirely in X5,

and so the codewords which appear along it must come from the set {345, 12345, 25, 1325}. In

fact, each of these codewords must appear, and in exactly this order, since the code along the

line segment must be a 1-dimensional code (see the arguments in [RZ17]). A symmetric argu-

ment shows that the line segment L2 from p3 to p1 has the codewords {345, 12345, 14, 2314}

along it in that order. Finally, a similar argument shows that the line segment L3 from p1

to p2 has along it the codewords {2314, 23, 1233, 13, 1325} in that order. This is shown in

Figure 5.13(a).

It remains to show that the codewords 3 and ∅ arise in A. The codeword 3 can be

recovered by examining a line segment from p3 to a point in Y1233, and ∅ can be obtained by

assuming that Y is bounded.

To see that Y123 is full-dimensional in A, we again consider the line segments L1, L2,

and L3. The points p1, p2, and p3 must be in general position: the codeword 2314 that p1

gives rise to does not appear on the line segment L1 between p2 and p3, the codeword 1325

corresponding to p2 does not appear on L2, and the codeword 345 corresponding to p3 does

not appear on L3. Thus p1, p2, p3 define a triangle in R2 with edges L1, L2, L3, as shown in

Figure 5.13.

Next, L1 and L2 both pass through Y12345 and intersect only at p3, so we may choose

distinct points q1 and q2 in L1∩Y12345 and L2∩Y12345, respectively. Now consider the triangles

T1 and T2 with respective vertex sets {q1, q2, p1} and {q1, q2, p2} (see the figure). The vertices

of T1 are contained in Y1, so T1 ⊂ Y1. Similarly, T2 ⊂ Y2. Hence, T1 ∩ T2 ⊂ Y1 ∩ Y2. The

intersection T1 ∩T2 is full-dimensional (the doubly shaded region in part (b) of Figure 5.13),

and therefore so is Y1 ∩ Y2.



103

Figure 5.13: (a) The line segments L1, L2, and L3 and the codewords that appear along

them. (b) The triangles T1 and T2.

However, Y1 ∩ Y2 = Y123 (because only the codeword 12345 contains both neurons 1 and

2). By deleting the sets Y4 and Y5, we obtain a closed realization Y ′ = {Y1, Y2, Y3, Y1, Y2, Y3}

of the code C2 in A ∼= R2 with Y123 full-dimensional. This contradicts Lemma 5.5.1, proving

the result.

Remark 5.5.3. Previous works such as [CGIK16, Lemma 2.9] and [GP20, Theorem 4.1] have

used minimum-distance arguments to prove that certain codes are not closed convex. Our

proof of Theorem 5.5.2 took a different approach, effectively reducing the argument to the

case of open sets. In the future, it would be useful to develop a general set of criteria

that preclude closed convexity, and which prove, as special cases, that the code A0 ∪ {345}

of Theorem 5.5.2 and the relevant codes in [CGIK16, GP20] are not closed convex. Some

general criteria regarding closed convexity have been developed recently in [CJL+20], though

these do not yet prove that A0 ∪ {345} is not closed convex (see [CJL+20, Proposition 5.6]).



104

Theorem 5.5.2 shows that when we add a non-maximal codeword to a code, its closed

embedding dimension may increase to infinity. However, one might hope that if the increase

is finite, then it cannot be too large. This is not the case. As mentioned earlier, adding a

non-maximal codeword may increase the closed embedding dimension by any finite amount,

as we show in our next theorem. To prove this result we first require a lemma similar to

Lemma 5.5.1.

Lemma 5.5.4. Let n ≥ 2, and let X = {X1, X2, . . . , Xn+1} be a closed realization of Sn in

Rd. If d < n, then the region X[n] is not full-dimensional.

Proof. For i ∈ [n] let Ui denote the interior of Xi. If X[n] is full dimensional, then U =

{U1, . . . , Un} is an open sunflower. But then any hyperplane H separating Xn+1 from the

center of U has the property that H∩Ui is nonempty for all i ∈ [n], and H does not intersect

the center of U . When d < n this contradicts Corollary 5.1.14.

We are now ready to prove our second main result, which deals with the following family

of codes.

Definition 5.5.5. For n ≥ 2, let An ⊆ 2[n+1]∪[n] be the code which consists of the following

2n+ 3 codewords:

(i) The following three codewords: [n] ∪ [n], {n+ 1}, and the empty set,

(ii) The codeword {i, i, n+ 1} for all i ∈ [n], and

(iii) The codeword {i, i} for all i ∈ [n].

For i ∈ [n], note that the neurons i and i have identical behavior in An. Thus An is

isomorphic to An|[n+1], which is equal to Sn. The utility of the redundant neurons in [n] is

illustrated in the following theorem.

Theorem 5.5.6 (Large increase in closed embedding dimension). For n ≥ 2, the code An
has closed embedding dimension equal to two, and the code An ∪ {[n]} has closed embedding

dimension equal to n.



105

Proof. The codeAn is isomorphic to Sn, and we have seen in Proposition 5.2.3 than cdim(Sn) =

2 for all n ≥ 2. Two tasks remain: to construct a closed realization of An ∪ {[n]} in Rn, and

to prove that we cannot construct a closed realization in any smaller dimension. Below we

let A∗n := An ∪ {[n]}.

We start by constructing a non-degenerate closed realization of Sn in Rn as follows. For

i ∈ [n] let Xi be the Minkowski sum of a closed unit cube centered at the origin with a

ray in the direction of ei. Then let Xn+1 be the thickened hyperplane in which the sum

of all coordinates is between 2n and 2n + 1. From this realization we may form a closed

realization X = {X1, . . . , Xn+1, X1, . . . , Xn} of An by taking Xi = Xi. All that remains is

to adjust X so that we obtain the codeword [n]. This can be accomplished by replacing

Xi with Xi ∩ H≥ where H≥ is the closed halfspace in which the sum of all coordinates is

nonnegative, yielding a closed non-degenerate realization of A∗n. This construction is shown

for n = 2 in Figure 5.14.

Now it remains only to show that there is no closed convex realization of A∗n in Rn−1.

Suppose for contradiction that we have such a realization X = {X1, . . . , Xn+1, X1, . . . , Xn}.

Choose a point p∗ in the atom of the codeword [n], and for i ∈ [n] choose a point pi in

Xi ∩Xn+1 (i.e., pi lies in the atom of the codeword {i, i, n+ 1}).

For i ∈ [n], let Li denote the line segment from p∗ to pi, and observe that Li ⊂ Xi.

Moreover, the codewords [n], [n] ∪ [n], {i, i}, and {i, i, n + 1} appear along Li in precisely

that order. Also, the codeword {n + 1} must arise along any line segment between distinct

pi. Thus, all codewords of A∗n arise inside the affine span A of {p∗, p1, . . . , pn}.

It follows that by replacing the sets in X by their intersections with A, we obtain a closed

convex realization of A∗n inside A ∼= Rd, for some d ≤ n− 1, such that the convex hull of the

points {p∗, p1, p2, . . . , pn} is full-dimensional (by construction). Observe that d ≥ 2, as A∗n
is not convex in R1.

The code A∗n is invariant under permutations of [n] provided we simultaneously permute

[n] accordingly. Thus we may assume without loss of generality that {p∗, p1, p2, . . . , pd} form

the vertices of a d-simplex ∆ in A.



106

Figure 5.14: A closed realization of A2∪{12} = {1212,131,232, 11, 22, 12, 3, ∅} in R2. Note

that the realization is non-degenerate.

For i ∈ [d], each Li is a distinct edge of ∆. Let qi be a point on Li in the atom of the

codeword [n] ∪ [n]. In particular, pi 6= qi ∈ X[n]. Since the qi lie on distinct edges of ∆, the

affine hull H of {q1, q2, . . . , qd} has dimension d−1 and so is a hyperplane H ⊂ A. We orient

H so that its negative side contains p∗ and hence its positive side contains {p1, p2, . . . , pd}.

For i ∈ [d], let ∆i be the d-simplex with vertices {q1, q2, . . . , qd, pi} and observe that

∆i ⊂ Xi. Since all ∆i lie on the nonnegative side of H and share the common face whose

vertices are {q1, q2, . . . , qd}, we may choose a point q∗ that lies in the interior of all ∆i,

and hence in X[d]. Since d ≥ 2 and {X1, . . . , Xn} is a sunflower, X[d] = X[n]. Thus, q∗

lies in X[n]. The point q∗ lies strictly on the positive side of H, and so the convex hull of

{q∗, q1, q2, . . . , qd} is a d-simplex contained in X[n]. Therefore, X[n] is full-dimensional in A.

Since {X1, . . . , Xn+1} is a realization of Sn and d < n, this contradicts Lemma 5.5.4.



107

Monotonicity of convexity is a useful tool in the study of open convex codes, and we have

just seen that this result fails in a wide variety of ways for closed convex codes. Open con-

vexity is a natural framework from the perspective of neuroscience, as discussed in Chapter

1, and the results of this section show that open convexity can also be more robust than

closed convexity from a mathematical point of view.

5.6 Application 5: An Infinite Family of Locally Good Minimally Non-Open-
Convex Codes

So far, we have used sunflowers to understand the open embedding dimensions of intersection

complete codes, and deepen our understanding of monotonicity of convexity in both the open

and closed cases. We now return to the topic of minimally non-convex codes (recall Definition

4.4.1). We saw in Theorem 4.4.3 that there are infinitely many minimally non-convex codes.

However, the codes described in Theorem 4.4.3 all have local obstructions. In this section we

will use sunflowers to provide an infinite family {Cn | n ≥ 2} of codes that are both locally

good (in fact, locally perfect) and minimally non-convex.

Definition 5.6.1. Let n ≥ 2. Define Cn ⊆ 2[n+1]∪[n+1] to be the code that consists of the

following codewords:

(i) The empty set,

(ii) σ ∪ {n+ 1} for every proper nonempty subset σ of [n],

(iii) {i} for all i ∈ [n+ 1],

(iv) ([n+ 1] \ {i}) ∪ {i} for all i ∈ [n],

(v) The codeword [n+ 1] ∪ {n+ 1}, and

(vi) The codeword [n+ 1].



108

Remark 5.6.2. This family of codes first appeared in [Jef19b] with slightly different notation.

Above, we have used overlined vertices to simplify our presentation of these codes.

Remark 5.6.3. In this section we will show that the codes {Cn | n ≥ 2} are minimally non-

convex, and so in particular odim(Cn) =∞ for all n ≥ 2. Recent work in [CJL+20, Section

6] studies the closed embedding dimensions of this family of codes, in particular showing

that cdim(Cn) ≤ 3 for all n ≥ 2.

Note that the maximal codewords in Cn are those of types (iv), (v), and (vi). Any

realization of Cn essentially comes in two pieces: a sunflower consisting of n+ 1 petals, and a

collection of sets whose nerve is the n-simplex. The petals of the sunflower are incident to the

unique facet region of the n-simplex, as well as regions corresponding to all codimension-1

faces. Slightly more formally, if U = {U1, . . . , Un+1, U1, . . . , Un+1} is a realization of Cn then

we have the following:

• The collection {U1, . . . , Un+1} is a sunflower whose center is disjoint from Un+1. This

follows from codewords of types (iii) and (vi).

• Un+1 is equal to
⋃
i∈[n] Ui. This follows from the fact that n+1 is present in all codewords

that contain any i ∈ [n], together with the fact that {n+ 1} is not a codeword in Cn.

• The collection {U1, . . . , Un} has nerve equal to 2[n]. This follows from the codeword of

type (v), which has [n] as a subset.

• For all i ∈ [n] the petal Ui intersects Un+1 inside the region corresponding to the face

[n] \ {i} of 2[n]. This is described by codewords of type (iv).

• The petal Un+1 covers the region U[n] in Un+1. This region corresponds to the unique

maximal face [n] of 2[n]. This is a result of the codeword of type (v), together with the

fact that this is the only codeword in Cn containing [n] as a subset.

The code Cn is not open convex, as we will argue in Theorem 5.6.4 below. However, one

may informally visualize a realization of Cn as pictured in Figure 5.15.



109

Figure 5.15: An informal illustration of a hypothetical open realization of C3 in R3.

Theorem 5.6.4. The code Cn is not open convex.

Proof. Suppose for contradiction that Cn has an open realization U = {U1, . . . , Un+1, U1, . . . , Un+1}

in Rd. For i ∈ [n], let pi be a point in the atom of the codeword ([n + 1] \ {i}) ∪ {i}. Let

C = conv{p1, . . . , pn}. We claim that C has nonempty intersection with the atom of the

codeword [n+ 1] ∪ {n+ 1}.

Observe that C ⊆ Un+1. Since {U1, . . . , Un} covers Un+1, the collection {U1∩C, . . . , Un∩

C} covers C. Since pi ∈ U[n]\{i} for all i ∈ [n], the nerve ∆ ⊆ 2[n] of this cover contains

[n] \ {i} for all i ∈ [n]. Moreover, the nerve lemma (see [Bjö95, Theorem 10.6]) implies that

∆ is contractible. The only contractible subcomplex of 2[n] that contains [n] \ {i} for all

i ∈ [n] is 2[n] itself. Thus ∆ = 2[n], and there must exist a point pn+1 ∈ U[n] ∩ C. But the

only codeword of Cn that contains [n] is [n + 1] ∪ {n+ 1}, and so pn+1 lies in the atom of



110

this codeword. In particular, pi lies in Ui for all i ∈ [n+ 1].

Choose a point p ∈ U[n+1], and let H be the affine span of {p, p1, . . . , pn}. Then H is

a subspace in Rd of dimension no more than n, and H additionally contains C and hence

pn+1. Note that the collection {U1 ∩H, . . . , Un+1 ∩H} is an open sunflower in H, and pi lies

in the i-th petal of this sunflower. By Corollary 5.1.14, conv{p1, . . . , pn+1} contains a point

in U[n+1]. But all pi lie in Un+1, so this implies that Un+1 has nonempty intersection with

U[n+1]. There are no codewords in Cn that contain {n + 1} ∪ [n+ 1], and so we arrive at a

contradiction. Thus Cn is not open convex.

Our goal in the remainder of this section is to prove that Cn is locally good, and that all

proper minors of Cn are open convex. The following lemma will be a useful tool for both of

these tasks.

Lemma 5.6.5. The code Cn is not max-intersection complete. If we add the codeword {n+1}

to Cn, then the resulting code is max-intersection complete. In other words, M̂(Cn) \ Cn =

{{n+ 1}}.

Proof. The maximal codewords of Cn are exactly those of types (iv)-(vi) in Definition 5.6.1,

i.e.,

(1) ([n+ 1] \ {i}) ∪ {i} for all i ∈ [n],

(2) The codeword [n+ 1] ∪ {n+ 1}, and

(3) The codeword [n+ 1].

We need only examine intersections of these codewords that consist of more than one term.

Any intersection involving codeword (3) is either empty, or equal to {i} for some i ∈ [n+ 1].

Definition 5.6.1 states that both possibilities are codewords in Cn. Intersections consisting of

codewords of type (1) and (2) are of the form [n+ 1] \ σ for some nonempty σ ⊆ [n]. When

σ 6= [n] this is a codeword of type (ii) from Definition 5.6.1. When σ = [n] the resulting



111

intersection is {n + 1}, which is not a codeword in Cn. Thus {n + 1} is the only element of

M̂(Cn) \ Cn, as desired.

Recall that local obstructions in a code can only occur at intersections of maximal code-

words (see [CGJ+17, Lemma 1.4]). Lemma 5.6.5 therefore helps us check that Cn is locally

good, which we do below.

Theorem 5.6.6. The code Cn is locally good.

Proof. We must check that Lk∆(Cn)(σ) is contractible for every σ ∈ M̂(Cn)\Cn. Lemma 5.6.5

tells us that the only case to check is σ = {n + 1}. We may compute that Lk∆(Cn)(n + 1)

is the simplex ∆ with vertex set [n] ∪ {n+ 1} together with simplices ∆i on vertex sets

([n] \ {i}) ∪ {i} glued to it along the faces [n] \ {i}. This complex is contractible since we

may simultaneously retract the simplices ∆i onto ∆, which is then contractible. This link is

shown in Figure 5.16 in the case n = 3.

