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Abstract

The preferential attachment graph is a random graph formed by adding a new vertex at
each time step, with a single edge which points to a vertex selected at random with probability
proportional to its degree. Every m steps the most recently added m vertices are contracted
into a single vertex, so at time ¢ there are roughly ¢/m vertices and exactly ¢ edges. This process
yields a graph which has been proposed as a simple model of the world wide web [BA99]. For
any constant k, let A; > Ay > --- > Ay be the degrees of the k highest degree vertices. We
show that at time ¢, for any function f with f(¢) — oo ast — oo, % < Ay < tY2£(t), and for
1=2,...,k, % <A <A - %, with high probability (whp). We use this to show that at
time ¢ the largest k eigenvalues of the adjacency matrix of this graph have A\, = (1+ o(l))A,lg/ 2
whp.

1 Introduction

Recently there has been much interest in understanding the properties of real-world large-scale
networks such as the structure of the Internet and the World Wide Web. For a general introduction
to this topic, see Bollobas and Riordan [BR02], Hayes [Hay00], or Watts [Wat99]. One approach
is to model these networks by random graphs. Experimental studies by Albert, Barabési, and
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Jeong [ABJ99], Broder et al [BKM™00], and Faloutsos, Faloutsos, and Faloutsos [FFF99] have
demonstrated that in the World Wide Web/Internet the proportion of vertices of a given degree
follows an approximate inverse power law i.e. the proportion of vertices of degree k is approximately
Ck~“ for some constants C,a. The classical models of random graphs introduced by Erd6s and
Renyi [ER59] do not have power law degree sequences, so they are not suitable for modeling these
networks. This has driven the development of various alternative models for random graphs.

One approach to remedy this situation is to study graphs with a prescribed degree sequence (or
prescribed expected degree sequence). This is proposed as a model for the web graph by Aiello,
Chung, and Lu in [ACL00]. Mihail and Papadimitriou also use this model [MP02] in their study
of large eigenvalues, as do Chung, Lu, and Vu in [CLV03a, CLV03b].

An alternative approach, which we will follow in this paper, is to sample graphs via some generative
procedure which yields a power law distribution. There is a long history of such models, outlined
in the survey by Mitzenmacher [Mit]. We will use the preferential attachment model to generate
our random graph. The preferential attachment random graph has been the subject of recently
revived interest. It dates back to Yule [Yul25] and Simon [Sim55]. It was proposed as a model
for the web by Barabési and Albert [BA99], and their description was elaborated by Bollobas and
Riordan in [BR]. It was used by Bollobas, Riordan, Spencer, and Tusnddy [BRST01] who proved
that the degree sequence does follow a power law distribution. Bollobds and Riordan obtained
several additional results regarding the diameter and connectivity of such graphs [BR]. We use the
generative model of [BR] (see also [BRST01]) and build a graph sequentially as follows:

e At each time step ¢, we add a vertex v, and we add an edge from v; to some other vertex u,
where u is chosen at random according to the distribution:

{ d?tt(le) ) if U; ;é Vt;

Priu=v;] = .
Qtl_la if v; = vy;

where d;(v) denotes the degree of vertex v at time ¢. This means that each vertex receives
an additional edge with probability proportional to its current degree. The probability of
choosing v; (and forming a loop) is consistent with this, since we’ve already committed “half”
an edge to v; and are deciding where to put the other half.

e For some constant m, every m steps we contract the most recently added m vertices to form
a supervertex.

Let G}* denote the random graph at time step ¢ with contractions of size m. Note that contracting
each set of vertices {im + 1,im +2,..., (i + 1)m} of G} yields a graph identically distributed with
G

It is worth mentioning that there are several alternative simple models for the World Wide Web and
for general power law graphs. A generalization of the preferential attachment model is described
by Drinea, Enachescu, and Mitzenmacher in [DEMO01], and degree sequence results analogous to
[BRSTO01] are proved for this model by Buckley and Osthus in [BOO1]. A completely different
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copies of existing pages, is developed by Kleinberg et al and Kumar et al in [KKR199], [KRRT99],
[KRRT00b], [KRR"00a]. Cooper and Frieze analyze a model combining these approaches in [CF01].

