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Hereditary Families

Given a Ground Set E, a Hereditary Family A on E is collection
of subsets Z = {1, b, ..., In} (the independent sets) such that

Il € ZandJ C [impliesthat J € 7.

The set M of matchings of a graph G = (V, E).
The set of (edge-sets of) forests of a graph G = (V, E).

The set of stable sets of a graph G = (V, E). We say that
S is stable if it contains no edges.

If G = (A, B, E) is a bipartite graph and

Z = {S C B: 3 amatching M that covers S} .
Letcq,Co,...,Cn be the columns of an m x n matrix A.
Then E = [n] and

Z={SC[n]:{cj,i € S} are linearly independent}.
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An independence system is a matroid if whenever /., J € 7 with
|J| = |I| + 1 there exists e € J \ / such that /U {e} € Z. We call
this the Independent Augmentation Axiom — [AA.

Matroid independence is a generalisation of linear
independence in vector spaces. Only Examples 2,4 and 5
above are matroids.

To check Example 5, let A, be the m x |/| sub-matrix of A
consisting of the columns in /. If there is no e € J\ I such that
IU{e} € T then A, = A/M for some |/| x |J| matrix M.

Matrix M has more columns than rows and so there exists
x # 0 such that Mx = 0. But then A x = 0, implying that the
columns of A, are linearly dependent. Contradiction.

These are called Representable Matroids.
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Cycle Matroids/Graphic Matroids

To check Example 2 we define the vertex-edge incidence
matrix Ag of graph G = (V, E) over GF».

Ag has a row for each vertex v € V and a column for each
edge ec E. Thereisa 1 inrow v, column eiff v € e.

We verify that a set of columns ¢;, i € [ are linearly dependent
iff the corresponding edges contain a cycle.

If the edges contain a cycle (vy, va, ..., v, v¢) then the sum of
the columns corresponding to the vertices of the cycle is 0.

To show that a forest F defines a linearly independent set of
columns /¢, we use induction on the number of edges in the
forest. This is trivial if |E(F)| = 1.

MATROIDS



Cycle Matroids/Graphic Matroids

Let Ar denote the submatrix of A made up of the columns
corresponding F.

Now a forest F must contain a vertex v of degree one. This
means that the row corresponding to v in Ar has a single one,
in column e say.

Consider the forest F' = F \ {e}. Its corresponding columns /¢
are linearly independent, by induction. Adding back e adds a
row with a single one and preserves independence. Let B
denote Ar, minus row e.
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Transversal Matroids

We now check Example 4. These are called Transversal
Matroids. If My, M> are two matchings in a graph G then

My & Mo = (My \ Mo) U (Mo \ M) consists of alternating paths
and cycles.

0M10M20M10

Suppose now that we have two matchings M;, M, in bipartite
graph G = (A, B, E). Let I;,j = 1,2 be the vertices in B covered
by M;. Suppose that /| > |

Then M; & M, must contain an alternating path P with end
points b € 11 \ kb, a € A. Let E; be the M; edges in P and let E
be the M, edges of P. Then (My U E;) \ E; is a matching that
covers I1 U {b}.
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Representable Matroids

A matroid is binary if is representable by a matrix over GF».
So a graphic matroid is binary.

A matroid is regular if it can be represented by a matrix of
elements in {0, +1} for which every square sub-matrix has
determinant 0, +1. These are called totally unimodular matrices

A matrix with 2 non-zeros in each column, one equal to +1 and
the other equal to -1 is totally unimodular. This implies that
graphic matroids are regular. (Take the vertex-edge incidence
matrix and replace one of the ones in each column by a -1.)
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Partition Matroids

Given a partition Eq, E,, ..., Ep, of E and non-negative integers
ki, ko, ..., km we define the associated partition matroid as
follows:

leTiff|INE|<k,i=1,2,...m

Partition matroids are representable.
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Bases

A matroid basis is a maximal independent set i.e. B is a basis if
there does not exist an independent set / # B such that / O B.

So the bases of the cycle matroid of a graph G consist of the
spanning trees of G.