Figure 5.16: The link of n+ 1 in ∆(Cn) when n = 3.

Remark 5.6.7. Work in [CFS19] generalizes the notion of local obstructions to “local obstruc-

tions of the second kind,” and correspondingly specializes the class of locally good codes to



112

a smaller class of “locally great” codes. Our joint work with Isabella Novik in [JN19] takes a

further step by defining “nerve obstructions” and “locally perfect” codes. This is the subject

of Chapter 6. We will see in Theorem 6.8.5 that the codes Cn are in fact locally perfect.

We now argue that Cn is minimally non-convex for all n. We have seen that Cn is not

open convex, so it remains to argue that every proper minor of Cn is open convex. It suffices

to show that every covered code of Cn is open convex. However, we must first address a

small conflict of notation: the code Cn is defined using neurons decorated by overlines, which

we also use when defining covered codes in Definition 4.5.7. It turns out that every covered

code of Cn is either max-intersection complete, or can be expressed without introducing any

new overlined neurons—to see this, it suffices to argue for all choices of distinct a and b

in [n + 1] ∪ [n+ 1], that if TkCn({a, b}) is nonempty and not equal to TkCn(a), then it is

generated by simple trunks in Cn that are not equal to TkCn(a).

We will argue that the covered codes of Cn are open convex in a series of lemmas

below which treat three separate cases, examining the covered codes combinatorially and

then explaining why they are open convex. For Lemmas 5.6.9 and 5.6.11, recall Corollary

4.5.3, which states the following: if f is a morphism determined by a collection of trunks

{T1, . . . , Tm}, then the image of f is determined (up to isomorphism) by which trunks the

collection {T1, . . . , Tm} generates.

Lemma 5.6.8. For each i ∈ [n+1], the i-th covered code of Cn is max-intersection complete,

and hence open convex.

Proof. Recall from Lemma 5.6.5 that the code D = Cn ∪ {{n + 1}} is max-intersection

complete. Since the image of a max-intersection complete code is max-intersection complete,

it will suffice to exhibit a surjective morphism from D to the i-th covered code C(i)
n . To do

this, we extend the i-th covering morphism fi : Cn → C(i)
n to a function f i : D → C(i)

n by

defining f i({n+ 1}) = fi({i, n+ 1}) for i ∈ [n], and defining fn+1({n+ 1}) = ∅.

Clearly all f i : D → C(i)
n are surjective functions, so it remains to show that they are

morphisms. Every trunk T in Cn is a subset of D, and may be associated to the smallest



113

trunk in D that contains it. One may check that under this association f i is exactly the

morphism determined by the same collection of trunks that determines fi.

Lemma 5.6.9. For each i ∈ [n], the i-th covered code of Cn is isomorphic to the code obtained

from Cn by deleting i from all codewords except for ([n+ 1] \ {i}) ∪ {i}.

Proof. Consider the collection of trunks {T1, . . . , Tn+1, T1, . . . , Tn+1} where Tj = TkCn(j) for

all j ∈ [n+ 1] and

Tj =

TkCn(j) if j 6= i,

{([n+ 1] \ {i}) ∪ {i}} if j = i.

Observe that the image of Cn under the morphism determined by this collection of trunks is

the result of deleting i from all codewords except for ([n+ 1] \ {i}) ∪ {i}. To prove that the

resulting code is isomorphic to C(i)
n , it will suffice to show that the above collection of trunks

generates every nonempty trunk in Cn except for TkCn(i) (recall from Lemma 4.5.9 that

these are exactly the trunks generated by the collection that determines the i-th covering

morphism).

First note that the collection {T1, . . . , Tn+1, T1, . . . , Tn+1} does not generate TkCn(i) since

every trunk in the collection either does not contain it, or is properly contained in it. Then

let T be a nonempty trunk in Cn that is not equal to TkCn(i). If T is not contained in

TkCn(i) then T = TkCn(σ) for some σ ⊆ ([n + 1] ∪ [n+ 1]) \ {i}, and we have T =
⋂
a∈σ Ta.

Otherwise, T is a proper subset of TkCn(i). The only such trunks are the singleton sets{
([n + 1] \ {i}) ∪ {i}} and {[n+ 1]

}
. The former is equal to Ti, and the latter is equal to

Tj ∩ Tk for a choice of distinct j, k ∈ [n+ 1] \ {i} (and such a choice is possible since n ≥ 2).

In all cases T is generated by the above collection of trunks, proving the result.

Lemma 5.6.10. For each i ∈ [n], the i-th covered code of Cn is open convex.

Proof. Let ci be the codeword ([n + 1] \ {i}) ∪ {i} in Cn. Lemma 5.6.9 tells us that C(i)
n

is isomorphic to the code D obtained from Cn by deleting i from all codewords except for

ci. Observe that if we remove ci from D, then it is max-intersection complete (indeed, the



114

missing intersection {n+1} observed in Lemma 5.6.5 is no longer an intersection of maximal

codewords when we remove ci). Thus we may form a non-degenerate open realization of the

code D\{ci}. To form a realization of D we need only let Ui be a small ball contained in the

interior of the atom of the codeword [n+1]\{i}, noting that this atom has nonempty interior

because we are working with a non-degenerate realization. This proves the result.

This leaves one final covered code to check, namely C(n+1)
n . This case is the most com-

plicated, and involves directly constructing a realization using inequalities. We will use

monotonicity of convexity to make this task slightly less arduous.

Lemma 5.6.11. The (n+ 1)-th covered code of Cn is isomorphic to the code obtained from

Cn by deleting n+ 1.

Proof. Consider the collection of trunks {T1, . . . , Tn+1, T1, . . . , Tn}, where Ti = TkCn(i) and

Ti = TkCn(i) for all i. This collection of trunks determines the morphism that deletes the

neuron n+ 1, and so it will suffice to show that this collection generates all nonempty trunks

in Cn except for TkCn(n+ 1).

First note that this collection does not generate TkCn(n+ 1) since no trunk in the collec-

tion contains it. Then let T be a nonempty trunk in Cn that is not equal to TkCn(n+ 1). If

T is not contained in TkCn(n+ 1) then we may write T = TkCn(σ) for some σ ⊆ [n+ 1]∪ [n].

Then T =
⋂
a∈σ Ta. Otherwise, T is contained in TkCn(n+ 1), but the only such trunks are

the singleton sets {[n+ 1]∪ {n+ 1}} and {[n+ 1]}. The former is the trunk of [n+ 1] in Cn
(hence equal to

⋂
i∈[n+1] Ti) and the latter is equal to T1 ∩ T2. Thus our collection of trunks

generates all trunks except for TkCn(n+ 1), proving the result.

Lemma 5.6.12. The (n+ 1)-th covered code of Cn is open convex.

Proof. Lemma 5.6.11 tells us that C(n+1)
n is isomorphic to the restriction of Cn to the set of

neurons [n+ 1] ∪ [n]. Throughout our proof we will identify C(n+1)
n with this restriction.

Note that C(n+1)
n is not max-intersection complete, since {n + 1} is an intersection of

maximal codewords, but is not present in the code. Thus we must argue the open convexity



115

of C(n+1)
n more directly. By monotonicity of convexity, it will suffice to construct a realization

of a code D ⊆ 2[n+1]∪[n] with D ⊆ C(n+1)
n ⊆ ∆(D). We proceed in this manner below.

For i ∈ [n], define Ui ⊆ Rn to be the product of open intervals (0, 1)× (0, 1)× · · · ×R×

· · · × (0, 1) where the factor R appears in the i-th index. That is, Ui is the convex open set

in Rn defined by the inequalities 0 < xj < 1 for j 6= i. Observe that {U1, . . . , Un} is an open

sunflower whose center is an open unit hypercube in the positive orthant with a vertex at

the origin.

Next, for any interval (a, b) ⊆ R define a convex open set

H(a,b) = {(x1, . . . , xn) | a < x1 + x2 + · · ·+ xn < b}.

Thus, the set H(a,b) is just a union of translates of the hyperplane given by the equation

x1 + · · · + xn = 0. Now, define Un+1 to be the intersection of H(2n−1,2n) with the (open)

positive orthant. Observe that Un+1 intersects Ui for all i ∈ [n] (in particular, this intersection

contains the point (1
2
, 1

2
, . . . , 3n

2
, . . . , 1

2
) where the term 3n

2
appears in the i-th coordinate).

However, Un+1 does not intersect the center of the sunflower {U1, . . . , Un} since the sum of

coordinates of any point in the center is always strictly less than n.

Finally, for all i ∈ [n], let H−i be the open halfspace defined by
∑

j∈[n]\{i} xj > n− 1, and

define Ui = Un+1 ∩H−i . We now have an open realization {U1, . . . , Un+1, U1, . . . , Un} in Rn.

Figure 5.17 illustrates this realization in the case n = 2.

It remains to show that this realization relates to the code C(n+1)
n . Let D = code(U) ⊆

2[n+1]∪[n]. We claim that D ⊆ C(n+1)
n ⊆ ∆(D). First, let us describe explicitly the codewords

of C(n+1)
n . These are:

(i) The empty set,

(ii) σ ∪ {n+ 1} for every proper nonempty subset σ of [n],

(iii) {i} for i ∈ [n],

(iv) ([n+ 1] \ {i}) ∪ {i} for all i ∈ [n],



116

Figure 5.17: The construction used to partially realize the code C(3)
2 in R2. Note that this

realization is degenerate, as the atoms of 12 and 13 are not full-dimensional.

(v) the codeword [n+ 1], and

(vi) the codeword [n].

Observe that the maximal codewords are those of types (iv), (v), and (vi).

To see that D ⊆ C(n+1)
n ⊆ ∆(D) we determine the codewords of D explicitly. We start

by examining the codewords that do not contain n + 1. We claim that such codewords are

precisely those of types (i), (iii), and (vi) above: the empty set arises from any point with

all coordinates sufficiently large and negative, codewords of type (iii) arise from points in Ui

with large j-th coordinate, and the codeword of type (vi) arises from any point in the center

of the sunflower {U1, . . . , Un}. No other codewords that do not contain n+ 1 can arise since

Ui ⊆ Un+1 for all i ∈ [n], and the sets Ui form a sunflower.

Next we turn to the codewords that contain the neuron n+1, or equivalently, we examine

the atoms of our realization that are contained in Un+1. We make three claims:

(1) For all i ∈ [n], the set Ui intersects Un+1 only at points contained in U[n]\{i} \ Ui,



117

(2) The sets Ui for i ∈ [n] cover Un+1, and

(3) U[n+1] is nonempty.

For (1), let x = (x1, . . . , xn) be a point in Un+1 ∩ Ui, noting that all coordinates of

x are positive. The definition of Ui implies that xj < 1 for every j ∈ [n] \ {i}. Thus∑
j∈[n]\{i} xj < n− 1, and x /∈ Ui. Additionally, the definition of Un+1 implies that

2n− 1 <
∑
j∈[n]

xj < xi + n− 1

which implies that xi > n. This shows that our point is in Uj for j ∈ [n] \ {i}, proving the

first claim.

Claim (2) can be argued as follows: any point x = (x1, . . . , xn) in Un+1 by definition has

2n− 1 <
∑
i∈[n]

xi < 2n

and all xi positive. This implies that there is i ∈ [n] with xi < 2. Deleting this xi from the

sum, this yields
∑

j∈[n]\{i} xj > 2n− 3. But since n ≥ 2, we have 2n− 3 ≥ n− 1. Therefore∑
j∈[n]\{i} xj > n− 1, and x lies in Ui. This proves the second claim.

Finally, we prove claim (3). Consider the point x whose coordinates are all equal to

2− 1
2n

. This lies in Un+1 since the sum of its coordinates is 2n− 1
2
. It also lies in Ui for all

i ∈ [n], since the sum of any n− 1 of its coordinates is equal to 2n+ 1
2n
− 5

2
which is larger

than n− 1 since n ≥ 2. Thus U[n+1] is nonempty.

Now, (1), (2), and (3) imply that any codeword in D that contains n + 1 is one of the

codewords of type (ii), (iv), or (v) in C(n+1)
n . From this and our discussion of codewords in D

that do not contain n + 1, we conclude that D ⊆ C(n+1)
n . Moreover, we saw that codewords

of types (iv), (v), and (vi) all arise in D. Since these are the maximal codewords of C(n+1)
n we

conclude that C(n+1)
n ⊆ ∆(D). Monotonicity of convexity then implies that C(n+1)

n is a convex

code, proving the result.

Theorem 5.6.13. For all n ≥ 2, the code Cn is minimally non-convex.



118

Proof. We argued in Theorem 5.6.4 that Cn is not open convex. In Lemmas 5.6.8, 5.6.10,

and 5.6.12 we argued that every covered code (and hence every proper minor) of Cn is open

convex. Thus Cn is minimally non-convex.

The codes Cn form an infinite family of minimal obstructions to open convexity. Impor-

tantly, these codes fail to be open convex for geometric reasons based on sunflowers (rather

than topological reasons such as having a local obstruction). Thus Corollary 5.1.14 not only

deepens our understanding of codes with finite open embedding dimension, it also provides

fundamentally new examples of codes that fail to be open convex in any dimension.

5.7 Tangled Sunflowers

So far, we have only examined codes whose realizations contain a single open sunflower. In

this section we examine a family of codes, each of which describes two sunflowers whose

petals touch, thus “tangling” the two sunflowers together. We prove some bounds on the

embedding dimensions of these codes (in particular, they have finite but arbitrarily large

open embedding dimension). However, unlike the codes Sn of Section 5.2, we are not able

to determine the exact open embedding dimensions of these codes beyond the first few.

Definition 5.7.1. Let n ≥ 1. The n-th tangled sunflower code is the code Tn ⊆ 2[n]∪[n] that

consists of the following codewords:

(i) {i, i} for all i ∈ [n],

(ii) [n] and [n],

(iii) all singletons, and

(iv) the empty set.

Additionally, we define tn := odim(Tn).



119

Observe that codewords of type (i) and (ii) are the maximal codewords in Tn for n ≥ 2;

in particular Tn has n + 2 maximal codewords. Furthermore observe that Tn is intersection

complete, and hence open convex. Thus tn is finite for all n.

Moreover, note that if U = {U1, . . . , Un, U1, . . . , Un} is a realization of Tn then {U1, . . . , Un}

and {U1, . . . , Un} are both sunflowers. Codewords of type (i) imply that Ui intersects Ui for

all i ∈ [n], but no further overlap between these two sunflowers can occur.

Note that, similar to the codes Sn, the closed embedding dimensions of the codes Tn are

not of much interest. This is formalized below. Example 5.7.3 then gives a sense of how the

open realizations of Tn behave for small n.

Proposition 5.7.2. cdim(T1) = 1, and cdim(Tn) = 2 for all n ≥ 2.

Proof. The open realization of T1 shown in Figure 5.19 may be converted to a closed realiza-

tion by replacing the sets with their closures. Observe that cdim(T2) ≥ 2 since ∆(T2) has a

nonzero first homology group. By Proposition 5.7.4 we then have cdim(Tn) ≥ 2 for all n ≥ 2.

Finally, one may form a closed realization of Tn in R2 by choosing distinct points p1 and p2

in R2, then choosing distinct points {q1, . . . , qn} on a line separating p1 and p2, and defining

Xi = p1qi and Xi = p2qi for all i ∈ [n]. This construction is shown in Figure 5.18.

Figure 5.18: A closed realization of Tn in R2.



120

Example 5.7.3. The first four Tn are given below:

T1 = {11, 1, 1, ∅},

T2 = {12,12,11,22, 1, 2, 1, 2, ∅},

T3 = {123,123,11,22,33, 1, 2, 3, 1, 2, 3, ∅},

T4 = {1234,1234,11,22,33,44, 1, 2, 3, 4, 1, 2, 3, 4, ∅}.

These have open realizations in R1,R2, R3 and R3 respectively, shown in Figure 5.19.

Figure 5.19: Open realizations (a), (b), (c), and (d) of T1, T2, T3, and T4 in dimensions 1, 2,

3, and 3 respectively.

We will see that in fact each of the realizations in Figure 5.19 is minimal with respect to

dimension. That is, we will prove that t1 = 1, t2 = 2, and t3 = t4 = 3. To build towards this

result, we first prove some general results about the sequence {tn | n ≥ 1}.