Several previous results have studied the structure of low degree vertices in the preferential attach-
ment graph. For example, the results in [BRST01] concern degrees up to ¢'/!5. The maximum
degree vertex of the preferential attachment graph is the subject of Theorem 17 of [BR02], where
an elegant static description of the preferential attachment graph is used to show that A;/+/t con-
verges in distribution to a certain non-negative distribution. The technique used there extends to
give the asymptotic distribution of A;/+/t for any constant 4. Our first theorem also deals with the
highest degree vertices:

Theorem 1 Let m and k be fized positive integers, and let f(t) be a function with f(t) — oo as
t —o00. Let Ay > Ag > --- > Ay denote the degrees of the k highest degree vertices of G*. Then

S <A <tV

Fiy = 1=t
and fori=2,...,k,

£1/2 £1/2

o SA<AL -

f&) ~ L)

whp!.

Unfortunately, the slowly growing function f(¢) in the result above cannot be removed. Indeed,
Theorem 17 of [BR02] and its extension to the k largest degrees shows that for any constants a < b
we have

lim Pr [Aq € (at!%,pt/%)] >0 and  lim Pr[A; - Aiq € (at'/2,t1%)] > 0.
t—o0 t—o0

The next theorem relates maximum eigenvalues and maximum degrees. It mirrors results of Mihail
and Papadimitriou [MP02] and Chung, Liu and Vu [CLV03a, CLV03b] for fixed degree expectation
models and at a high level, the proof follows the same lines as these two papers. Experimentally,
a power law distribution for eigenvalues was observed in “real-world” graphs in [FFF99].

Theorem 2 Let m and k be fized positive integers, and let f(t) be a function with f(t) — oo as
t —o00. Let \y > Ag > --- > X be the k largest eigenvalues of the adjacency matriz of Gy*. Then

fori=1,...,k we have \; = (1 + o(l))Ag/2 whp.
Our proofs of these theorems require two lemmas.

Lemma 1 Let d*(s) denote the degree of vertex s in G, and let a*) = a(a+1)(a+2)--- (a+k—1)
denote the rising factorial function. Then for any positive integer k,

E (a7 (s)"] < (2m) 92472 (f)m.

S

'In this paper an event £ is said to hold with high probability (whp) if Pr[] = 1 as t — co.



To simplify the exposition, we speak of a supernode, which is simply a collection of vertices viewed as
one vertex. So the degree of a supernode is the sum of the degrees of the vertices in the supernode,
and an edge is incident to a supernode if it is incident to some vertex in the supernode.

Lemma 2 Let S = (S1,852,...,5¢) be a collection of disjoint supernodes, and let ps(r;d,to,t)
denote the probability that each supernode S; has degree r;+d; at time t conditioned on dy,(S;) = d;.
Let d = Zle d; and r = Zle ri. If d = o(t'/?) and r = o(t*/3), then

4

ri+di—1 to+1\%? d 2r

=1

In the next section we prove Lemma 1 and Theorems 1 and 2. We defer the proof of Lemma 2
(which consists of carefully bounding a sum) to the appendix.

2 Proofs

2.1 Proof of Lemma 1

An earlier version of the paper bounded E [(df"(s))*]. This was a quite involved calculation. One
of the referees suggested that we bound E [(d}*(s))*)] because this would be simpler using an idea
from [BRO2]. This is indeed the case, as the reader can see next.

Let Z; = d*(s) denote the degree of vertex s at time ¢ (when the graph contains ¢ edges), and let
Y; be an indicator variable for the event that the edge added at time ¢ is incident to s.

