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G = G + R.
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Based on
Smoothed analysis
[Spielman and Teng]

Diameter of a cycle plus a random matching
[Bollobás and Chung]
How many random edges make a dense graph
Hamiltonian?
[Bohman, Frieze, and Martin]
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A proposed approach for real-world graphs

Theorems that hold for

a sufficiently arbitrary graph
and a sufficiently small perturbation

should be
valid predictions for real-world networks.
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Example

Theorem

Let G be any connected n-graph, and let R ∼ Gn,ε/n. Then, with
high probability, G = G + R has

diam(G) = O
(
ε−1 log n

)
.
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A scientific question

Is the randomly perturbed graph a good model for the real
world?
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Consider property of Expansion

Vertex Expansion: For all S ⊂ V with |S| ≤ n/2,

|Γ(S)| ≥ α|S|.

Conductance: For all S ⊂ V with 2e(S) + e(S, S) ≤ |E |,

e(S, S)

2e(S) + e(S, S)
≥ δ.

Eigenvalue gap: For matrix M given by

M i,j =


deg(i), if i = j ;
−1, if {i , j} ∈ E ;

0, otherwise;
λ1(M) ≥ ε

Good to have expansion and good not to have expansion, too.
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What sort of expansion should we expect?

E. Estrada, Spectral scaling and good expansion properties in
complex networks, Europhysics Letters, 73 (4), pp. 649–655 (2006).
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In theory:

Depends on the base graph. For G connected, and G = G + R,

Theorem
If R ∼ Gn,ε/n, then G is not necessarily an expander.

Theorem
If R ∼ G1-out then G is an expander whp.
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Proof if R ∼ G1-out then G is expander

How do you prove that a k -out is an expander, for large k?

P
[
∃S : e(S, S) ≤ δ · |S|

]
≤

∑
`

(
n
`

)
P
[
e(S, S) ≤ δ`

]
= o(1).

This doesn’t work unless k is a large enough constant. (And it
shouldn’t, since it’s not true for k = 1.)
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Proof if R ∼ G1-out then G is expander

What if G is a cycle?

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

n
2k

)
P[eR(S, S) ≤ δs−2k ]
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Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Proof if R ∼ G1-out then G is expander

For general G, need something to take the place of the cycle.

∑
S : |S|=s

P[e(S, S) ≤ δs] ≤
∑

k

2
(

2n
k

)
P[eR(S, S) ≤ δs−k/2]

Abraham D. Flaxman Expansion in Perturbed Graphs



Introduction
Expansion

Expansion in the real world
Expansion in randomly perturbed graphs

Curious extension of these techniques

Kleinberg’s extension of Watts-Strogatz model

Figure 1 The navigability of small-world networks. a, The network

model is derived from an n�n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v

is selected with probability proportional to r��, where r is the lat-

tice (‘Manhattan’) distance between u and v, and ��0 is a fixed

clustering exponent. More generally, for p,q�1, each node u has

a short-range connection to all nodes within p lattice steps, and q

long-range connections generated independently from a distribu-

tion with clustering exponent �. b, Lower bound from my charac-

ua c

d

bv

a
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Conclusion

Real-world graphs are interesting
Randomly perturbed graphs can model them
Doesn’t make a prediction on expansion
This is consistent with the data
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