Proposition 5.7.4. For any n ≥ 1, the code Tn is a minor of Tn+1. In particular, the codes

{Tn | n ≥ 1} form a chain in PCode.

Proof. The code Tn is the restriction of Tn+1 to the set of neurons [n] ∪ [n].



121

Proposition 5.7.5. Let n ≥ 1. Then tn ≤ tn+1 ≤ tn + 1. That is, the sequence {tn | n ≥ 1}

is weakly increasing and changes by at most 1 at each step.

Proof. The inequality tn ≤ tn+1 follows immediately from Proposition 5.7.4. To prove the

inequality tn+1 ≤ tn + 1, let U = {U1, . . . , Un, U1, . . . , Un} be an open realization of Tn in Rd.

We will use U to construct an open realization of Tn+1 in Rd+1.

By Lemma 2.2.4 we may assume that U is a non-degenerate realization. In particular, we

may assume that the distance between U[n] and U[n] is positive. Now, identify Rd with the

subspace of Rd+1 in which xd+1 = 0, and define U = U[n] and U ′ = U[n]. Up to translation,

we may assume that the origin lies in U , and choose a nonzero vector u ∈ U ′. Finally, for

a small ε > 0 we define a collection of convex open sets V = {V1, . . . , Vn+1, V1, . . . , Vn+1} in

Rd+1 as follows:

Vi =

Ui + (0, ε)ed+1 if i ∈ [n],

U + (0,∞)ed+1 if i = n+ 1,

and Vi =

Ui + (0, ε)(ed+1 − u) if i ∈ [n],

U ′ + (0,∞)(ed+1 − u) if i = n+ 1,

where (0, ε)ed+1 denotes the set of multiples of ed+1 between 0 and ε (and similarly in the

other three cases). In words, Vi is a small open cylinder over Ui for i ∈ [n], and Vn+1 is an

infinite open cylinder over U , while Vi is a small skewed open cylinder over Ui and Vn+1 is an

infinite skewed open cylinder over U ′. An example of this construction is shown in Figure

5.20 in the case n = d = 2.

We claim that V is a realization of Tn+1. It suffices to check that the collections

{V1, . . . , Vn+1} and {V1, . . . , Vn+1}

are both sunflowers, and that Vi ∩ Vj is nonempty if and only if i = j.

Note that {V1, . . . , Vn} is a sunflower since {U1, . . . , Un} is a sunflower and the Vi with

i ∈ [n] are uniform cylinders over the Ui. Adding Vn+1 to this collection still yields a sunflower

since Vn+1 is a cylinder over the center of this sunflower. Similar logic holds for the Vi: the

collection {V1, . . . , Vn} is a sunflower since we have uniformly extended cylinders over the



122

Figure 5.20: (a) An open realization U = {U1, U2, U1, U2} of T2 in R2. (b) The resulting open

realization V = {V1, V2, V3, V1, V2, V3} of T3 in R3.

sunflower {U1, . . . , Un}, and the additional petal Vn+1 only overlaps any other Vi inside the

region U ′ + (0, ε)(ed+1 − u), which is the center of this sunflower.

To see that the petals of our two sunflowers overlap appropriately, first note that Vi ∩ Vi
is nonempty for all i ∈ [n] since the same holds for Ui ∩ Ui. Moreover, ed+1 is an element

of Vn+1 ∩ Vn+1, and so this intersection is nonempty. It remains to show that no further

overlaps occur between our two sunflowers.

Formally, we must show that for every choice of distinct i and j in [n+1], the intersection

Vi∩Vj is empty. We consider two cases. If i ∈ [n], then by non-degeneracy of the realization

U , the set Ui has positive distance to Vj. Since Vi is a small cylinder of height ε over Ui, we



123

may assume ε is small enough that Vi does not intersect Vj. If i = n + 1, then j ∈ [n] and

a similar logic applies. Namely, Uj has positive distance to Vi by non-degeneracy of U , and

we may choose ε small enough that the skewed cylinder Vj over Uj does not meet Vi. We

conclude that V is an open realization of Tn+1 in Rd+1, proving the result.

Propositions 5.7.4 and 5.7.5 imply that the sequence {tn | n ≥ 1} weakly increases, and

at a rate that is no more than linear. So far, we have not used the fact that sunflowers appear

in realizations of Tn. Below we leverage this fact to prove that the sequence {tn | n ≥ 1}

takes on arbitrarily large values, and in fact takes on all positive integer values.

Theorem 5.7.6. Let n ≥ 1. Then dn/2e ≤ tn ≤ n. In particular, the sequence {tn | n ≥ 1}

is unbounded.

Proof. The fact that tn ≤ n follows from the fact that t1 = 1 and Proposition 5.7.5. To prove

that dn/2e ≤ tn, let d = dn/2e−1. We must show that Tn does not have an open realization

in Rd. Suppose for contradiction that such a realization U = {U1, . . . , Un, U1, . . . , Un} exists,

and let H be a hyperplane separating U[n] and U[n].

Choose points p1 ∈ U[n] and p2 ∈ U[n], and for every i ∈ [n] choose a point qi ∈ Ui ∩ Ui.

For all i ∈ [n] consider the line segments Li = p1qi and Mi = qip2. The union Li ∪Mi forms

a path that begins on one side of H and ends on the other, so for all i ∈ [n] either Li or Mi

contains a point in H. By choice of d and the pigeonhole principle, either at least d + 1 of

the line segments {Li | i ∈ [n]} contain a point in H, or at least d + 1 of the line segments

{Mi | i ∈ [n]} contain a point in H.

Without loss of generality, we may assume that at least d+ 1 of the Li contain a point p∗i

in H. The convex hull of these p∗i lies in H, and therefore does not intersect the center U[n]

of the sunflower {U1, . . . , Un}. But Li ⊆ Ui, so each p∗i lies in the petal Ui. Since there are

at least d+ 1 of the p∗i , Corollary 5.1.14 implies that their convex hull must intersect U[n], a

contradiction.

Corollary 5.7.7. The sequence {tn | n ≥ 1} takes on all positive integer values.



124

Proof. We know that t1 = 1. Theorem 5.7.6 implies that the sequence is unbounded, and

Proposition 5.7.5 tells us that it increases by at most one at each step. Thus it must achieve

every positive integer value.

In the remainder of this section, we determine tn for all n ≤ 5. The arguments used below

are concrete, but seem difficult to generalize. Determining even t6 would be a potentially

interesting next step.

Proposition 5.7.8. The code T3 does not have an open realization in R2, but does have an

open realization in R3. In other words, t3 = 3.

Proof. An open realization of T3 in R3 is given in Figure 5.19. Thus we just have to argue that

T3 does not have a convex realization in R2. Suppose for contradiction that we have an open

realization U = {U1, U2, U3, U1, U2, U3} of T3 in R2. Choose points q1 ∈ U1∩U1, q2 ∈ U2∩U2,

and q3 ∈ U3 ∩ U3. Since we are working with open sets we may assume that {q1, q2, q3} are

in general position.

Note that {U1, U2, U3} and {U1, U2, U3} are both open sunflowers and that the points

{q1, q2, q3} each lie in distinct petals of these sunflowers. By Corollary 5.1.14 the triangle

conv{q1, q2, q3} contains points p1 ∈ U[3] and p2 ∈ U[3]. Again since we are working with

open sets we may assume that p1 and p2 lie in the interior of this triangle. The set of points

{p1, q1, q2, q3} can be visualized as shown part (a) of Figure 5.21.

Now, p2 falls in one of the three triangular regions surrounding p1. Suppose that p2 lies

in conv{p1, q1, q2}. Then consider the line segment L = p2q3, observing that L is contained

in U3. The line segment L must cross either the line segment p1q1 ⊆ U1 or p1q2 ⊆ U2. In the

former case we see that U1 ∩U3 6= ∅, and in the latter U2 ∩U3 6= ∅. The latter case is shown

in part (b) Figure 5.21. But there is no codeword in T3 containing 13 or 23, so both of these

situations lead to a contradiction. Thus T3 is not open convex in R2.

The technical lemma below will allow us to prove that t5 ≥ 4 by showing that if T5 has

a realization in R3, then T3 has a realization in R2, contradicting Proposition 5.7.8.



125

Figure 5.21: (a) The arrangement of points used to prove Proposition 5.7.8. (b) A contra-

dictory line segment L = p2q3 ⊆ U3 that crosses p1q2 ⊆ U2.

Lemma 5.7.9. Given five points in R3 in general position, there exists a plane H containing

three of the points and with the remaining two points on opposite sides of H.

Proof. Up to affine transformation we may assume that our set of points is {0, e1, e2, e3, p}

where p is a point none of whose coordinates are zero. We consider two cases. First suppose

that one of the coordinates of p is negative. By permuting our coordinates we can assume this

is the last coordinate. Then choose H = span{e1, e2}. This contains the three points 0, e1,

and e2. Moreover since e3 has positive last coordinate and p has negative last coordinate,

they lie on opposite sides of H and the lemma follows.

Otherwise every coordinate of p is positive. In this case, write p = (x, y, z) and choose

H = span{e3, p}. Observe that H contains the three points 0, e3, and p, and that v =

(y,−x, 0) is a normal vector to H. We see that v · e1 > 0 and v · e2 < 0, so the remaining

two points e1 and e2 lie on opposite sides of H. This proves the result.

Proposition 5.7.10. The code T5 does not have an open realization in R3.

Proof. Suppose for contradiction that U = {U1, . . . , U5, U1, . . . , U5} is an open realization

of T5 in R3. For i ∈ [5], choose a point pi in the open set Ui ∩ Ui, such that all pi are in



126

general position. Applying Lemma 5.7.9 to these five points, we obtain a hyperplane H with

contains three of them, and with the remaining two on opposite sides. By permuting the

neurons in T5, we may assume that p1, p2, and p3 all lie in H.

Now, consider the two tetrahedra ∆1 = conv{p1, p2, p3, p4} and ∆2 = conv{p1, p2, p3, p5}.

The vertices of these tetrahedra belong to distinct petals of the sunflowers {U1, . . . , U5} and

{U1, . . . , U5}, so by Corollary 5.1.14 each of these tetrahedra contains a point in the center of

both of these sunflowers. Since the tetrahedra lie on opposite sides of H, each of the centers

of these two sunflowers contains a point on each side of H. But the center of a sunflower is

convex, and so H itself must contain a point in the center of each of the two sunflowers.

With this observation, consider the collection V = {V1, V2, V3, V1, V2, V3} where Vi =

Ui∩H and Vi = Ui∩H for all i ∈ [3]. Since H ∼= R2, we can regard V as an open realization

of a code in R2. We claim that in fact code(V) = T3. To verify this, it suffices to show

that (i) {V1, V2, V3} and {V1, V2, V3} are both sunflowers, (ii) that Vi ∩ Vi is nonempty for all

i ∈ [3], and (iii) that no other petals overlap between these two sunflowers.

Condition (i) follows from the fact that the various Vi and Vi are subsets of Ui and Ui

respectively, and that the sunflowers making up the realization of T5 both have centers that

intersect H. Condition (ii) follows by considering the points p1, p2, and p3, which lie in

V1 ∩ V1, V2 ∩ V2, and V3 ∩ V3 respectively. Finally, condition (iii) is a consequence of the fact

that the petals of our two sunflowers in U overlap appropriately.

However, this is a contradiction: T3 is not open convex in R2 by Proposition 5.7.8. Thus

T5 cannot be open convex in R3.

Corollary 5.7.11. The sequence tn begins as follows:

n 1 2 3 4 5

tn 1 2 3 3 4

Proof. Clearly t1 = 1 since T1 is convex in R1 but has more than one codeword, so is not

convex in R0. The code T2 has a realization in R2 as shown in Figure 5.19, but has no

realization in R1 since ∆(T2) has nonzero first homology. Thus t2 = 2.



127

Note that t3 ≤ 3 and t4 ≤ 3 as shown in Figure 5.19. These bounds are tight by

Propositions 5.7.8 and 5.7.5. By Proposition 5.7.10 we know that t5 ≥ 4, and simultaneously

Proposition 5.7.5 implies that t5 ≤ t4 + 1 = 4. This proves the result.

The codes Tn hint at many further applications of sunflowers to the study of open em-

bedding dimension. One could imagine families of codes in which more than two sunflowers

are “tangled” together, or the tangling is more complicated than the 1-to-1 intersection of

matched petals in the Tn codes. One could also define codes which tangle together flexi-

ble sunflowers. Finding an elegant formulation for these various generalizations could be a

fruitful subject of future work.

5.8 Flexible Sunflower Codes Generalizing Sn and S∆

All of the families of codes that we have worked with so far have only had realizations that

involve 1-flexible open sunflowers, and hence only require Corollary 5.1.14 to analyze. In this

section we provide more general families of examples, for which Theorem 5.1.13 is essential

to bounding open embedding dimension. While the families Sn and S∆ were parametrized

by integers and simplicial complexes respectively, our family of interest in this section is

parametrized by pairs of intersection complete codes, one of which contains the other.

Definition 5.8.1. Let D ⊆ C ⊆ 2[n] be intersection complete codes. We define

SC/D := C ∪ {[n]} ∪ {d ∪ {n+ 1} | d ∈ D} ⊆ 2[n+1].

Note that choosing D = {minimal nonempty codewords in C}∪{∅} always satisfies the above

conditions. In this case, we will let SC/min denote SC/D.

Qualitatively, SC/D is the result of forming a flexible sunflower using the codewords in

C, and then “gluing” the petals of that sunflower to a new set Un+1 along codewords in

D. Observe that S∆ is equal to S∆/∆ in this notation (see Definition 5.3.1). Also, if C =

{1, . . . ,n, ∅}, then Sn is equal to SC/min (recall Definition 5.2.1). The following proposition

may be viewed as a direct generalization of Proposition 5.3.2.



128

Proposition 5.8.2. Let D ⊆ C ⊆ 2[n] be intersection complete codes. The code SC/D is

intersection complete. If D has m maximal codewords and does not contain [n], then SC/D
has m+ 1 maximal codewords. In particular, odim(SC/D) ≤ max{2,m}.

Proof. Codewords in SC/D come in three types: codewords from C, the codeword [n], and

those of the form d ∪ {n + 1} where d is a codeword in D. Since C and D are intersection

complete, the intersection of two codewords of the same type always yields another codeword

of that type (and hence lying in SC/D). This leaves the intersections of codewords of different

types. The intersection of a codeword in C with [n] is simply the same codeword in C. The

intersection of d ∪ {n + 1} with [n] is just d, which lies in SC/D since D ⊆ C. Finally, the

intersection of c ∈ C with d∪{n+ 1} is c∩d, which lies in C since C is intersection complete.

For the second part of the statement, note that if d is a maximal codeword of D, then

d∪{n+1} is a maximal codeword of SC/D. Since [n] /∈ D, the codeword [n] is also a maximal

codeword of SC/D, yielding m+1 total maximal codewords. The bound on odim(SC/D) follows

immediately from [CGIK16, Theorem 1.2].

Continuing in this vein, we generalize Theorem 5.2.2 (which applied to Sn) to the family

of codes of the form SC/min.

Proposition 5.8.3. Let C ⊆ 2[n] be an intersection complete code which contains every

singleton set. Then

odim(SC/min) ≥
⌈

n

dim(∆(C)) + 1

⌉
.

Proof. We start with a degenerate case: if n = 1, then C = {1, ∅} and SC/min = {12, 1, 2, ∅}.

In this case odim(SC/min) = 1, while n = 1 and dim(∆(C)) + 1 = 1. We see that the bound

given above is satisfied as desired.

Otherwise, n ≥ 2. In this case, let U = {U1, . . . , Un+1} be an open convex realization

of SC/min in Rd. Since the minimal nonempty codewords of C are all singletons, the code

SC/min consists of codewords from C, the codeword [n], codewords of the form {i, n + 1} for

all i ∈ [n], and lastly the codeword {n + 1}. Since [n] is a codeword, the sets {U1, . . . , Un}



129

have a nonempty common intersection. In particular, {U1, . . . , Un} is a k-flexible sunflower,

where k is the largest weight of a codeword in C other than possibly [n]. In particular

k ≤ dim(∆(C)) + 1, with equality if [n] is not a codeword in C.