Then we have
E [Zt(’“)] —E [E [(ZH + Y;)(’“)} ‘ Zt1:|
_E|z® (1_ 2= ) (21
B [Z“ <1 2% — 1) +(Zi+1) <2t— 1
_ k (k)
- <1 5 1) B|zY)].
Since Z{F) < (2m)*) | we have

E [Zt(k)} < (2m)®) ﬁ <1+ 2t/k_ 1) < (2m)®) exp{g Z ﬂ%}

t'=s+1

We upper bound the sum with an integral,




and the bound on the expectation becomes

1\ */2 k/2 k/2
M) < 9y ® (L3 (@ (¢ 2-1/t
mlat) <em (54) = (5) (5)
2-1/t

Since 5— 7s < 2, we may conclude that

S

£\ k2
E [Zt(k)] < (2m)(K)k/2 <—) .

2.2 Proof of Theorem 1

We partition the vertices into those added before time tg, before ¢1, and after ¢; and argue about
the maximum degree of vertices in each set. Here

to = logloglog f(t) and t; = loglog f(t).

We break the proof of Theorem 1 into 5 Claims.

Claim 1 In G[* the degree of the supernode of vertices added before time ty is at least t(l,/ 341/2
whp.

Proof Let A; denote the event that the supernode consisting of the first ¢g vertices has degree

less than t(l)/ 311/2 We bound the probability of this event using Lemma 2 with £ = 1. Since at time
to the supernode of all vertices added by this time has all of the edges, we take d = dy = 2t5. Then

t(1]/3t1/272t0 r o 1 ‘ 1 d/2 ,
1+ 2t — 0+ 2+to—d/2+2r/t1/?
Pr{A4] < E 0
] < = < 2tg — 1 >< t ) ¢
1=

< (1/31/2) (g *t1/2)201 (to + 1>to 2o+t
(2t = 1) n
§ t3t°/3 2to—1
St g — 1)
63t0+2t(1)/ 349

=o(1).

1/3
(tO + 1)t062+t0+2t0

Claim 2 In G7* no vertex added after time t1 has degree exceeding ty 241/2 whp.



Proof Let A denote the event that some vertex added after time ¢; has degree exceeding ¢, 2g1/2,
Then we have

t t

Pridg] < 3 Prldy(s) > t5%/% = Y Pr [(dt(s))(s) > (tg%l/?)(g)] <3 it %2R [dt(s)(?’)]

s=t1 s=t1 s=t1

Using Lemma 1 this bound becomes

t 3/2 t
Pridy] < ) t5t73/%(2m) 323/ G) < (2m)®23/248 3™ 57372 < (2m)@23/248e 1% = o(1).

s=t1 s=t1

Claim 3 In G}* no vertex added before time t1 has degree exceeding t(l)/ 641/2 whp.

Proof Let A3 denote the event that some vertex added before ¢; has degree exceeding t(l,/ 641/2
We use Lemma 1 for a third moment argument as above.

t1 _3 3/2 t1
Pras] < 3 (1/°672) " (2m) @222 (E) = @m)®23245 13" 582 < (2m) @324 12
s=1

s=1

= o(1).

Claim 4 The k highest degree vertices of GT* are added before time t1 and have degree A; bounded
by t5 112 < A; < t3/%41/2 whp.

Proof

(Upper bound on A;) By Claim 2, all vertices added after time ¢; have degree at most ¢y 241/2

whp. Combining this with Claim 3 we have A; < t(l)/ 641/2 whp.

(Lower bound on A;) The conditions from Claims 1,2, and 3 imply the lower bound. To see
this, suppose the conditions of these claims are satisfied, but assume for contradiction that at
most k — 1 vertices added before ¢; have degree exceeding %, 141/2 " Then the total degree of
vertices added before ¢y is less than k(té/ 041/ 2) +to(ty 1t1/?) < 2kt(1)/ %41/2_ But this contradicts

the condition of Claim 1, which says the total degree of vertices added before ty at least
1/3,1/2
to/3t1/2,

(Added before t1) By Claim 2 all vertices added after time ¢; have degree at most ¢, 241/2 whp.
So the lower bound on A; shows the k highest degree vertices are added before time t; whp.

0



Claim 5 The k highest degree vertices of Gi* have A; < A;—q — t12/f (t) whp.