If By, By are bases of a matroid M, then |B;| = |B>|.

Proof: If |B{| > |Bs| then there exists e € B; \ B, such that
B, U {e} is independent. Contradicting the fact that B is
maximal. O
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Bases

A collection B = {By, B, ..., Bn} of subsets of E form the
bases of a matroid on E iff for all i,j and e € B; \ B; there exists
f € B;\ B; such that (B; U {f}) \ {e} € B.

Proof: Suppose first that B are the bases of a matroid with
independent sets Z and that e € B; and e ¢ B;. Then

B = B;\ {e} € T and |B;| < |B;|. So there exists f € B; \ B;
such that B/ = B; U {f} € Z. Now f # e since e ¢ B; and
|B!| = |B;j|. So B/ must be a basis.

Conversely, suppose that B satisfies the conditions of the
theorem andthat Z = {S: 3i s.t. S C B;}. Clearly Z is
hereditary.

MATROIDS



Bases

We first argue that all the sets in B are of the same size.

Suppose that A= {i : |Bj| = max{|B| : B € B}} and suppose
that A = [m]. Suppose that

min{|Bj— Bj|:i € A j¢ A} = |B; \ Ba.

Let x € By \ B> and let y € B, \ By be such that
B =((Biuy)\{x}) € B.

Then we have B’ € Aand |B'\ By| < |B; \ Bs|, contradiction.
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Bases

Suppose now that /y, kb € Z with || > |/;| and there does not
exist e € I \ /; for which Iy U {e} € T.

Choose B; O I;,j = 1,2 such that |B, \ (/> U By)| is minimal.

We musthave b\ By = b\ L. lf x€ LN By and x ¢ /; then
Lhu{x}CByandso Iy U{x} €.

Suppose there exists x € B, \ (I U By). Then by assumption
thereis y € By \ Bo such that B' = (B, U {y}) \ {x} € B. But
then B'\ (U By) = (B2 \ (kU By)) \ {x}, contradicting the
definition of B,.
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Bases

So B, C (/2UB1) = (/2\81)U(B1 \/2) = (/2\/1)U(B1 \IQ) and
t{e)

B\ By = b\ . (1)
We show next that By C (/4 U By). If there exists

x € By \ (4 U By) then there exists y € B, \ By such that
B = (Biu{y})\ {x} € B. But (; U{x}) C B, contradiction.

So, B, \Bg =1 \Bg Ch \Ig Since |B1 \Bg‘ = |Bg \ B1| we see
from this and (1) that |4 \ k| > |\ 1| and so || > |b|,
contradiction.
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If S C E thenits rank
r(S)=max|{le€Z:1C S}|.

So S € T iff r(S) = |S|. We show next that r is submodular.

IfS, T CEthenr(SUT)+r(SNT)<r(S)+r(T).

Proof: Let /; be a maximal independent subset of SN T and let
> be a maximal independent subset of SU T that contains /.
(Such a set exists because of the 1AA.)

But then
r(SNT)+r(SUT) = |h|+|k|=|hNS|+|LNT| < r(S)+r(T).

&l
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For representable matroids this coresponds to the usual
definition of rank.

For the cycle matroid of graph G = (V, E), if S C E is a set of
edges and Gg is the graph (V, S) then r(S) = | V| — k(Gs),
where x(Gg) is the number of components of Gg.

This clearly true for connected graphs and so if Cq, Co, ..., Cs
are the components of Gs then r(S) =327, |Ci| —1=|V| —s.

For a partition matroid as defined above,

r(S)=> min{k;,|SNE}.

i=1
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A circuit of a matroid M is a minimal dependent set. If a set
S C E, S ¢ 7 then S contains a circuit.

So the circuits of the cycle matroid of a graph G are the cycles.

If Cy, Cs are circuits of M and e € Cy; N Co then there is a
circuit C C (C1 U Cy) \ {e}.

Proof: We have r(C;) = |Cj| — 1,i = 1,2. Also,
r(CiNCy) = |C1 N Cy| since Cy N Gy is a proper subgraph of Cy.