Now consider the set Un+1. This set does not meet U[n] since [n+ 1] is not a codeword of

SC/min. However, it does meet Ui for all i ∈ [n] since {i, n + 1} is a codeword. If we choose

pi ∈ Ui ∩ Un+1 for all i ∈ [n], then conv{p1, . . . , pn} is contained in Un+1 and therefore does

not contain a point in U[n]. By Theorem 5.1.13, such a sampling of points is impossible if

n ≥ dk+ 1. Therefore we must have n ≤ dk. Rearranging, this implies d ≥ dn/ke. Applying

the inequality k ≤ dim(∆(C)) + 1 yields the desired result.

The added assumption in Proposition 5.8.3 that C contains all singletons is not too

restrictive. Indeed, it ensures that the set of minimal nonempty codewords interacts non-

trivially with all neurons, and adding singleton sets to C preserves intersection completeness.

Our final result in this section provides a simultaneous generalization of Theorem 5.3.4 and

Proposition 5.3.3.

Proposition 5.8.4. Let D ⊆ C ⊆ 2[n] be intersection complete codes. Let m be the number

of maximal codewords in D, assume m ≥ 2, and let k be the largest number of maximal

codewords in D whose union lies in ∆(C). Then there exists an intersection complete code

E ⊆ 2[m] containing all singleton sets such that

(i) k = dim(∆(E)) + 1, and

(ii) SE/min is a minor of SC/D.

As a consequence,
⌈
m
k

⌉
≤ odim(SC/D) ≤ m.

Proof. Let σ1, . . . , σm be the maximal codewords of D. For i ∈ [m] define Ti = TkSC/D(σi),

and define Tm+1 = TkSC/D(n + 1). Let f : SC/D → 2[m] be the morphism determined by the

collection of trunks {T1, . . . , Tm+1}. Recall from Definition 5.8.1 that the codewords of SC/D
come in the following types:



130

• c where c is a codeword in C,

• d ∪ {n+ 1} for where d is a codeword in D, and

• [n].

The respective images of these codewords under f are as follows:

• f(c) is equal to {i ∈ [m] | c contains σi},

• f(d∪{n+1}) is equal to {m+1} if d is not equal to some σi, and is equal to {i,m+1}

if d = σi for some i ∈ [m], and

• f([n]) = [m] since [n] contains all maximal codewords in D, but not n+ 1.

Let E = f(C) ⊆ 2[m]. Since the image of an intersection complete code is again intersection

complete, we see that E is intersection complete. Moreover, E contains every singleton set

since f(σi) = {i}.

Observe that f(SC/D) contains E , as well as codewords of the form {i,m + 1} for all

i ∈ [m], the codeword {m + 1}, and the codeword [m]. These are exactly the codewords of

SE/min. Thus SE/min = f(SC/D).

To prove the result, it remains to show that k = dim(∆(E)) + 1. The codewords in E are

of the form f(c) = {i ∈ [m] | σi ⊆ c}. Thus a codeword in E corresponds to a collection of

maximal codewords in D all of which are contained in some c ∈ C. A codeword in E with

largest weight thus corresponds to a largest possible collection of maximal codewords in D

whose union is contained in ∆(C). The largest such collection has size k by definition, so

any largest codeword in E has weight k, proving the result.

Remark 5.8.5. Recall from Remark 5.3.5 that Sm is the unique minimal minor among all

S∆ codes where ∆ has m facets. Generalizing this, we see that among all codes of the

form SC/D with parameters m and k as described in Proposition 5.8.4, the minimal elements



131

(with respect to the partial order inhereted from PCode) are always of the form SE/min where

E ⊆ 2[m] contains all singletons, and k = dim(∆(E)) + 1. Figure 5.22 provides an informal

picture of this situation.

Figure 5.22: The codes SC/D and SE/min for a fixed choice of m and k stratified by open

embedding dimension in PCode. Compare with Figure 5.10 which treats the k = 1 case.

These results use Theorem 5.1.13 to provide a more complete picture of the open embed-

ding dimensions of intersection complete codes. There is still much to be done, however. For

example, the bound m ≥ odim(SC/D) ≥
⌈
m
k

⌉
of Proposition 5.8.4 leaves quite a large gap for

k ≥ 2. Sharpening this bound based on the combinatorial structure of C and D would be a

natural task of interest.



132

Chapter 6

CONVEX UNION REPRESENTABLE COMPLEXES AND
NEW LOCAL OBSTRUCTIONS TO CONVEXITY

In this chapter we establish a strong relationship between open convex covers of a convex

set, and the combinatorics of the nerve of such a cover. These results provide new insights in

the study of local obstructions to open and closed convexity in codes (recall Definition 1.4.1,

and see [CFS19, CGJ+17]). In particular, we expand the infinite family of minimally non-

convex codes {C∆ | ∆ is not collapsible} from Theorem 4.4.3 to an infinitely larger family

of minimally non-convex codes. More generally we initiate the study of “convex union

representable” complexes (see Definition 6.1.1), a family of simplicial complexes that may

be of interest in their own right.

These results are joint work with Isabella Novik, and first appeared in [JN19]. With only

a few small additions and notational changes, we present these results as they appear in the

original work.

6.1 Collapsibility of Convex Union Representable Complexes

Recall that if C ⊆ 2[n] is a convex code with an open realization U = {U1, . . . , Un}, then

σ ∈ ∆(C)\C if and only if Uσ is nonempty and covered by the collection {Ui∩Uσ | i ∈ [n]\σ}.

We are interested in studying the nerves of covers that arise in this way. Equivalently, we are

interested in studying the nerves of collections of convex open sets whose union is convex.

These are exactly “convex union representable complexes,” defined formally below.

Definition 6.1.1. Let ∆ ⊆ 2[n] be a simplicial complex. We say that ∆ is d-convex union

representable if there is a collection of convex open sets U = {U1, . . . , Un} in Rd such that

(i)
⋃
i∈[n] Ui is a convex open set, and



133

(ii) ∆ = nerve(U).

We say that ∆ is convex union representable if there exists some d such that ∆ is d-convex

union representable. The collection U is called a d-convex union representation of ∆.

Example 6.1.2. The complex 〈123, 124, 234〉 is 2-convex union representable, as shown in

Figure 6.1.

Figure 6.1: A 2-convex union representation U = {U1, U2, U3, U4} of 〈123, 124, 234〉.

One of the main results of [CFS19] is that convex union representable complexes are

collapsible (though [CFS19] does not use the term convex union representable). The authors

in [CFS19] asked whether the converse also holds: is every collapsible complex convex union

representable? We will answer this question in the negative (see Corollary 6.2.1) using the

results that we establish in this section. Before proceeding, we briefly recall the definition of

collapsibility.

Definition 6.1.3. Let ∆ ⊆ 2[n] be a simplicial complex. A non-facet σ ∈ ∆ is called

a free face if σ is contained in a unique facet. The operation of deleting a free face σ



134

Figure 6.2: Collapsing the complex 〈123, 124〉 to a point.

and all faces that contain it is called a collapse of ∆, and denoted ∆ → ∆ \ σ (where

∆ \ σ := {τ ∈ ∆ | σ 6⊆ τ}). We say that ∆ is collapsible if there is a sequence of collapses

∆→ ∆1 → · · · → ∆k = ∅.

For a nonempty complex, collapsibility is equivalent to the statement that a complex

collapses to a point. Collapses preserve homotopy type, and thus collapsibility provides a

combinatorial analog of contractibility. Importantly, not every contractible complex is col-

lapsible. For example, the dunce hat is contractible, but no triangulation of it is collapsible.

Example 6.1.4. Consider the complex ∆ = 〈123, 124〉. Figure 6.2 shows a collapsing sequence

from ∆ to one of its vertices.

A key result of our work is Theorem 6.1.7, which shows that a collapsing order for a

convex union representable complex can be obtained by sweeping a hyperplane across a

convex union representation. This approach is due to [Weg75], and was also applied in

[CFS19]. To establish this result in our context we require a technical lemma that allows



135

us to “shrink” a given convex union representation by a small amount without changing its

nerve. Below, recall that the Hausdorff distance distH(X, Y ) between bounded subsets X

and Y of Rd is defined as

distH(X, Y ) := inf{ε ≥ 0 | X ⊆ Y +Bε and Y ⊆ X +Bε}.

Also recall that the Hausdorff distance makes the space of compact subsets of Rd into a

metric space.

Lemma 6.1.5. Let U = {U1, . . . , Un} be a convex union representation of a simplicial com-

plex ∆ ⊆ 2[n], where all Ui are bounded. Then for all ε > 0 there exists a convex union

representation V = {V1, . . . , Vn} of ∆ with the following properties:

(i) cl(Vi) is a polytope contained in Ui for all i ∈ [n],

(ii) The union
⋃n
i=1 Vi is the interior of a polytope, and

(iii) The Hausdorff distance between cl(Vσ) and cl(Uσ) is less than ε for all ∅ 6= σ ∈ ∆.

Proof. The result holds if all Ui are empty sets: simply take all Vi to be empty. Thus,

assume ∆ has at least one vertex, and for each nonempty face σ ∈ ∆, fix a d-dimensional

polytope Pσ ⊆ Uσ with the property that distH
(

cl(Uσ), Pσ
)
< ε/3. Let C be the convex

hull of the union of all Pσ. Then C is a d-dimensional polytope (hence compact) covered by

{U1, . . . , Un}, so we may choose a Lebesgue number δ > 0 for this cover.

Consider the lattice (δZ)d. For every point p in this lattice, let Wp be the closed d-cube

with side length 2δ centered at p. Then Wp∩C is a polytope for all p ∈ (δZ)d. Let S denote

the collection of vertices of all nonempty polytopes of this form. Note that S is finite and

that S might not be a subset of (δZ)d since some of the cells of the lattice may only partially

intersect C.

By shrinking δ, we may assume that the following conditions hold:

(1) Every nonempty set of the form Uσ ∩ C contains some Wp,



136

(2) for every p ∈ (δZ)d with Wp ∩ C 6= ∅, there exists i ∈ [n] such that Wp ⊆ Ui, and

(3) the diameter of Wp is less than ε/3.

For i ∈ [n], define Vi = int(conv(S ∩ Ui)). Note that condition (1) above guarantees that

conv(S ∩ Ui) is full-dimensional, and so cl(Vi) = conv(S ∩ Ui) is a polytope contained in Ui.

We will show that V = {V1, . . . , Vn} is the desired convex union representation of ∆.

By choice of C, Uσ ∩ C 6= ∅ for every nonempty face σ ∈ ∆. Condition (1) then implies

that Uσ ∩C contains Wp for some p ∈ (δZ)d, which, in turn, implies that p ∈ Vi for all i ∈ σ.

Thus σ ∈ nerve(V). Since Vi ⊆ Ui for all i, we conclude that nerve(V) = ∆.

To verify property (ii), we show that
⋃n
i=1 Vi = intC. Indeed, the interior of C is the

union of all sets in the collection {intWp ∩ intC 6= ∅ | p ∈ (δZ)d}. Furthermore, by

condition (2), each polytope Wp ∩ C is contained in Ui for some i, and so its vertices are in

Ui ∩ S. By definition of Vi this implies that int(Wp ∩ C) ⊆ Vi. The assertion follows since

int(Wp ∩ C) = intWp ∩ intC.

For property (iii), note that Pσ ⊆ cl(Uσ) ∩ C ⊆ cl(Uσ), and so by choice of Pσ,

distH
(

cl(Uσ), cl(Uσ) ∩ C) ≤ distH
(

cl(Uσ), Pσ) < ε/3.

Also, distH
(

cl(Uσ) ∩ C, cl(Vσ)
)
< ε/3 by definition of the sets Vi and by condition (3).

Property (iii) follows since the Hausdorff distance is a metric on the space of compact subsets

of Rd.

With a second technical lemma, we will be ready to prove our main result. Below,

(∆,Γ) := ∆ \ Γ denotes the relative complex of Γ in ∆.

Lemma 6.1.6. Let Γ ( ∆ be acyclic simplicial complexes. Then (∆,Γ) contains at least

two faces.

Proof. Since {∅} is not acyclic, (∆,Γ) contains at least one nonempty face. Suppose for

contradiction that (∆,Γ) contains a unique face σ, and let k = dimσ ≥ 0. Observe that



137

〈σ〉 ∩ Γ = ∂〈σ〉, and that ∆ = Γ ∪ 〈σ〉. We obtain a Mayer-Vietoris sequence

· · · → H̃k(∆)→ H̃k−1(∂〈σ〉)→ H̃k−1(Γ)⊕ H̃k−1(〈σ〉)→ · · · .

Since ∆, Γ, and 〈σ〉 are all acyclic this part of the sequence becomes 0→ H̃k−1(∂〈σ〉)→ 0.

This is a contradiction to the fact that the boundary of 〈σ〉 has nonzero (k−1)-homology.

Throughout other chapters we have always used X = {X1, . . . , Xn} to denote a collection

of closed sets. In the proof below we violate this convention. In particular, the proof requires

us to keep track of four distinct collections of convex open sets, which we denote U ,V ,W ,

and X respectively.

Theorem 6.1.7. Let U = {U1, . . . , Un} be a d-convex union representation of a simplicial

complex ∆ ⊆ 2[n], and let H ⊆ Rd be a closed or open halfspace. Then ∆ collapses to

nerve({Ui ∩H | i ∈ [n]}).

Proof. Observe that it is enough to prove the result in the case that all Ui are bounded. It

also suffices to consider the case that H is an open halfspace, since for a closed halfspace the

nerve is unaffected by replacing the halfspace with its interior. Thus throughout the proof

we assume that all Ui are bounded and that H is open.

We work by induction on the number of faces in ∆. There is nothing to prove if ∆ = ∅. If

∆ is a single vertex, then every convex union representation consists of a single convex open

set, and nerve({U1 ∩H}) is either ∆ or the void complex, depending on whether U1 ∩H is

empty. In either case ∆ collapses to nerve({U1 ∩H}) and the result follows.

Otherwise ∆ has more than two faces. Again if nerve({Ui ∩ H | i ∈ [n]}) = ∆ we are

done. If not, let A be the hyperplane defining the halfspace H, oriented so that H = A+.

Choose ε so that every nonempty Uσ ∩ H contains an ε-ball, and apply Lemma 6.1.5 to

obtain a new convex union representation V = {V1, . . . , Vn} of ∆. Observe that by choice of

ε and property (iii) of Lemma 6.1.5, nerve({Ui ∩ H | i ∈ [n]}) = nerve({Vi ∩ H | i ∈ [n]}).

Property (i) and the boundedness of the Ui imply that if Vσ ∩H = ∅, then Vσ and H have



138

positive distance to one another. Thus we may perturb the position and angle of H slightly

without changing the nerve nerve({Vi ∩H | i ∈ [n]}).

Perform a perturbation of H so that it is in general position relative to V in the following

sense: no hyperplane parallel to A simultaneously supports two disjoint nonempty Vσ and

Vτ . For all facets σ in the relative complex
(
∆, nerve({Vi ∩ H | i ∈ [n]})

)
, let dσ be the

distance from Vσ to H. There is at least one such facet σ since we are assuming that

nerve({Vi ∩ H | i ∈ [n]}) is a proper subcomplex of ∆. The distances dσ are finite since

each Vσ is bounded, and they are distinct by genericity of A. Let Vσ0 be the region whose

distance to H is largest. Let A0 be the hyperplane separating Vσ0 from H and supporting

Vσ0 , oriented so that H lies on its positive side. Finally, let Γ = nerve({Vi ∩ A>0 | i ∈ [n]}).

Then Γ is a proper acyclic subcomplex of ∆ containing nerve({Vi ∩H | i ∈ [n]}) and σ0 is

the unique facet of (∆,Γ). Applying Lemma 6.1.6 we conclude that there is a minimal face

τ0 ∈ ∆ \ Γ with τ0 ( σ0. Uniqueness of σ0 implies that τ0 is a free face of ∆.

We modify our representation one last time. By property (i) of Lemma 6.1.5, disjoint

Vσ and Vτ have nonzero distance between them, and furthermore any Vσ with Vσ ∩ H = ∅

has nonzero distance to H. Let δ > 0 be smaller than one half the minimum of all these

distances, and let Bδ be the open ball with radius δ centered at the origin. For i ∈ [n], define

Wi =

Vi i ∈ τ0

(Vi +Bδ) ∩
⋃n
i=1 Vi i /∈ τ0.