Proof Let A4 denote the event that there are 2 vertices among the first ¢; with degrees exceeding
ty 't'/? and within t'/2/f(t) of each other.
Let pgs, s, = Pr[di(s1) — di(s2) = £ | As), for €] < v/t/f(t). Then

12/ f(t)

PT[A4 | XS] Z Z De,s1,82-

1<s1<82<t1 Z—_t1/2/f )

Since
1/6t1/2 2,
Desi,s < Z Z P(s1,52) (1,71 = £); (d1, d2), 1, 7)
ri= t 1;1/2 dy,d2=1
2t 1/6 1/6
< té/6t1/2 Zl (2%/ t1/2) (2%/ t1/2) (tl + 1)(d1+d2)/2 to+2+4t3/
At di—1 do—1 t
2t dy+da—2
S t(l)/6t1/2 Z <2t(1)/6t1/2) (tl + 1)2t1t_(d1+d2)/2€2t0
di,do=1
S t(l]/6(2t1)224t1t3t1/3(t1 + 1)2t162t0t—1/2
= o(t 2712 (1)),
we have
12/ f(t)
Pr[A4 | A3] S Z Z pl,51,52 = 0(1)'
1<s1<s2<t1 ¢=—t1/2/f(t)
So

Pr[Ay] = Pr[Ay | A3] Pr[As] + Pr[Ay | As] Pr[As] < Pr[A3] + Pr[As | As] = o(1).

2.3 Proof of Theorem 2

We partition the vertices into 3 sets; let S; be the vertices added after time ¢;_; and at or before
time ¢;, for
to=0, t1=t"8 ;=116 t3=1¢

To reduce the number of subscripts necessary, we use GG to denote the graph G;.

For any graph H, we let My denote the adjacency matrix of H, and we let A\;(H) denote the i-th
largest eigenvalue of Mp. We will use the identity (Rayleigh’s Principle)

T
. x Mygx
Ai(H) = min max ——5—
L xeLx#0 xI'x

(1)
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where L ranges over all (n — ¢ + 1)-dimensional subspaces of R™. (See, for example, [Str88]).

Our approach, as in [MP02], [CLV03a, CLV03Db], is to show that whp G contains a star forest F
with stars of degree asymptotic to the maximum degree vertices of G. Then we will show G \ F
has small eigenvalues. Then Rayleigh’s Principle is sufficient to conclude that the large eigenvalues
of G cannot be too different from the large eigenvalues of F'.

To do this, we need reasonable bounds on the degrees and codegrees in G. Recall that d7*(r) is the
degree at time s of the vertex added at time r with contractions of size m.

Claim 6 For any € > 0 and any f(t) with f(t) — co ast — oo the following holds whp: for all s
with f(t) < s < t, for all vertices v € GT, if v was added at time r, then d7(v) < s¥/2tep—1/2,

s

Proof We use Lemma 1 and the union bound. Let £ = [3/¢].

[ U U{dm ) > sl/2ter —1/2}] < Z Zpr [dm ) > s1/2Hep _1/2]

T s=f(t) r=1
t s ) 1/2 1/2 )
= 3 YoPr @)@ > (e 1))
s=f(t) r=1
t S
- Z 23—6(1/2—1-6)7,5/2}3 [(d;"(r))z}
s=f(t) r=1
t s
S Z Z8_2(1/2_1_6)7.[/2(Qm)(e)Qz/Q(s/’f‘)e/Q
s=f(t) r=1
t

s=F(t)
Since £ > 3/,

> 1
1—€l < 1—¢f — _1)2—¢ _
E s < /f(t)la: dz 6€—2<f(t) 1) o(1).

Claim 7 Let S5 be the set of vertices in S3 which are adjacent to more than 1 vertex of S1 in G.
Then |S4| < t7/16 whp.

Proof Let B; be the event that the conditions of Claim 6 hold with f(¢) = t2 and ¢ = 1/16.
Then for a vertex v € S3 added at time s,

m 81/2+et1 2
Pr[|[N(v) N Si| > 2| By] < ( ) < m2sTT/8¢1/4,

2 25 -1
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Let X denote the number of v € S3 adjacent to more than 1 vertex of S;. Then

t t
E[X |Bi] < Z m2s~ /814 < m2t1/4/ e Bdx < 8m2t3/8.
s=to+1 t2

We finish the claim with Markov’s inequality,
Pr[X > t7/16 | By] < E[X | B1]/t"/* = o(1).