If C' = (Cy U Cy) \ {e} contains no circuit then
r(Cy U Cy) > r(C') = |Cy U Cy| — 1. But then
|C1 U C2| -1< f(C1 U Cg) < I’(C1) +f(02) — f(C1 N Cg)
=(Ci|=1)+(C| —1)—|Ci N Cyl.

Contradiction. B
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If B is a basis of M and e € E \ B then B' = BU {e} contains a
unique circuit C(e, B). Furthermore, if f € C(e, B) then
(BU{e}) \ {f} is also a basis of M.

Proof: B’ ¢ 7 because B is maximal. So B’ must contain at
least one circuit.

Suppose it contains distinct circuits Cq, C>. Then e € Cy N Co
and so B’ contains a circuit C3 C (Cy U C») \ {e}.

But then C; C B, contradiction. O
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Dual Matroid

If B denotes the set of bases of a matroid M on ground set E
then B* = {E \ B: B € B} is the set of bases of a matroid M*,
the dual matroid.

Proof: Suppose that B;, B; € B* and e € B; \ B5.
LetBi=E\B,i=1,2. Theneec B, \ By.
So there exists f € By \ B, such that (B, U {e}) \ {f} € B.

This implies that (B; U {f}) \ {e} € B*. O
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Greedy Algorithm

Suppose that each e € E is given a weight w, and that the
weight w(/) of an independent set / is given by w(/) = " ../ Ce.
The problem we discuss is

Maximize w(/) subjectto | € 7.

Greedy Algorithm:
begin
Sort E = {eq,e0,...,em} so w(e;) > w(ejq)for1 <i<m
S« (;
fori=1,2,...,m;
begin
if SU{e;} € 7 then;
begin;
S+ Su{e};
end;
end;
end
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Greedy Algorithm

The greedy algorithm finds a maximum weight independent set
for all choices of w if and only if it is a matroid.

Suppose first that the Greedy Algorithm always finds a
maximum weight independent set. Suppose that() # I, J € T
with |J| = |/| + 1. Define
144 eel
w(e) =< 1 ecd\ L
0

e¢lud.

If there does not exist e € J\ I such that /U {e} € Z then the
Greedy Algorithm will choose the elements of / and stop. But /
does not have maximum weight. Its weight is |/| +1/2 < |J|. So
if Greedy succeeds, then the IAA holds.
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Greedy Algorithm

Conversely, suppose that our independence system is a
matroid. We can assume that w(e) > 0 for all e € E. Otherwise
we can restrict ourselves to the matroid defined by

I'={IC Et}where ET ={e e E: w(e) > 0}.

Suppose now that Greedy chooses I = €;,, €, ..., €, Where
It <ippqfor1 <t < k.lLetl/=eg,e€,,...,e¢, beany other
independent set and assume that j; < jr ¢ for1 <t < ¢. We
can assume that ¢ > k, for otherwise we can add something
from /g to I to give it larger weight.

We show next that k = £ and that i; < j; for 1 < t < k. This
implies that w(lg) > w(l).
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Greedy Algorithm

Suppose then that there exists t such that i; > j; and let t be as
small as possible for this to be true.

Now consider / = {e, : s=1,2,...,t—1} and
J=1{e,:5=1,2,...,t}. Now there exists g;, € J \ / such that
Iu{e,} €1.

But js < ji < i; and Greedy should have chosen ¢, before
choosing ¢;,_, -

Also, ix < jx implies that k = ¢. Otherwise Greedy can find
another element from /'\ /5 to add.

MATROIDS



Minors

Given a graph G = (V, E) and an edge e we can get new
graphs by deleting e or contracting e.

We describe a corresponding notion for matroids. Suppose that
F C E then we define the matroid M, £ with independent sets
7, F obtained by deleting F: I € Z\gif € Z, IN F = 0.

It is clear that the |AA holds for M\ F and so it is a matroid.

For contraction we will assume that F € Z. Then contracting F
defines M.Fwith independent sets
IF={leZ:INnF=0,IUF €T}

We argue next that M.F is also a matroid.
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Minors

M.F = (M;p)" and Myp = (M*.F)* .