By choice of δ the nerve ofW = {W1, . . . ,Wn} is equal to ∆. Moreover the union of the Wi is

the same as the union of the Vi. Since Wi = Vi for i ∈ τ0, it follows that Vτ0 = Wτ0 and that

Wσ0 is supported by A0. Finally, by choice of δ, nerve({Wi ∩H | i ∈ [n]}) = nerve({Vi ∩H |

i ∈ [n]}).

Now for i ∈ [n] define Xi = Wi∩A>0 , and define X = {X1, . . . , Xn}. Then nerve({Xi∩H |

i ∈ [n]}) = nerve({Wi ∩ H | i ∈ [n]}) and Xσ0 = Wσ0 ∩ A>0 = ∅. By inductive hypothesis,

the nerve nerve(X ) collapses to nerve({Xi ∩H | i ∈ [n]}).

We claim that nerve(X ) is equal to ∆ \ τ0. It suffices to show that Xγ = Wγ ∩ A>0 is



139

Figure 6.3: Objects used to prove Theorem 6.1.7. The point p lies in Xγ = Wγ ∩ A>0 .

nonempty for every γ ∈ (∆,Γ) with τ0 6⊆ γ. Note that for such a γ, τ0 ∩ γ ( τ0, and so

by minimality of τ0, Wτ0∩γ ∩ A>0 = Vτ0∩γ ∩ A>0 6= ∅. Since Vσ0 ⊆ Wσ0 ⊆ Wτ0∩γ and Vσ0 is

supported by A0, we may choose a point p ∈ Wτ0∩γ ∩A>0 which is arbitrarily close to Vσ0 . By

construction of Wi the region Wγ\τ0 contains the Minkowski sum Vσ0 +Bδ. But then it must

contain p, so Wγ = Wγ∩τ0 ∩Wγ\τ0 contains p. In particular, Wγ has nonempty intersection

with A>0 . This situation is illustrated in Figure 6.3.

Since Wγ ∩ A>0 6= ∅ for all γ ∈ ∆ \ Γ with τ0 6⊆ γ, we conclude that nerve(X ) = ∆ \ τ0.

Furthermore, since ∆→ ∆\τ0 is a collapse, we conclude that ∆ collapses to nerve({Xi∩H |

i ∈ [n]}) = nerve({Ui ∩H | i ∈ [n]}), proving the result.

This result has several immediate geometric and combinatorial corollaries, which we

highlight below.

Corollary 6.1.8. Let U = {U1, . . . , Un} be a d-convex union representation of a simplicial

complex ∆, and let C ⊆ Rd be a convex set. Then ∆ collapses onto nerve({Ui∩C | i ∈ [n]}).



140

Proof. For all Uσ such that Uσ∩C 6= ∅, choose a point pσ ∈ Uσ∩C, and let C ′ be the convex

hull of these points. Observe that C ′ is a polytope contained in C such that nerve({Ui ∩

C | i ∈ [n]}) = nerve({Ui ∩ C ′ | i ∈ [n]}). Since C ′ is the intersection of finitely many

closed halfspaces, we can repeatedly apply Theorem 6.1.7 to obtain that ∆ collapses to

nerve({Ui ∩ C ′ | i ∈ [n]}), proving the result.

Corollary 6.1.9. Let ∆ be a convex union representable complex, and let σ ∈ ∆ be an

arbitrary face. Then ∆ collapses onto the star of σ. In particular, if σ 6= ∅, then ∆ collapses

onto 〈σ〉.

Proof. Let U = {U1, . . . , Un} be a d-convex union representation of ∆, and let C = Uσ.

Then C is a nonempty convex subset of Rd. Therefore, by Corollary 6.1.8, ∆ collapses onto

nerve
(
{Ui ∩ C | i ∈ [n]}

)
. The result follows since nerve({Ui ∩ C | i ∈ [n]}) = St∆(σ).

Indeed, if τ ⊆ [n], then
⋂
j∈τ (Uj ∩ Uσ) = Uτ∪σ. Thus, τ ∈ nerve({Ui ∩ C | i ∈ [n]}) if and

only if τ ∪ σ ∈ nerve(U) = ∆, which happens if and only if τ ∈ St∆(σ).

Corollary 6.1.10. Let ∆ be a convex union representable complex. Then the free faces of

∆ cannot all share a common vertex.

Proof. Suppose the free faces of ∆ share a common vertex v. Then no collapse of ∆ other

than ∆ itself would contain St∆(v). Since ∆ collapses to St∆(v) by Corollary 6.1.9, this

implies ∆ = St∆(v). Thus ∆ is a cone over v. But then any facet of ∆ \ v is a free face of

∆. Such a free face does not contain v, a contradiction.

We will study the consequences of these corollaries in greater depth throughout sub-

sequent sections, and we will also establish further results on convex union representable

complexes. In particular, Corollary 6.1.10 provides the basis for our result that not ev-

ery collapsible complex is convex union representable, answering the previously discussed

question posed by [CFS19].



141

6.2 Collapsible Complexes That Are Not Convex Union Representable

In [ABL17, Theorem 2.3] the authors construct examples for all d ≥ 2 of a d-dimensional

collapsible simplicial complex Σd with only one free face. According to Corollary 6.1.10,

these provide an example of collapsible complexes that are not convex union representable.

The authors also give examples for all d ≥ 2 of a d-dimensional simplicial complex Ed which

is pure and non-evasive, has only two free faces, and, furthermore, these two free faces share

a common ridge (see [ABL17, Theorem 2.5]). By Corollary 6.1.10 these complexes are not

convex union representable either. We formalize these observations in the following corollary.

Corollary 6.2.1. The simplicial complexes Σd of [ABL17] are pure, collapsible, and shellable,

but not convex union representable. Similarly, the simplicial complexes Ed of [ABL17] are

pure and non-evasive, but not convex union representable.

Example 6.2.2. The complex Σ2 has only 7 vertices. Its facets are

125, 134, 136, 137, 145, 167, 234, 236, 237, 247, 256, 456, 467,

and 12 is its unique free face. Figure 6.4 shows Σ2 (up to indentification on the appropriate

exterior edges). See also [ABL17, Figure 2].

The complexes Σd and Ed allow us to generalize the infinite family of minimally non-

convex codes from Theorem 4.4.3. We will do this in Corollary 6.8.3. First we study the

properties of convex union representable complexes in more detail.

6.3 Equivalence of Open and Closed Convex Union Representability

In the other chapters of this work we have seen surprising differences between collections of

open convex sets and collections of closed convex sets—for example Corollary 5.3.7 exhibited

a family of codes where the open and closed embedding dimensions diverge exponentially

from one another, and Theorem 5.5.2 showed that monotonicity of convexity holds for open

realizations of codes but not closed realizations. Below, we show that we need not worry



142

Figure 6.4: The collapsible complex Σ2 from [ABL17], which has the unique free face 12,

and is not convex union representable.

about such distinctions when studying convex union representable complexes: if ∆ is d-

convex union representable, then ∆ also has a convex union representation in Rd consisting

of closed convex sets. In fact, we may obtain such representations constructively from one

another.

Proposition 6.3.1. For a simplicial complex ∆ ⊆ 2[n], the following are equivalent:

(i) ∆ is d-convex union representable,

(ii) There exists a d-convex union representation V = {V1, . . . , Vn} of ∆ such that (1) the

collection of closures of the Vi has nerve ∆, (2) each cl(Vi) is a polytope, and (3) the

union of all Vi is the interior of a polytope,

(iii) ∆ is the nerve of a collection X = {X1, . . . , Xn} of d-dimensional polytopes whose

union is a polytope in Rd, and

(iv) ∆ is the nerve of a collection X = {X1, . . . , Xn} of closed convex sets whose union is

a closed convex set in Rd.



143

Proof. We first show that (i) implies (ii). Let U = {U1, . . . , Un} be a convex union represen-

tation of ∆. By intersecting with an open ball of a sufficiently large radius, we can assume

that U is bounded. Choose a representation V as guaranteed by Lemma 6.1.5. Properties

(2) and (3) of (ii) follow from the statement of Lemma 6.1.5, so we just need to check that

the nerve of X = {Xi := cl(Vi) | i ∈ [n]} is ∆. This is immediate from the fact that

Vi ⊆ cl(Vi) ⊆ Ui for all i ∈ n.

The implications from (ii) to (iii) and (iii) to (iv) are straightforward: the former by

taking closures of the Vi, and the latter since polytopes are closed and convex.

To prove that (iv) implies (i), assume that all Xi are compact by intersecting with a

closed ball of sufficiently large radius. Then if Xσ and Xτ are disjoint, they are a positive

distance apart, and so we can take the Minkowski sum of all Xi with an open ball Bε of

sufficiently small radius while preserving the nerve. The resulting collection W = {Wi :=

Xi + Bε | i ∈ [n]} is a convex union representation of ∆ in Rd: the sets Xi + Bε are open

convex sets, and so is their union
⋃n
i=1

(
Xi +Bε

)
=
(⋃n

i=1Xi

)
+Bε.

6.4 Constructible-Like Behavior

As we saw in Corollary 6.2.1, not all collapsible complexes are convex union representable.

Thus one of our goals is to establish additional necessary conditions for convex union repre-

sentability. The following theorem provides a step in this direction, and shows that convex

union representable complexes are similar in spirit to constructible complexes—a notion

introduced in [Zee63].

Theorem 6.4.1. Let ∆ be a d-convex union representable simplicial complex, and let τ1, τ2 ∈

∆ be such that τ1∪τ2 /∈ ∆. Then there exist simplicial complexes ∆1 ⊆ ∆\τ1 and ∆2 ⊆ ∆\τ2

satisfying

(i) ∆ = ∆1 ∪∆2,

(ii) ∆ collapses to ∆i (for i = 1, 2),



144

(iii) ∆i collapses to ∆1 ∩∆2 (for i = 1, 2),

(iv) ∆1 and ∆2 are d-convex union representable, and

(v) ∆1 ∩∆2 is (d− 1)-convex union representable.

Proof. Let U = {U1, . . . , Un} be a convex union representation of ∆. The condition that

τ1 ∪ τ2 /∈ ∆ implies that Uτ1 and Uτ2 are disjoint. Thus we may choose a hyperplane H

separating Uτ1 and Uτ2 , oriented such that Uτ2 lies on the open positive side H> of H. Apply

Lemma 6.1.5 to obtain a new representation V = {V1, . . . , Vn} of ∆. This representation has

the property that if σ ∈ ∆ and Vσ ∩H = ∅, then there is a positive distance between Vσ and

H. In particular, there is a small ε so that the Minkowski sum of H with an ε-ball induces

the same nerve as H when intersected with the various Vi.

Now, let ∆1 be the nerve of {Vi ∩H> | i ∈ [n]} and let ∆2 be the nerve of {Vi ∩H< | i ∈

[n]}. We claim that ∆1 and ∆2 satisfy the conditions stated above.

First let us argue that ∆1 ⊆ ∆ \ τ1 and ∆2 ⊆ ∆ \ τ2. Note that ∆1 ⊆ ∆ since the sets

representing ∆1 are subsets of the sets representing ∆. Moreover τ1 /∈ ∆1 since Vτ1∩H> = ∅,

and thus ∆1 ⊆ ∆ \ τ1. A symmetric argument shows that ∆2 ⊆ ∆ \ τ2.

For (i), let σ ∈ ∆. Then Vσ 6= ∅, and since Vσ is open it has nonempty intersection with

H> or with H<. In the former case σ ∈ ∆1 and in the latter σ ∈ ∆2. Thus ∆ = ∆1 ∪∆2.

For (ii) we can apply Theorem 6.1.7 with the open halfspaces H> and H<.

To prove (iii), we first claim that ∆1 ∩∆2 = nerve({Vi ∩H | i ∈ [n]}). If σ ∈ ∆1 ∩∆2,

then Vσ contains points on both sides of H, and by convexity it contains points in H. Thus

σ ∈ nerve({Vi ∩H | i ∈ [n]}). Conversely, if σ ∈ nerve({Vi ∩H | i ∈ [n]}), then Vσ contains

points in H, and by openness it contains points in both H> and H<.

To see that ∆i collapses to nerve({Vi ∩ H | i ∈ [n]}), let C be the Minkowski sum of

H with a small ε-ball, so that nerve({Vi ∩ H | i ∈ [n]}) = nerve({Vi ∩ C | i ∈ [n]}). Then

observe that C ∩ H> induces the nerve ∆1 ∩ ∆2 when intersected with the convex union

representation {Vi ∩ H> | i ∈ [n]} of ∆1. By Corollary 6.1.8 this implies that ∆1 collapses



145

to ∆1 ∩∆2. A symmetric argument shows that ∆2 collapses to ∆1 ∩∆2.

For (iv) simply observe that {Vi∩H> | i ∈ [n]} and {Vi∩H< | i ∈ [n]} are d-convex union

representations for ∆1 and ∆2 respectively. To prove (v) recall that ∆1∩∆2 = nerve({Vi∩H |

i ∈ [n]}). Since H ∼= Rd−1, this yields a (d− 1)-convex union representation of ∆1 ∩∆2.

If ∆ is a simplicial complex, we let Σ∆ denote the suspension of ∆, which is the complex

obtained by joining ∆ with a complex consisting of two disjoint vertices. The following

result uses Theorem 6.4.1 to show that suspending a complex strictly increases the smallest

dimension in which it is convex union representable.

Corollary 6.4.2. Let ∆ be a simplicial complex that is not d-convex union representable.

Then the suspension Σ∆ of ∆ is not (d+ 1)-convex union representable. In particular, if ∆

is not convex union representable, then neither is Σ∆.

Proof. Assume Σ∆ is (d+ 1)-convex union representable, and let u and v be the suspension

vertices. Observe that {u, v} is not a face of Σ∆, so by Theorem 6.4.1 there exist complexes

∆1 ⊆ Σ∆\u = v∗∆ and ∆2 ⊆ Σ∆\v = u∗∆ satisfying (i)-(v) in the theorem statement. But

since ∆1∪∆2 = Σ∆ = (v ∗∆)∪ (u∗∆), it must be the case that ∆1 = v ∗∆ and ∆2 = u∗∆.

Then ∆1 ∩ ∆2 = ∆, and by (v) we conclude that ∆ is d-convex union representable, a

contradiction.

Note that Corollary 6.4.2 together with Corollary 6.2.1 provides us with additional ex-

amples of collapsible complexes that are not convex union representable. In some situations,

such as Corolary 6.7.4 below, it also allows us to establish lower bounds on the minimum

dimension of a convex union representation.

6.5 Alexander Duality

Recall that if ∆ ⊆ 2[n] is a simplicial complex, then the Alexander dual of ∆ is

∆∗ := {σ ⊆ [n] | [n] \ σ /∈ ∆}.



146

In other words, the Alexander dual is the set of complements of non-faces of ∆. The goal of

this section is to show that if ∆ is convex union representable and n ≥ 1, then the Alexander

dual of ∆ is collapsible.

For our result we require the following standard lemma, which is proven in [KSS84].

Lemma 6.5.1. Let ∆ ⊆ Γ be simplicial complexes. Then Γ collapses onto ∆ if and only if

∆∗ collapses onto Γ∗.

Corollary 6.5.2. Let ∆ be a simplicial complex with vertex set [n]. Then ∆∗ is collapsible

if and only if 2[n] collapses onto ∆.

Proof. Take Γ = 2[n] and use Lemma 6.5.1, noting that Γ∗ = ∅.

With Corollary 6.5.2 in hand, we are ready to prove the main result of this section.

Theorem 6.5.3. Let n ≥ 1 and let ∆ ⊆ 2[n] be a convex union representable complex. Then

∆∗ is collapsible.

Proof. Let U = {U1, . . . , Un} be a convex union representation of ∆ in Rd such that the

collection of closures of the Ui has nerve equal to ∆, as guaranteed by Proposition 6.3.1.

Embed U into Rd+1 by identifying Rd with the hyperplane defined by xd+1 = 0. Let U =⋃
i∈[n] Ui, and let V be the shifted copy of U contained in the hyperplane defined by xd+1 = 1.