Now, let F' C G be the star forest consisting of edges between S; and S3 \ S5.

Claim 8 Let Ay > Ag > --- > Ay denote the degrees of the k highest degree vertices of G. Then
Xi(F) = (1 — o(1))A}? whp.

Proof Let H be the star forest H = K; g, UK g,U---UKy q,, with d1 > d2 > --- > dj. Then for
i=1,....k XN(H) =d%. Soit is sufficient to show that A;(F) = (1—0(1))Ai(G) fori =1,..., k.

Claim 4 shows that the k highest degree vertices of G are added before time ¢;, so these vertices
are all in F. The only edges to these vertices that are not in F' are those added before time ¢y

and those incident to S3. By Theorem 1 we have A{(Gf)) < t;/ ¥ — {7/16 and, also by Theorem 1,
A(G) > t'/2/1ogt for i = 1,..., k, whp. Claim 7 says that whp |55 < t7/16 and so whp

Ai(F) > Ai(G) — 7716 —mit™/16 = (1 — (1)) Ai(G).
O

Let H = G\ F. We now show that Aj(H) is o(Ax(F)). This completes the proof of Theorem 2
because, for any subspace L we have

max

—7.— = ma T max
x€Lx#0 X'X x€Lx#0 X'X

xT Mgx xT Mpx xT Myx
= x —+0 T >
x#Z0 X'X

and so, for ¢ < k, Rayleigh’s Principle gives \;(G) = X\;(F)(1 £ o(1)).
Claim 9 )\ (H) < 6mt!%/%* whp.

Proof We bound the eigenvalues of H in 6 parts. Let
H; = H[Si],  Hij = H(Si,5}),

where H[S] is the subgraph of H induced by the vertex set S, and H (S, T') is the subgraph containing
only edges with one vertex in S and the other in 7.

To bound A (H;) we use the fact that the maximum eigenvalue of a graph is at most the maximum
degree of the graph. This is easily verified from (1).



We use Claim 6 with f(t) =1 and € = 1/64 to conclude that whp

A1(Hy) < Aq(Hp) = H;atx{di’f(v)} < ti/%e — 33/512,
vs1l1

A1(Ha) < Aq(Ha) < ,max {d7*(v)} < t;/2+6t1_1/2 — £233/1024
13V512

A1(Hs) < A;(Hs) < t;gggtg{d;g(v)} < gh/2teg 12 _ 415/64.

To bound A;(H;j), we begin by considering the case m = 1. Then, for ¢ < j, each vertex in S; has
at most 1 edge in H;;, so H;; is a star forest. As observed in Claim 8, the eigenvalues of a star
forest are directly related to the degrees of the stars.

When m > 1, we let G’ denote a preferential attachment graph with ¢ edges and m = 1. Recall that
by contracting vertices {(i —1)m + 1,...,4m} into a single vertex i, we obtain a graph identically
distributed with G. There is a simple representation of this observation in terms of linear algebra:
we can write the adjacency matrix of G in terms of the adjacency matrix of the graph G:

Mg = Cp,Mg:Crn,
where C,, is the ¢ x t/m matrix with ¢-th column

[()...()1...1/9...9]?

~ - ~ TV TV
m (¢/m—i)m

(i—)m

Similarly, we can write the adjacency matrix of H;; in terms of the adjacency matrix of Hfj using
this “contraction matrix” C,,.