Proof:

I€T.F < 3BeBf,ICB
¢+ 3B* € Bip, INB" =1
o e (L)

For the second claim we use

MEF = (M(F)" = (Myp)"
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Matroid Intersection

Suppose we are given two matroids M, M» on the same
ground set E with Zy,Z, and ry, r» etc. having there obvious
meaning.

An intersection is a set | € Z; N Z,. We give a min-max relation
for the size of the largest independent intersection. Let 7
denote the set of intersections.

Theorem (Edmonds)

max{J € J} = min{ri(A) + n(E\A): AC E}.
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Matroid Intersection

Before proving the theorem let us see a couple of applications:

Hall’s Theorem: suppose we are given a bipartite graph
G = (A, B, E). Let M4, Mp be the following two partition
matroids.

For M 4 we define the partition E; = {e€ x: ac e}, ac A. We
let ko = 1 for a € A. We define M similarly.

Intersections correspond to matchings and ry(A) is the number
of vertices in A that are incident with an edge of A. Similarly
ro(E \ A) is the number of vertices in B that are incident with an
edge not in A.
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Matroid Intersection

For X C A, let
Ax ={ve A:vc eforsome e c X}.

Define By similarly.

So
max{|M|} = min{|Ax| + |Bg\x| : X C E}.

Now we can assume thatif e € E\ X then en Ax =0,
otherwise moving e to X does not increase the RHS of the
above.

Let S = A\ Ax. Then |Bg\ x| = [N(A)| and so
max{|M|} = min{|A| — |S| + [N(S)| : S C A}.
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Matroid Intersection

Rainbow Spanning Trees: we are given a connected graph
G = (V, E) where each edge e € E is given a color c(e) € [m]
where m>n—1. Let E; = {e: c(e) =i} fori e [m].

A set of edges S is said to be rainbow colored if e, f € S implies
that c(e) # c(f).
Foraset AC E, we let

ri(A) =c(A)=|{i e [m]:Jec As.t. c(e) =i}
r(E\ A)=n—-rx(G\A).

So, G contains a rainbow spanning tree iff

c(A)+(n—k(G\A)>n—1forall AC E. (2
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Matroid Intersection

We simplify (2) to obtain
c(A)+1>k(G\A). (3)

We can then further simplify (3) as follows: if we add to A all
edges that use a color used by some edge of A then we do not
change c(A) but we do not decrease x(G \ A).

Thus we can restrict our sets Ato E; = | J;., E; for some
I C [m]. Then (3) becomes

/i(E[m]\/) < M +1forall I C [m]
or
k(E)) <m—|l|+1forall | C[m]

If you think for a moment, you will see that this is obviously
necessary.
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Matroid Intersection

Proof of the matroid intersection theorem.

For the upper bound consider J € 7 and A C E. Then
|| = |JNA+|J\Al <ri(A)+r(E\A).

We assume that e € 7 for all e € E. (Loops can be “ignored”.)

We proceed by induction on |E|. Let
k =min{ri(A)+ rn(E\A): AC E}.

Suppose that |J| < k forall J € 7.
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Matroid Intersection

Then (M), (e} and (Mz)\ ey have no common independent
set of size k. This implies that if F = E \ {e} then

ri(A)+ r(F\A) <k-—1forsome AC F.

Similarly, My.{e} and M5.{e} have no common independent
set of size k — 1. This implies that

rn(B)—1+nrn(E\(B\{e}))—1<k—-2forsomeec BCE.
This gives

r(A) + r(E\ (AU{e}) + r(B) + n(E\ (B\ {e})) < 2k — 1.
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Matroid Intersection

So, using submodularity and
(E\(Au{e}))U(E\(B\{e})) =E\(ANB)
and
(EN(Au{e}))n(E\(B\{e})) =E\(AUB).

We have used e ¢ Aand e € B here. So,

n(AUB) + r(E\ (AUB)) + r(An B) + ry(E \ (AN B))
<2k —1.

But, by assumption,
rn(AUB)+rn(E\(AUB)) >k, n(ANB)+rn(E\(ANB)) > k,

contradiction. O
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