Then for i ∈ [n] define Vi = int(conv(Ui ∪ V )). This construction is illustrated for d = 2 and

n = 4 in Figure 6.5.

Observe that the nerve of V = {V1, . . . , Vn} is 2[n]. Since the Ui were chosen such that

their closures have the same nerve, it follows that for a sufficiently small ε > 0, the halfspace

Hε defined by xd+1 < ε has the property that

nerve(U) = nerve({Vi ∩Hε | i ∈ [n]}).

But by Theorem 6.1.7, this implies that 2[n] collapses to nerve(U) = ∆. Corollary 6.5.2 then

yields that ∆∗ is collapsible.



147

Figure 6.5: (a) A 2-convex union representation U = {U1, U2, U3, U4} of 〈123, 124, 234〉, with

U1 outlined in bold. (b) The resulting 3-convex union representation V = {V1, V2, V3, V4} of

2[4], with V1 outlined in bold.

There exist collapsible complexes whose Alexander dual is not collapsible (see, for instance

[Wel99, Example 3.3])—such complexes thus provide additional examples of collapsible com-

plexes that are not convex union representable. On the other hand, a complex is non-evasive

if and only if its Alexander dual is non-evasive (see [KSS84] and [Wel99, Lemma 2.5]). This

suggests that convex union representability may imply non-evasiveness.

6.6 Convex Union Representable Complexes With a Few Free Faces

Below we bound the minimum dimension of a representation of a convex union representable

complex ∆ by the number of free faces of ∆. More specifically, we establish the following

result.



148

Theorem 6.6.1. If ∆ is a convex union representable complex with k facets that contain all

free faces of ∆, then ∆ is (k − 1)-convex union representable.

Proof. Let U = {U1, . . . Un} be a convex union representation of ∆, and let σ1, . . . , σk be

the facets of ∆ containing all free faces. Choose points pi ∈ Uσi for all i ∈ [k], and let

C = conv({p1, . . . , pk}). By Corollary 6.1.8, ∆ collapses to nerve({Ui ∩ C | i ∈ [n]}), but by

choice of the pi this nerve contains all free faces of ∆. Thus ∆ = nerve({Ui ∩ C | i ∈ [n]}).

Since C is the convex hull of k points, it is contained in an affine subspace of dimension

no larger than k − 1. Taking relative interiors in this affine subspace yields a convex union

representation of ∆ in dimension no larger than k − 1, proving the result.

Theorem 6.6.1 has two immediate consequences, highlighted below. In Corollary 6.6.3,

recall that the stellar subdivision of ∆ at a facet σ is a (homeomorphic) complex with an

additional vertex v, in which we have deleted σ and added faces of the form τ ∪{v} for every

τ that is a proper face of σ.

Corollary 6.6.2. If ∆ is a convex union representable complex with k facets that contain

all free faces of ∆, then ∆ is (k − 1)-representable. In particular it is (k − 1)-Leray.

Corollary 6.6.3. Let ∆ be a d-dimensional collapsible complex. Suppose that ∆ has only

d or fewer free faces. Let ∆′ be a stellar subdivision of ∆ at one of its d-dimensional faces.

Then ∆′ is collapsible but not convex union representable.

Proof. Note that a stellar subdivision at a facet does not affect collapsibility nor the collection

of free faces. Let σ ∈ ∆ be the d-face at which the subdivision occurs. Then ∆′ will have

the boundary of 〈σ〉 as an induced subcomplex. This boundary has nonvanishing (d − 1)-

homology, and so ∆′ is not (d − 1)-Leray. On the other hand, ∆′ has only d or fewer free

faces. Thus by Corollary 6.6.2, ∆′ is not convex union representable.

The following corollary of Theorem 6.6.1 characterizes convex union representable com-

plexes that have at most two free faces. In particular, it provides a different proof of Corol-

lary 6.2.1.



149

Corollary 6.6.4. Let ∆ be a convex union representable complex. Then ∆ has at most two

free faces if and only if ∆ is a path.

Proof. One direction is clear: paths are 1-convex union representable complexes that have at

most two free faces. For the other direction, assume that ∆ is a convex union representable

complex with at most two free faces. Then by Corollary 6.6.2, ∆ is 1-representable. Thus to

prove the result, it suffices to show that if ∆ is a collapsible, 1-representable complex with

at most two free faces, then ∆ is a path.

The class of 1-representable complexes, also known as clique complexes of interval graphs,

is well understood. In particular, [FG65, Theorem 7.1] asserts that Γ is 1-representable if

and only if Γ satisfies the following property (*): the facets of Γ can be numbered F1, . . . , Fm

in such a way that for all pairs (i, k) with 1 ≤ i < k ≤ m and for any vertex v ∈ Γ, if

v ∈ Fi ∩ Fk, then v belongs to all Fj with i < j < k.

We use induction on m to show that any collapsible Γ that satisfies (*) and has at most

two free faces must be a path. In the base case of m = 1, Γ is a simplex 〈F1〉, in which case

the result is immediate: indeed, 0- and 1-dimensional simplices form a path, while a simplex

of dimension d ≥ 2 has more than two free faces.

For the case of m > 1, let v be a vertex that belongs to Fm, but not to Fm−1, noting that

v exists since Fm is a facet, and hence it is not a subset of Fm−1. Similarly, let w ∈ F1 \ F2.

Since Γ satisfies (*), Fm is the only facet that contains v. Consequently, v 6= w, and any

proper subset of Fm that contains v is a free face of Γ. By a symmetric argument, w is a

free face of Γ. Thus, for Γ to have at most two free faces, Fm must be 1-dimensional. We

write Fm = {v, u} and consider Γ′ = Γ \ v =
⋃m−1
i=1 〈Fi〉. Then Γ′ is collapsible and satisfies

property (*). Can it happen that Γ′ has more than two free faces? If yes, then at least two

of these free faces are not {u}; hence they are also free faces of Γ, which together with the

face {v} already accounts for three free faces of Γ, contradicting our assumption. Thus Γ′

has at most two free faces, and hence Γ′ is a path by inductive hypothesis. We conclude that

Γ = Γ′ ∪ 〈{u, v}〉 is a 1-dimensional collapsible complex, so a tree. The result follows since



150

every tree that is not a path has at least three leaves, and each leaf is a free face.

6.7 Constructions

So far we have established a variety of necessary conditions for a complex to be convex union

representable. In this section we discuss some sufficient conditions, beginning with cones

and joins.

Proposition 6.7.1. Every cone is convex union representable.

Proof. Consider a cone ∆ ∗ (n + 1) where ∆ ⊆ 2[n]. Recall that we may choose an open

d-representation U = {U1, . . . , Un} of ∆. Adding Un+1 = Rd to this d-representation yields

a d-convex union representation of ∆ ∗ (n+ 1).

Remark 6.7.2. Proposition 6.7.1 and the fact that all convex union representable complexes

are collapsible and hence Q-acyclic leads to the following set of (strict) implications:

cone =⇒ convex union representable =⇒ Q-acyclic.

Since the set of f -vectors of the class of simplicial complexes that are cones coincides with

set of f -vectors of the class of Q-acyclic simplicial complexes [Kal85], it follows that it also

coincides with the set of f -vectors of the class of convex-union representable complexes.

Proposition 6.7.3. Let ∆ be a d1-convex union representable complex, and let Γ be a d2-

representable simplicial complex. Then ∆ ∗ Γ is (d1 + d2)-convex union representable.

Proof. Let σ and τ be the (without loss of generality, disjoint) vertex sets of ∆ and Γ

respectively. Let U = {Ui | i ∈ σ} be a d1-convex union representation of ∆, and let

U =
⋃
i∈σ Ui. Let V = {Vj | j ∈ τ} be a d2-representation of Γ consisting of convex open

sets. Define V = conv
(⋃

j∈τ Vj

)
. Then for k ∈ σ ∪ τ define

Wk =

Uk × V k ∈ σ,

U × Vk k ∈ τ.



151

The union of all Wk is the convex open set U × V since U is the union of all Ui. Moreover

the nonempty regions of intersection among the Wk are of the form Uσ′ × Vτ ′ for σ′ ∈ ∆

and τ ′ ∈ Γ, and so nerve({Wk | k ∈ σ ∪ τ}) = ∆ ∗ Γ. Thus ∆ ∗ Γ is (d1 + d2)-convex union

representable as desired.

In some instances, Proposition 6.7.3 along with Corollary 6.4.2 allows us to compute the

minimum dimension of a convex union representation of a given complex. Below is one such

example.

Corollary 6.7.4. Let ∆ be a point, and let Σk∆ denote the k-fold suspension of ∆. Then

for all k ≥ 0, the complex Σk∆ is k-convex union representable but not (k− 1)-convex union

representable.

Proof. We work by induction on k. If k = 0 then Σk∆ = ∆ and the result holds. Suppose

k ≥ 1 and let Γ be the complex consisting of two points. Observe that Γ is 1-representable.

Further observe that Σk∆ = (Σk−1∆) ∗ Γ, and so Proposition 6.7.3 implies that Σk∆ is k-

convex union representable. Since Σk−1∆ is not (k−2) convex union representable, Corollary

6.4.2 implies that Σk∆ is not (k − 1)-convex union representable. The result follows.

The following proposition shows that building cones over certain subcomplexes of convex

union representable complexes preserves convex union representability.

Proposition 6.7.5. Let ∆ ⊆ 2[n] be a d-convex union representable simplicial complex.

Choose a face σ ∈ ∆ and a set ω with σ ⊆ ω ⊆ [n]. Then the complex

∆′ := ∆ ∪
(
(n+ 1) ∗ St∆(σ)|ω

)
is (d+ 1)-convex union representable.

Proof. Let U = {U1, . . . , Un} be a bounded convex union representation of ∆ in Rd, and let

U =
⋃
i∈[n] Ui. Choose an open convex set V ⊆ Uσ such that V ⊆ Uσ, and V ∩Uτ 6= ∅ for all

τ ⊃ σ. Identify Rd with the hyperplane defined by xd+1 = 0 in Rd+1, and let Ṽ be the shifted



152

copy of V contained in the hyperplane defined by xd+1 = 1. Define W = int conv
(
U ∪ Ṽ

)
,

and for i ∈ [n] define

Wi = (Ui × (0, 1)) ∩W.

Observe that W = {W1, . . . ,Wn} is a (d+ 1)-convex union representation of ∆ and that the

union of all Wi is equal to W .

For ε > 0, consider the hyperplane Hε defined by xd+1 = 1 − ε, oriented so that Ṽ lies

on the positive side. We claim that for small enough ε, H>
ε ∩W ⊆ Wσ. Suppose not, so

that there exists some Wτ 6⊆ Wσ with Wτ \ Wσ containing points arbitrarily close to the

hyperplane defined by xd+1 = 1. Since the only such points in W are those approaching

V × (0, 1), we see that Wτ must contain points arbitrarily close to V × (0, 1) but not in Wσ.

But then the projection of these points onto Rd yields a series of points in U approaching

V , but not contained in Uσ. This contradicts the condition that V ⊆ Uσ. We conclude that

for some ε > 0, H>
ε ∩W ⊆ Wσ.

Now, for i /∈ ω, replace Wi with Wi ∩H<
ε . By choice of ε this does not affect the nerve

or union ofW . Then define Wn+1 = W ∩H>
ε . We claim thatW ′ = {W1, . . . ,Wn,Wn+1} is a

(d+ 1)-convex union representation of ∆∪
(
(n+ 1)∗St∆(σ)|ω

)
. To see this, observe that the

regions of maximal intersection in W ∩H>
ε are the inclusion-maximal faces γ of ∆ satisfying

σ ⊆ γ ⊆ ω. These are exactly the facets of St∆(σ)|ω. Thus the new faces introduced by

Wn+1 are of the form {n+ 1} ∪ γ for γ ∈ St∆(σ)|ω, and the result follows.

One immediate corollary of Proposition 6.7.5 is that trees are convex union representable.

Corollary 6.7.6. A 1-dimensional complex ∆ is convex union representable if and only if

it is collapsible (in particular, if and only if it is a tree).

Proof. If ∆ ⊆ 2[n] is a tree, we can build a convex union representation inductively using

Proposition 6.7.5. In the base case that ∆ is a single vertex, a realization is given in R0 by

U1 = {0}. For ∆ containing at least one edge, label the vertices so that n + 1 is a leaf, and

let i be the vertex that n + 1 is adjacent to. Then ∆|[n] is convex union representable by



153

inductive hypothesis. Choosing σ = ω = {i} and applying Proposition 6.7.5 we obtain that

the complex

∆|[n] ∪ 〈{i, n+ 1}〉

is convex union representable. But this is just ∆, so the result follows.

Remark 6.7.7. In fact, it is not hard to show by induction that all trees are 2-convex union

representable. This expands a result of [JOS+15], which showed that trees (and in fact all

planar graphs) are 2-representable.

Remark 6.7.8. Essentially the same argument as in Corollary 6.7.6 shows that if ∆ is strong

collapsible and flag, then ∆ is convex union representable. Strong collapsible complexes were

introduced in [BM12, Section 2]. The condition of being a flag complex is only needed to

guarantee that all vertex links are induced subcomplexes. In particular, since barycentric

subdivisions are always flag and since the barycentric subdivision of any strong collapsible

complex is strong collapsible [BM12, Theorem 4.15], it follows that barycentric subdivisions

of strong collapsible complexes are convex union representable. For example, the barycentric

subdivision of an arbitrary cone complex is convex union representable.

A simplicial complex ∆ is a simplicial ball (or a simplicial sphere) if the geometric re-

alization of ∆ is homeomorphic to a ball (or a sphere, respectively). Another immediate

application of Proposition 6.7.5 is that all stacked balls are convex union representable.

(Stacked balls are defined recursively: a d-dimensional simplex is a stacked ball with d + 1

vertices; a d-dimensional stacked ball ∆ on n + 1 ≥ d + 2 vertices is obtained from a d-

dimensional stacked ball Γ on n vertices by choosing a free ridge σ of Γ and building a cone

on it: ∆ = Γ ∪ ((n + 1) ∗ σ).) We close this section by showing that all simplicial balls in

a certain larger class are convex union representable. Recall that if P is a simplicial poly-

tope of dimension d and v is a vertex of P , then ∂P and ∂P \ v are simplicial complexes of

dimension d− 1: the former is a simplicial sphere while the latter is a simplicial ball.

Proposition 6.7.9. Let P be a d-dimensional simplicial polytope, and let v be a vertex of

P . Then ∂P \ v is a (d− 1)-convex union representable simplicial complex.



154

Proof. Label the vertices of P as {v1, . . . , vn} so that v = vn, and translate P if necessary so

that the origin is in the interior of P . Let P ∗ be the polar polytope of P , and let Fn = v̂n be

the facet of P ∗ corresponding to the vertex v. Consider the Schlegel diagram S(Fn) of P ∗

based at Fn. This is a polytopal complex; in particular the facets of S(Fn) are polytopes.

Furthermore, S(Fn) satisfies the following properties (see Chapters 2, 5, and 8 of [Zie95]

for basics on polar polytopes, Schlegel diagrams, and polytopal complexes): (i) the set of

facets of S(Fn) is in bijection with the set of facets of P ∗ other than F , which in turn is

in bijection with the vertex set {v1, . . . , vn−1} of ∂P \ v, that is, we can index the facets of

S(Fn) as {G1, . . . , Gn−1}; (ii) for any σ ⊆ [n − 1], the facets {Gi | i ∈ σ} have a nonempty

intersection if and only if σ is a face of ∂P \ v; (iii) the union of all facets {Gi | i ∈ [n− 1]}

of S(Fn) is Fn. These properties imply that {Gi | i ∈ [n− 1]} is a collection of closed convex

subsets of Aff(Fn) ∼= Rd−1 whose nerve is ∂P \ v, and whose union is convex. This along

with Proposition 6.3.1 yields the result.

Example 6.7.10. Let P ⊆ R3 be the regular octahedron. Up to isomorphism, deleting any

vertex from ∂P yields the complex

∂P \ v = 〈135, 145, 235, 245〉

on five vertices. The proof of Proposition 6.7.9 tells us that we may obtained a closed 2-

convex union representation of this complex from the Schlegel diagram of the polar polytope

P ∗. The polar of P is the cube, and its Schlegel diagram (hence a closed 2-convex union

representation of ∂P \ v) is shown in Figure 6.6.