Note that for y = C,,x we have y'y = m(x7x). So

x" Mp,;x XTCE,MH;.CmX yTMH;.y
A1(Hij) = max ——=—'— = max U = max m——"
x#0 XX x#0 Xt x y: y=Cmx#0 yTy
y My ,
< mmax ———— = mA(Hj;).
y70 Y'Yy

We use Claim 6 with f(¢) =¢; and e = 1/64 as above to conclude that whp

Aq(Hy,) = 5}n<a;)2<{dt12 (v)} < th/2te _ 297/1024
/ — 1 < 1/2+€,—-1/2 _ 29/64
Aq1(Hys) tl?fé‘tB{dta (v)} <t 2] ¢

Finally, all edges in H}, are between S; and S, so Claim 7 shows that A;(H};) < t"/16 whp.
We now conclude that whp

A (Hij) < mAr(HY) < mAy(H)Y? < mt!S/64)
and so whp

3
)\1(H) < Z)\l(HZ) + Z)\l(Hn) < 6mt15/64.
=1 1<J

10
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A Proof of Lemma 2

We calculate the probability as the union of disjoint events by fixing the times when the degrees
of the S; change. Let 7() = (Tl(i), - ,Tg) ) where TJ@ is the time when we add an edge incident
to S; and increase the degree of S; from d; + 7 — 1 to d; + j. We will see that in the calculation
it doesn’t matter much which S; increases in degree, so we let d = Zle d; and r = Ele r; and
define 7 = (19, 71,- .., Tr+1) to be the ordered union of the 7@, with 79 = to and Try1 = t.

Let p(7;d, tg,t) denote the probability that (super)nodes S; increase in degree at exactly the times
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specified by 7 between time ¢g and ¢ given dy,(s;) = d;. Then

di+k—1) [ d+k
p(r3d,to,1) (HH - ) II II (1_2j+_1)

i—1 k=1 2Tk -1 k=0 j=7p+1

J4 T
o (’I",'-I—di—l)! 1
B (E (d; — 1)! ) (kl_ll 2Tk—1)
r Tk+1—1
X exp Z Z lo (1 - Lkl)

k=0 j=7,+1

We bound the inner sum by an integral

Tp+1—1 Tp+1—1
d+k d+ k Th+1 d+k
lo 1-— ) < I 1-— ) < I 1—-— .
Z g< 23—1)_ Z 0g< 2])_/7 0g< 2z )dw

J=mr+1 J=mrt+1 k1

Then, since

/log <1 - d2+ k) dx = —xlog(2z) + w log(2z — (d + k)),

T

Tk+1 d+k
/ log (1 _at ) dx
TE+1 2'7:

= —Tk+1 10g(2’7‘k+1) +

we have

2 _
et — K pog o1 - (@4 B)

21, +2 — (d+ k)
2

+ (1 + 1) log(27% + 2) —

log(2m +2 — (d + k)).

By grouping like terms and noting that 79 = ¢g and 7,41 = ¢, we have

r Th+1
> [ (1 - M) dz
Tr+1 2z

k=0
2 +2—d
— (to + 1) log(2to + 2) — 222~ %00 (2t0 + 2 — d)
—tlog(2t) + u;l-i-r) log(2t — (d+ 1))
. 21, +2 — (d+ k&
+§:<UM+Dby%y+%— Tkt 2('%)my%%+2—u+w»
k=1
— 7 log(27) + 2ne—(d+k—1) log(27, — (d+ k — 1)))

2
r
k=1

where A is the term outside the summation and By, is the k-th term of the sum.
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We concentrate first on the term By. Rearranging terms yields

2Tk+2—(d+k)log(1 1 )

By =1 log(1+1 log(2 2 —
k = Tk log(1+ 1/7) + log(27, + 2) + 9 97 +2 — (d+ k)

1
~3 log(27 + 1 — (d + k)).
Since 1 + z < €%, this is bounded as

1 1 d+k+1\ 1
By < log(2m +2) — 5 log (1 - i) +

271, + 2 2

Now we turn our attention to A. Rearranging terms, we have

d d+r d+r
A=—(to+1)log <1—2t0+2)+§log(2to+2—d)+tlog <1— 57 ) - log(2t — (d+ 1))
So
d —(to+1) d+r\t
A _ . _ nd/2 o . —(d+r)/2
e <1 T 2) (2to+2 —d) <1 5 ) (2t — (d+7))
—(1=52%+ ) (to+1) t—(d+r)/2 d/2
— (1 d ( (0+)) 0 1_d+’f‘ t0+1 (Zt)_r/2,
2(to + 1) 2t t

Since 1 —z < e~2"/2 for 0 < 2 < 1 we have

t—(d+r)/2 2 3
(1_d+r) gexp{—d+r+(d+r) (d+7) }

2t 2 8t 16t
So
_(1— d
eATXBr < (1= d <1 2(t0+1))(t0+1) exp _d+r n (d+r)? . (d+r)3
o 2(to + 1) 9 st 1662
t0+1)d/2 —r/2 ( - dtk+1)"/? 12\ ) /2
8 < (267 H 1= - (27 +2) e
¢ k1 27 + 2
= err(r,d, to,t) < 0:_ ) (Qt)—r/2 <H ((1 _ 2';7—:‘2) (27 + 2)1/2 :
k=1

where

2 8t 16¢2

d (st d (d+7)2 (d+7)?
67'7'(7', d, to,t) = (1 — m) exp{ + }

Inserting the bounds for A + ) By into the bound on p(7;d,tg,t), we have

l ) 1\ d/2
p(73d,t0,t) < <| [ (n(; & 1)11)") err(r,d, to, t) (to : 1) (2) 7/
i=1 ¢

- d+k+1\7"? 1/2 -1

k=1
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Now observe that

d+k+1\"12 12 . 12 3

In order to bound the probability of interest, we sum p(7;d, to,t) over all ordered choices of .

pS(r; d7t07t) = Z p(T;d7t07t)

7,r®

¢
r (r; + d; — 1)!
= <7'1, R 7‘@) Z <H W) 6’1‘7’(7‘, d, to, t)

to+1<m << <t \i=1

()" e ([l (1522

k=1

) (s
X 3 (li[(2rk+1—(d+/l<:))1/2 <1+ 2Tk3_1>).

to+1<m<mo--<7r <t \k=1

Now we make a change of variables, introducing 7, = 7, — [(d + k)/2]. For some 7y, 7)1, this can
result in 7, = 7}, 41, 80 we relax the strict inequalities to less-than-or-equals. Also, since d and k

are both at least 1, we have 2[(d + k)/2] > 2. So

3 (H (27 +1— (d+ k)2 <1 + ZT:’_ 1))

to<mi<mo<- <7<t \k=1

< > <ﬁ (27} + 1) 1/ (1 + 27;_ 1))

k=1

We simplify this sum by unordering the variables,

3 (H ((27,’c+1)‘1/2+3(2¢k+1)3/2)>

k=1

1 t—[(d+r)/2] ,
LTS (e sy o))
" T'=to—[d/2]+1

r
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and then using an integral, which we start from = = 0, since tp — [d/2] + 1 > 1,

= [(d4r)/2]
Y e+ v
T =to—[d/2]+1

t—[(d+r)/2]
< / ((230 + 1) V2 432z + 1)_3/2) dz
z=0

<@—(d+r)+1)Y2-1-32t—(d+71)) /2 +3)
<2 —(d+7)+ 1Y% 42

= (2)"/? (1 - d++t_1) N (1 * (2t — (d +2r) + 1)1/2) '

Again using 1+ z < e* we have

(1- ) o {0

2t 4t

and
2

(1 T et—drn+ 1)1/2)T = eXp{(2t— (dj:) n 1)1/2}

) d/2
ri+di—1 to+1
ps(r;d, to,t) < (H ( di—1 )) err(r,d, to, t) ( ; )

=1

r(d+r—1) 2r
eXp{_ " (2t—(d+r)+1)1/2}'

So

For d = o(t'/?) and 7 = o(t*/?), we have

r(d+r—1) 2r
err(r,d,to,t) exp{ 1 + 2t—(d+7) + 1)1/2}
< (1 d _(1_2(t(;i+1))(t°+1) 1 d 72 2r
—(‘%;HQ e@{‘5‘§+wﬁ'

Since z~* < e, this completes the proof of the lemma.
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