Corollary 6.7.11. Let ∆ be an arbitrary 2-dimensional simplicial ball. Then ∆ is 2-convex

union representable.

Proof. Let v be a vertex not in ∆, and let ∂∆ denote the boundary of ∆, that is, ∂∆

is the 1-dimensional subcomplex of ∆ whose facets are precisely the free edges of ∆. Let

Λ := ∆∪ (v ∗ ∂∆). Then Λ is a 2-dimensional simplicial sphere, and so by Steinitz’ theorem



155

Figure 6.6: A 2-convex union representation X = {X1, X2, X3, X4, X5} of ∂P \ v, where

P ⊆ R3 is the regular octahedron.

(see [Zie95, Chapter 4]), Λ can be realized as the boundary complex of a simplicial polytope.

Since ∆ = Λ \ v, the previous proposition implies the result.

The situation with higher-dimensional balls is much more complicated. For instance,

there exist 3-dimensional simplicial balls that are not even collapsible. (See [BL13] for an

explicit non-collapsible example with only 15 vertices.) It would be interesting to understand

which collapsible triangulations of balls are convex union representable.

6.8 New Local Obstructions to Open and Closed Convexity

Having established various results regarding convex union representable complexes, we now

explicitly connect them to the study of convex codes.

Definition 6.8.1. Let C ⊆ 2[n] and σ ∈ ∆(C) \ C. We say that C has a d-dimensional

nerve obstruction at σ if Lk∆(C)(σ) is not d-convex union representable. We say that C has



156

a nerve obstruction at σ if Lk∆(C)(σ) is not convex union representable. If C has no nerve

obstructions, then C is called locally perfect.

Nerve obstructions generalize local obstructions and local obstructions of the second

kind. Indeed, if C has a local obstruction of the first or second kind at σ, then C has a nerve

obstruction at σ. A significant advantage of nerve obstructions is that they also capture

bounds on the dimension of a code, where local obstructions only capture whether or not a

code is convex. The following proposition formalizes these observations.

Proposition 6.8.2. Let C ⊆ 2[n] be a code, let d ≥ 0, and suppose that odim(C) ≤ d. Let

U = {U1, . . . , Un} be an open realization of C in Rd. Then for any σ ∈ ∆(C)\C, the collection

{Ui ∩Uσ | i ∈ [n] \ σ} is a d-convex union representation of Lk∆(C)(σ). In particular, C does

not have any d-dimensional nerve obstructions, and C is locally perfect.

Proof. It has been previously observed in the literature that if σ ∈ ∆(C) \ C then {Ui ∩ Uσ |

i ∈ [n] \ σ} is a cover of Uσ 6= ∅, and the nerve of this collection is exactly Lk∆(σ) (see for

example [CGJ+17, Section 3.3]). This proves the result.

Since open convex union representations are interchangeable with closed convex union

representations (recall Proposition 6.3.1), we could replace odim in Proposition 6.8.2 with

cdim. Thus d-dimensional nerve obstructions provide bounds on both open and closed em-

bedding dimensions of codes. They also allow us to generalize the family of minimally

non-convex codes that we exhibited in Theorem 4.4.3.

Corollary 6.8.3. Let ∆ ⊆ 2[n] be a simplicial complex, and let

C∆ := {σ ∪ {n+ 1} | σ is a nonempty face of ∆} ∪ {∅} ⊆ 2[n+1].

If ∆ is not convex union representable (for example, if ∆ is one of the complexes Σd or Ed

of [ABL17]), then C∆ is minimally non-convex.

Proof. Observe that if ∆ is not convex union representable then C∆ has a nerve obstruction

at σ = {n + 1}, and so C∆ is not open convex. We saw in the proof of Theorem 4.4.3 that



157

every proper minor of C∆ is intersection complete, and hence open convex. This proves the

result.

In [CGJ+17] and [CFS19] the authors show that local obstructions and local obstructions

of the second kind only occur at intersections of maximal codewords, thus making it easier to

search for such obstructions. Below we establish the analogous result for nerve obstructions.

Proposition 6.8.4. Let C ⊆ 2[n] be a neural code with a nerve obstruction at σ ⊆ [n]. Then

σ is an intersection of maximal codewords of C.

Proof. We argue the contrapositive. Suppose that σ is not an intersection of maximal code-

words. Then Lk∆(C)(σ) is a cone, which is convex union representable by Proposition 6.7.1.

Thus C does not have a nerve obstruction at σ.

Finally, we provide a result to show that nerve obstructions do not fully characterize

convex codes. In fact, one example already exists in the literature, in [LSW17, Theorem

3.1]. The non-convex code on 5 neurons described in this theorem has no local obstructions,

and in fact it has no nerve obstructions. (The latter follows from a simple fact that all

contractible complexes with at most 4 vertices are convex union representable.) Below, we

provide an infinite family of locally perfect non-convex codes.

Theorem 6.8.5. The minimally non-convex codes Cn of Definition 5.6.1 are locally perfect.

Proof. Recall from the proof of Theorem 5.6.6 that the only missing max intersection in Cn
is {n+ 1}, which has a link with facets [n]∪ {n+ 1} and ([n] \ {i})∪ {i} for all i ∈ [n]. The

simplex 2[n]∪{n+1} is certainly convex union representable, and for each i ∈ [n] we may apply

Proposition 6.7.5 with σ = ω = [n] \ {i} to add the remaining simplices in the link while

preserving convex union representability. This proves that Cn is locally perfect.



158

Chapter 7

DISCUSSION AND OPEN PROBLEMS

We have made progress on several fronts in the study of convex codes and their embedding

dimensions. We proved new upper bounds for intersection complete codes in Chapter 2, we

introduced and developed the framework of morphisms and minors in Chapters 3 and 4, and

we developed several discrete geometric results and used them to prove new lower bounds

on embedding dimension in Chapters 5 and 6. All of this progress reveals new and enticing

questions, many of which are quite accessible.

Some of these questions lie in a more abstract or theoretical direction, which can feel

separate from the original neuroscientific motivation for studying convex codes. However,

answers to these questions may highlight the limitations or strengths of convex codes as a

model of place cells, and could potentially motivate experimental work. For example, results

such as those in Chapter 5 motivate us to ask whether or not k-flexible sunflowers appear

regularly in receptive fields of place cells. If not, this would indicate that convex codes may

be too general as a model of place cell activity. If so, our results may help extract information

from this place cell activity.

Results regarding the combinatorial sunflower lemma and sunflower conjecture imply

that combinatorial sunflowers will appear in large enough codes (see [ALWZ20, ER60]).

Sunflowers in a code do not mean sunflowers in a realization of the code (the intersection

of sets in a realization corresponds to a union of codewords), but one could take a Ramsey-

theoretic approach to investigating embedding dimension. For example, are sufficiently large

codes guaranteed to have certain types of minors? If so, this would help bound the embedding

dimensions of large codes.

Developing the theory of convex codes is also useful mathematically. The theory itself



159

is quite rich, and more importantly, the tools we develop to study it may find more general

applications. Sunflowers and convex union representable complexes may appear in other

contexts, and the combinatorics of morphisms and minors could be applied to study other

families of codes. It would be natural to investigate applications of convex code results

to other areas where intersection patterns of sets in Euclidean space play a role, such as

topological data analysis.

In the following sections we highlight some of the natural questions and next steps that

arise from our work.

7.1 Open Problems on Constructive Geometric Results

The results in Chapter 2 apply only to intersection complete codes, whereas [CGIK16] was

able to prove their results for max-intersection complete codes. Since max-intersection com-

plete codes are both open and closed convex, it makes sense to ask whether our results can

be extended to them.

Question 7.1.1. Can Theorem 2.2.7 be extended to max-intersection complete codes? That

is, if C is max-intersection complete is it always true that cdim(C) ≤ odim(C)?

Question 7.1.2. Can Theorem 2.3.7 be extended to max-intersection complete codes? That

is, if C ⊆ 2[n] is max-intersection complete is it always true that cdim(C) ≤ min{2d+1, n−1}

where d = dim(∆(C))?

Theorems 2.2.7 and 2.3.7 provided upper bounds on closed embedding dimension, and

relied on the combinatorial structure of intersection complete codes. Analogous results are

not known for open embedding dimension, but it is entirely possible that there are families

of codes where the same results hold with odim(C) and cdim(C) swapped.

Question 7.1.3. Is there a natural family of codes (beyond simplicial complexes) with the

property that odim(C) ≤ cdim(C)? Likewise, is there a family in which odim(C) ≤ min{2d+

1, n− 1}?



160

A key ingredient in Theorem 2.2.7 was the fact that we may trim an open realization

of an intersection complete code by a small positive amount to obtain a non-degenerate

realization, without changing the realized code. Trimming an open set by ε is equivalent to

adding a closed ε-ball to the complement of the set. Thus we can view “trimming” as dual

to the operation “adding a closed ε-ball.”

It is then natural to ask which families of codes have closed realizations in which adding

a small closed ball yields a non-degenerate closed realization of the same code. Such a family

would have the property that odim(C) ≤ cdim(C), yielding progress on Question 7.1.3, and

moreover such a family may be (in some sense) “dual to” intersection complete codes.

Question 7.1.4. Is there a natural family of codes (beyond simplicial complexes) whose

closed realizations can be augmented by a Minowski sum with a small closed ball without

changing the realized code?

Results such as Corollary 5.3.7 tell us that a family answering Questions 7.1.3 and 7.1.4

cannot include all intersection complete codes (since the inequality cdim(C) ≤ odim(C) is

strict for many intersection complete codes).

7.2 Open Problems on Morphisms and Minors

Given that we introduced morphisms and minors only a few years ago, there are many basic

but unanswered questions in this framework. To get a sense for the lay of the land, one

natural first step would be to improve our understanding of how existing families of codes

side inside PCode. Corollary 3.4.3 provided a nice characterization of intersection complete

codes: they are exactly the minors of simplicial complexes. Does such a characterization

exist for max-intersection complete codes (which also form a minor-closed family in PCode)?

Question 7.2.1. Is there a natural family of codes whose minors are exactly max-intersection

complete codes?

If C is an intersection complete code, we know it is a minor of some simplicial complex.

However, it is very unclear exactly which simplicial complexes it is a minor of, or whether



161

there is a unique minimal such complex. Investigating this question would provide a better

picture of PCode, and could be done computationally for small examples to start off.

Question 7.2.2. Let C be an intersection complete code. Among all simplicial complexes

that C is a minor of, is there a unique minimal one (with respect to minors)?

One reason to investigate Question 7.2.2 is that the set of simplicial complexes lying

above C in PCode may capture important combinatorial or geometric information about C.

In the best case, such complexes may provide new (or even exact) bounds on the embedding

dimension of C. An affirmative answer to the question below would reduce the study of

embedding dimensions of intersection complete codes to the study of embedding dimensions

for simplicial complexes.

Question 7.2.3. Let C be an intersection complete code. Among all simplicial complexes

that C is a minor of, is there one with open embedding dimension equal to odim(C)?

We saw in Theorems 4.4.3 and 5.6.13 that there are an infinite number of minimally

non-convex codes. Thus open convexity does not admit a characterization by finitely many

forbidden minors in our framework. However, other families of codes may admit such a

characterization, or a characterization by finitely many “nice” families of forbidden minors.

Question 7.2.4. Are there any interesting minor-closed families of codes that admit a char-

acterization by finitely many forbidden minors? (For example, do axis-parallel box codes

admit such a characterization? What about codes with no more than k maximal codewords?)

One of the results of [CFS19] is that locally good codes are exactly those which admit a

good cover realization. Thus Theorem 4.3.4 implies that locally good codes form a minor-

closed family. We do not know whether the same is true for locally great codes or locally

perfect codes. The locally perfect case may be easier to investigate since convex union

representability is more concretely geometric than collapsibility. On the other hand, perhaps

the combinatorial nature of collapsibility plays well with morphisms and minors.



162

Question 7.2.5. Do locally great codes form a minor-closed family? How about locally

perfect codes?

The authors in [KLR20] connect the study of convex codes to the study of oriented

matroids via PCode. In particular, they associate every oriented matroid to a code in such a

way that the resulting code is open convex when the matroid is representable. The authors

raise the following question, which would amount to “axiomatizing convexity” for neural

codes, in the same sense that matroids axiomatize independence.

Question 7.2.6 (Question 6.4 of [KLR20]). Can the minors of oriented matroid codes (in

PCode) be characterized by a set of combinatorial axioms?

Several computational questions remain open in the study of morphisms and minors. We

do not currently have the ability to recgonize whether one code is a minor of another, other

than by trial and error or brute force. An efficient algorithm for this would greatly improve

our ability to contextualize existing and future results via minors.

Question 7.2.7. Is it possible to efficiently recognize whether one code is a minor of another?

As mentioned previously, we also do not yet have an elegant description of the covering

relation in PCode “from below.” We have made some unpublished progress on this question,

and invite the interested reader to get in touch via email for discussion and collaboration.

Question 7.2.8. Given a code C, can one efficiently or elegantly describe the codes that

cover C in PCode?

Understanding the structure of PCode as a poset from a macroscopic or theoretical per-

spective would also be useful. Doing so may provide some intuition for the strengths and

weaknesses of using minors to analyze convex codes. We can think of two immediate ques-

tions in this vein.

Question 7.2.9. Among all codes of rank k, on average how many codes of rank k− 1 does

each cover? In other words, what is the “average downward degree” of a code of rank k in

PCode?



163

Question 7.2.10. Are intervals in PCode unimodal? That is, do the number of codes of

each rank in an interval of PCode always form a unimodal sequence?

7.3 Open Problems on Sunflowers of Open Convex Sets

In Chapter 5 we used Theorem 5.1.13 to exhibit families of codes with new embedding di-

mension behavior, such as an arbitrarily large finite gap between open and closed embedding

dimension. However, for every example we have seen (and indeed, every known example

in the literature) we have that cdim(C) ≤ odim(C) whenever both quantities are finite. It

is natural to ask whether there exists a code C with odim(C) < cdim(C) < ∞. Thanks to

recent work in [CJL+20] that introduces “rigid structures” in codes, we have been able to

answer this question affirmatively (and much more generally).

Result in Preparation 7.3.1 ([Jef21]). For all natural numbers a, b, c, d with

2 ≤ a ≤ min(b, c) and max(b, c) ≤ d

there exists a code C(a,b,c,d) with “good cover embedding dimension” equal to a, odim(C) = b,

cdim(C) = c, and “non-degenerate embedding dimension” equal to d.

It would be interesting to augment this result by explaining the relationship between the

embedding dimensions mentioned above, and other invariants such as the PL embedding

dimension or topological embedding dimension of ∆(C). One example of work in this spirit

is [Tan11], which develops a relationship between d-representability of a simplicial complex

and Van Kampen obstructions. Such connections could also shed light on computational

aspects of characterizing open and closed convex codes (see for example [MSTW18], which

shows that one can decide algorithmically whether or not a 2-dimensional complex admits

an embedding into R3).

Result in Preparation 7.3.2 ([Jef21]). Let C be a code. The following are equivalent:

• C has “good cover embedding dimension” equal to 1,



164

• odim(C) = 1,

• cdim(C) = 1, and

• C has “non-degenerate embedding dimension” equal to 1.

Our forthcoming work mentioned above does not yet provide a “closed version” of Corol-

lary 5.3.7. We leave this as an open problem for now.

Question 7.3.3. Does there exist a family of codes whose closed embedding dimension grows

exponentially as a function of the number of neurons in the codes, mirroring Corollary 5.3.7?

As a start, does there exist a code C ⊆ 2[n] with cdim(C) > n− 1?

The codes Tn of Section 5.7 remain somewhat mysterious. Although they are a very

restricted example, characterizing their embedding dimensions more precisely could lead to

general insights or interesting techniques.

Question 7.3.4. What is the precise value of the embedding dimension tn = odim(Tn) from

Definition 5.7.1? As a start, does t6 = 4 or does t6 = 5?

The bounds provided in Section 5.8 also leave some potential room for improvement.

Understanding the extreme cases in these bounds (or improving them) could be a productive

task.

Question 7.3.5. Do there exist codes achieving the extremes of the bound
⌈
m
k

⌉
≤ odim(SC/D) ≤

m from Proposition 5.8.4 for all possible choices of m and k?

Question 7.3.6. Do there exist special cases in which we can tighten the bound
⌈
m
k

⌉
≤

odim(SC/D) ≤ m from Proposition 5.8.4?

Finally, Proposition 5.8.4 generalizes Proposition 5.3.3 but this generalization is slightly

incomplete. In particular, Proposition 5.3.3 implies that Sn is the unique minimal minor

of all S∆ codes, but Proposition 5.8.4 only tells us that every minimal SC/D code takes the

form SC/min. It is unclear whether the converse holds (i.e. whether or not SC/min is always

minimal among SC/D codes).



165

Question 7.3.7. Among the collection of codes SC/D with fixed parameters m and k from

Definition 5.8.1, are the codes SC/min the exact set of minimal minors? In other words, do

the various non-isomorphic SC/min with parameters m and k form an antichain in PCode?

7.4 Open Problems on Convex Union Representable Complexes

Since a complex ∆ is d-representable if and only if ∆ ∗ v is d-convex union representable,

recognizing d-convex union representable complexes is NP-hard for d ≥ 2 (see [Tan13, Sec-

tion 4.1]). However, we do not know whether the problem of recognizing d-convex union

representable complexes is even decidable.

Question 7.4.1. Is the computational problem of recognizing d-convex union representable

complexes decidable?

Non-evasiveness is a natural combinatorial specialization of collapsibility for simplicial

complexes (see [Wel99, KSS84]). We do not know whether convex union representability

implies non-evasiveness. We would also like to know more about how convex union repre-

sentability relates to other important classes of simplicial complexes, such as shellable and

constructible complexes.

Question 7.4.2. Is every convex union representable complex non-evasive?

Question 7.4.3. Is the Alexander dual of a convex union representable complex also convex

union representable?

Question 7.4.4. Is every shellable (or constructible) simplicial ball a convex union repre-

sentable complex?

Question 7.4.5. Can one characterize the class of topological spaces that possess convex

union representable triangulations?

Recall from Theorem 1.2.7 that when ∆ is d-representable, we may assume that d is no

larger than 2 dim(∆) + 1. When ∆ is d-convex union representable, does a similar statement



166

hold? Or is it possible that convex union representability captures sufficiently complex ge-

ometric structure to force a large embedding dimension with a low-dimensional simplicial

complex? Generally, the relationship between d-representations and d-convex union repre-

sentations would be interesting to understand.

Question 7.4.6. For a fixed d ≥ 2, do there exist d-dimensional complexes that are only

convex union representable in an arbitrarily high dimension? As a start, do there exist d-

dimensional complexes that are only convex union representable in dimension larger than

2d+ 1?

Question 7.4.7. Does there exist a complex that is d-representable, (d + 1)-convex union

representable, and not d-convex union representable?

Note that an affirmative answer to Question 7.4.6 would imply an affirmative answer to

Question 7.4.7.

Finally, it would be useful to understand how combinatorial operations such as barycentric

subdivision interact with d-convex union representability. We remark that even though

convex union representable complexes are collapsible, collapsing does not preserve convex

union representability: if ∆ is collapsible but not convex union representable, then ∆ ∗ v is

a convex union representable complex that collapses to ∆.

Question 7.4.8. Does every collapsible complex become convex union representable after

sufficiently many subdivisions? As a start, do subdivisions preserve convex union repre-

sentability?

Remark 7.4.9. Perhaps surprisingly, subdivisions do not preserve d-convex union repre-

sentability. Indeed, the simplex ∆ = 2[n+1] is 1-convex union representable, but its first

barycentric subdivision is not (n − 1)-representable since it has an induced subcomplex

homeomorphic to the boundary of ∆, which has nonzero (n−1)-st homology. This indicates

that Question 7.4.8 may have a negative answer.



167

Figure 7.1: (a) The simplicial complex 2[3], which is 1-convex union representable (b) The

barycentric subdivision of 2[3], which is not 1-convex union representable.

7.5 Other Open Problems

Finally, we highlight two problems that do not fit into the categories above. First, a key

ingredient in Section 5.5 was the guarantee that certain regions in every closed realization

of a code were sufficiently large in dimension. Our arguments for this were ad hoc, and a

general framework for such arguments would be a useful tool in generating new families of

codes with interesting embedding dimensions or realizations.

Question 7.5.1. Can one provide general combinatorial criteria on a code C guaranteeing

lower bounds on the dimension of regions Xσ in every closed realization X of C?

Sections 5.4 and 5.5 investigated monotonicity of of convexity. The current formulation

of monotonicity of convexity guarantees that open embedding dimension cannot increase too

much when adding a new non-maximal codeword to a code. Very little is understood about

how much the embedding dimension can decrease, however. Answers to this question may

be of interest in an experimental context, in which one has partial sample of a code and

wishes to know which new non-maximal codewords should be added to obtain a code with

lower embedding dimension.



168

Question 7.5.2. Let C be a code and let σ ∈ ∆(C)\C. How much smaller can odim(C∪{σ})

be than odim(C)?



169

BIBLIOGRAPHY

[ABL17] Karim A. Adiprasito, Bruno Benedetti, and Frank H. Lutz, Extremal examples
of collapsible complexes and random discrete Morse theory, Discrete & Com-
putational Geometry. An International Journal of Mathematics and Computer
Science 57 (2017), no. 4, 824–853. MR 3639606

[ADLS17] Nina Amenta, Jesús A. De Loera, and Pablo Soberón, Helly’s theorem: new
variations and applications, Algebraic and geometric methods in discrete math-
ematics, Contemp. Math., vol. 685, Amer. Math. Soc., Providence, RI, 2017,
pp. 55–95. MR 3625571

[AHS06] Jǐŕı Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete
categories, TAC Reprints, no. 17, Reprints in Theory and Applications of Cat-
egories, 2006.

[ALWZ20] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang, Improved bounds
for the sunflower lemma, Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing (New York, NY, USA), Association for Com-
puting Machinery, 2020, p. 624–630.

[Bjö95] Anders Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2,
Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819–1872. MR 1373690

[BL13] Bruno Benedetti and Frank H. Lutz, Knots in collapsible and non-collapsible
balls, Electronic Journal of Combinatorics 20 (2013), no. 3. MR 3104529

[BM12] Jonathan Ariel Barmak and Elias Gabriel Minian, Strong homotopy types,
nerves and collapses, Discrete & Computational Geometry 47 (2012), no. 2,
301–328. MR 2872540

[Bor48] K. Borsuk, On the imbedding of systems of compacta in simplicial complexes,
Fundamenta Mathematicae 35 (1948), 217–234.

[BYBOS95] Rani Ben-Yishai, Raphael Bar-Or, and Haim Sompolinsky, Theory of orienta-
tion tuning in visual cortex, Proceedings of the National Academy of Sciences
of the United States of America 92 (1995), 3844–3848.



170

[CFS19] Aaron Chen, Florian Frick, and Anne Shiu, Neural codes, decidability, and a new
local obstruction to convexity, SIAM Journal on Applied Algebra and Geometry
3 (2019), no. 1, 44–66.

[CGIK16] Joshua Cruz, Chad Giusti, Vladimir Itskov, and Bill Kronholm, On open and
closed convex codes, Discrete & Computational Geometry 61 (2016), 247–270.

[CGJ+17] Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Mohamed
Omar, Zvi Rosen, Anne Shiu, and Nora Youngs, What makes a neural code
convex?, SIAM Journal on Applied Algebra and Geometry 1 (2017), no. 1,
222–238. MR 3633775

[CGJ+19] Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Zvi Rosen,
Anne Shiu, and Nora Youngs, Algebraic signatures of convex and non-convex
codes, Journal of Pure and Applied Algebra 223 (2019), no. 9, 3919–3940.

[CIVCY13] Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs, The neural
ring: an algebraic tool for analyzing the intrinsic structure of neural codes,
Bulletin of Mathematical Biology 75 (2013), no. 9, 1571–1611. MR 3105524

[CJL+20] Patrick Chan, Katherine Johnston, Joseph Lent, Alexander Ruys de Perez, and
Anne Shiu, Nondegenerate neural codes and obstructions to closed-convexity,
arXiv e-prints: 2011.04565 (2020).

[CK20] Katie Christensen and Hamid Kulosman, Some remarks about trunks and mor-
phisms of neural codes, arXiv e-prints: 1904.04470 (2020).

[CV16] Carina Curto and Ramón Vera, The Leray dimension of a convex code, arXiv
e-prints: 1612.07797 (2016).

[Dav18] Robert Davis, State polytopes related to two classes of combinatorial neural
codes, arXiv e-prints: 1808.06721 (2018).

[ER60] Paul Erdös and Richard Rado, Intersection theorems for systems of sets, Journal
of the London Mathematical Society s1-35 (1960), no. 1, 85–90.

[FG65] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific
Journal of Mathematics 15 (1965), 835–855. MR 0186421

[GGPK+18] Rebecca Garcia, Luis Garcia-Puente, Ryan Kruse, Jessica Liu, Dane Miyata,
Ethan Petersen, Kaitlyn Phillipson, and Anne Shiu, Gröbner bases of neural
ideals, International Journal of Algebra and Computation 28 (2018), no. 4,
553–571.



171

[GI14] Chad Giusti and Vladimir Itskov, A no-go theorem for one-layer feedforward
networks, Neural Computation 26 (2014), no. 11, 2527–2540. MR 3243436

[GJAM+20] Roddy M. Grieves, Selim Jedidi-Ayoub, Karyna Mishchanchuk, Anyi Liu, So-
phie Renaudineau, and Kate J. Jeffery, The place-cell representation of volu-
metric space in rats, Nature Communications 11 (2020).

[GJMS20] Brianna Gambacini, R. Amzi Jeffs, Sam Macdonald, and Anne Shiu, Non-
monotonicity of closed convexity in neural codes, arXiv e-prints: 1912.00963
(2020).

[GJS19] Sema Gunturkun, Jack Jeffries, and Jeffrey Sun, Polarization of neural rings,
Journal of Algebra and Its Applications 19 (2019), no. 8.

[GNY16] Elizabeth Gross, Kazi Obatake Nida, and Nora Youngs, Neural ideals and stim-
ulus space visualization, Advances in Applied Mathematics 95 (2016), 65–95.

[GP20] Sarah Ayman Goldrup and Kaitlyn Phillipson, Classification of open and closed
convex codes on five neurons, Advances in Applied Mathematics 112 (2020),
101948.

[IKR20] Vladimir Itskov, Alexander Kunin, and Zvi Rosen, Hyperplane neural codes
and the polar complex, Topological Data Analysis - The Abel Symposium, 2018
(Nils A. Baas, Gereon Quick, Markus Szymik, Marius Thaule, and Gunnar E.
Carlsson, eds.), Abel Symposia, Springer, 2020, pp. 343–369.

[Jef19a] R. Amzi Jeffs, Embedding dimension phenomena in intersection complete codes,
arXiv e-prints: 1909.13406 (2019).

[Jef19b] R. Amzi Jeffs, Sunflowers of convex open sets, Advances in Applied Mathemat-
ics 111 (2019), 101935.

[Jef20] R. Amzi Jeffs, Morphisms of neural codes, SIAM Journal on Applied Algebra
and Geometry 4 (2020), 99–122.

[Jef21] R. Amzi Jeffs, Open, closed, and non-degenerate embedding dimensions of neu-
ral codes, In preparation (2021).

[JLY20] R. Amzi Jeffs, Caitlin Lienkaemper, and Nora Youngs, Order-forcing in neural
codes, arXiv e-prints: 2008.13192 (2020).



172

[JN19] R. Amzi Jeffs and Isabella Novik, Convex union representability and convex
codes, International Mathematics Research Notices (2019).

[JOS+15] R. Amzi Jeffs, Mohamed Omar, Natchanon Suaysom, Aleina Wachtel, and Nora
Youngs, Sparse neural codes and convexity, Involve, a Journal of Mathematics
12 (2015), no. 5, 737–754.

[JSS20] Katherine Johnston, Anne Shiu, and Clare Spinner, Neural codes with three
maximal codewords: convexity and minimal embedding dimension, arXiv e-
prints: 2008.13192 (2020).

[Kal85] Gil Kalai, f -vectors of acyclic complexes, Discrete Mathematics 55 (1985),
no. 1, 97–99. MR 793634

[KKM95] James Knierim, Hemant Kudrimoti, and Bruce McNaughton, Place cells, head
direction cells, and the learning of landmark stability, The Journal of Neuro-
science 15 (1995), 1648–1659.

[KLR20] Alexander Kunin, Caitlin Lienkaemper, and Zvi Rosen, Oriented ma-
troids and combinatorial neural codes, arXiv e-prints: 2002.03542 (2020),
arXiv:2002.03542.

[KSS84] Jeff Kahn, Michael Saks, and Dean Sturtevant, A topological approach to eva-
siveness, Combinatorica 4 (1984), no. 4, 297–306.

[LSW17] Caitlin Lienkaemper, Anne Shiu, and Zev Woodstock, Obstructions to convex-
ity in neural codes, Advances in Applied Mathematics 85 (2017), 31–59. MR
3595298

[Mat02] Jǐŕı Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics,
vol. 212, Springer-Verlag, New York, 2002. MR 1899299

[MRM15] May-Britt Moser, David Rowland, and Edvard Moser, Place cells, grid cells,
and memory, Cold Spring Harbor Perspectives in Medicine 5 (2015).

[MSTW18] Jǐŕı Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner, Embeddability
in the 3-sphere is decidable, J. ACM 65 (2018), no. 1.

[MT20] Raffaella Mulas and Ngoc M Tran, Minimal embedding dimensions of connected
neural codes, Algebraic Statistics 11 (2020), no. 1, 99–106.



173

[OD71] John O’Keefe and Jonathan Dostrovsky, The hippocampus as a spatial map.
preliminary evidence from unit activity in the freely-moving rat, Brain Research
(1971), 171–175.

[Pm85] G. Ya. Perel' man, Realization of abstract k-skeletons as k-skeletons of inter-
sections of convex polyhedra in R2k−1, Geometric questions in the theory of
functions and sets, Kalinin. Gos. Univ., Kalinin, 1985, pp. 129–131. MR 829936

[RMS20] Alexander Ruys de Perez, Laura Felicia Matusevich, and Anne Shiu, Neural
codes and the factor complex, Advances in Applied Mathematics 114 (2020),
101977.

[RZ17] Zvi Rosen and Yan X. Zhang, Convex neural codes in dimension 1, arXiv e-
prints (2017), arXiv:1702.06907.

[Tan11] Martin Tancer, d-representability of simplicial complexes of fixed dimension,
Journal of Computational Geometry 2 (2011), no. 1, 183–188.

[Tan13] , Intersection patterns of convex sets via simplicial complexes: a survey,
Thirty essays on geometric graph theory, Springer, New York, 2013, pp. 521–
540. MR 3205172

[WB74] David Watkins and Mark Berkley, The orientation selectivity of single neurons
in cat striate cortex, Experimental Brain Research 19 (1974), 433–446.

[Weg67] Gerd Wegner, Eigenschaften der nerven homologisch-einfacher familien im Rn,
Ph.D. thesis, Universität Göttingen, 1967.

[Weg75] , d-collapsing and nerves of families of convex sets, Archiv der Mathe-
matik 26 (1975), 317–321. MR 0375333

[Wel99] Volkmar Welker, Constructions preserving evasiveness and collapsibility, Dis-
crete Mathematics 207 (1999), no. 1-3, 243–255. MR 1710494

[WYM18] Melville J. Wohlgemuth, Chao Yu, and Cynthia F. Moss, 3D hippocampal place
field dynamics in free-flying echolocating bats, Frontiers in Cellular Neuroscience
12 (2018), 270.

[Zee63] E. Christopher Zeeman, Seminar on combinatorial topology, fascicule 1 (exposés
I à V inclus), Institut des Hautes Etudes Scientifiques, 1963.



174

[Zie95] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol.
152, Springer-Verlag, New York, 1995. MR 1311028

[ZMV15] Sijie Zhang and Denise Manahan-Vaughan, Spatial olfactory learning con-
tributes to place field formation in the hippocampus, Cerebral Cortex 25 (2015),
423–432.


