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New concept or mechanism Limits of y Reference

Lincar growth, linear pref. attachment Barabisi and Albert, 1999

Nonlinear preferential attachment

Tk~ kf no scaling for a#1 Krapivsky, Redner, and Leyvraz, 2000
Asymptotically linear pref. attachment y-2ifa. =
(k) ~a.k, as ki~ Yo it a,—0 Krapivsky, Redner, and Leyvraz, 2000
Initial attractiveness
T(k)~A+k, Dorogovisev, Mendes, and Samukhin, 2000a,
20000
Accelerating growth (k)~1" Sif 01
constant initial attractiveness Y2 i 40 Dorogovtsev and Mendes, 2001a
Accelerating growth y=15 for k<k,(1) Barabsi et al., 2001
(ky=at+2b ¥=3 for k>k,(1) Dorogovtsev and Mendes, 2001c
Internal edges with probab. p y=2if
1pim
9 Team
Rewiring of edges with probab. g y it p.g.m—0 Albert and Barabisi, 2000

¢ internal edges

or removal of ¢ edges Dorogovtsev and Mendes, 2000¢

Gradual aging y=2if vs—2e

(k) ~k,(1=1) " y— if v—1 Dorogovisev and Mendes, 2000b
§1-c
Multiplicative node fitness o
P LGS

T~ ik, Bianconi and Barabisi, 2001a

-
Additive-multiplicative fitness o
dditive-multiplicative fitnes PO~

k=14 ¢ and Rodgers, 2001

Dorogovisev, Mendes, and Samukhin, 2000c

Edge inheritance i
Copying with probab. p y=2-p)/(1-p) Kumar ef al., 2000a, 2000
Redirection with probab. r y=1+1ir Krapivsky and Redner, 2001
Walking with probab. p y=2 for p=p, Vizquez, 2000
Attaching to edges y=3 Dorogovtsev, Mendes, and Samukhin, 2001a

p directed internal edges
T ) CK{ 4 ) (K7 )

1-p directed internal edges Tu=24p
Shifted linear pref. activity 243p Tadié, 2001a

24p)
Yin=2%p:
+(1=p) "+ upl(1-p) Krapivsky, Rodgers, and Redner, 2001
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One modification that’s missing from list

Underlying geometry of vertices:
» A feature nodes have in many real-world networks.

» Often a reasonable hypothesis even when the nodes do
not explicitly live in a metric space.



Central Question in this talk

How does underlying geometric structure affect preferential
attachment?
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Old setup (Geo-PA-1):
» Every vertex v is a uniformly random point on the surface
of a 3-dimensional sphere.

» At time t, add vertex v;, and connect it randomly to m
neighbors, from only neighbors within critical radius r, with
probability given by:

L deg,(w) if |ve—w| <r;
0 otherwise.

Privi — w] = {

» We would like to take normalization Z to be

Tivi)= Y deg,(w).

w:||vi—wl|<r



Geometric PA | Image
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Introduce affinity function F: Ry — R,.

» At time t, add vertex v;, and connect it randomly to m
neighbors, with probability given by

1
Priv; — w] = 2degt(w) x F(|lve — wl),

where Z = max { T¢(v:), amtl}, with
> Ti(ve) = 2 ey, deg(w)F ([[ve — wl]),
> 1= [ F(llw = vell)dw,
» « is bias towards self loops.
Restrictions on F: [ must exist, 0 < |/ < .
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Prototypical affinity functions:
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Degree distribution

Theorem
Fora > 2 and

/ F(x)?sinxdx = O <t1‘612> :
0
we have

E [#{w : deg,(w) = k}| = Cx(m, ) (Z)Hatwt O(t'79),

where
Ck(m,a) — Coo(m, ) as k — oo.

(We also have a concentration result.)



Conductance/Sparsest cut

Theorem
For o > 0 and m a sufficiently large constant, if there exist ¢
and n with
1
E<<¢<<1 andn < 1
such that

1/ F(x)sinxdx < ¢l
2 n

then the cut induced by a great circle of the sphere contains
O((n + ¢)mn) edges whp.
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Conductance/Sparsest cut

Example:
F(x) = min {n‘”, ):ﬁ} .
For g > 2, get
e(S,3)/|S| = O (mn";(ﬁ*”) :
For 6 = 2, get

= B mloglogn
e(s,9)/|S|=0 (Iogn) .

For 5 < 2, G is an expander.



Expander Criteria

Call F tame if exist constants C¢, Co such that
» F(x)>Cqifor0 < x <m,
> | < Cg.

Theorem
Ifa > 2, F is tame, and m > K'log n for sufficiently large K,
then whp

» G, has conductance bounded below by a constant.
» G, Is connected.
» G, has diameter O(log n/log m).



We also have some results for diameter when affinity function is
not tame.



Lemma 1: a simple expectation

Lemma
For u chosen u.a.r. in S% and t > 0, we have

E[T+(u)] =2I/mt.

Proof

ET (] = | 3 deg (w)F(Ju- W”)}

weV;
= 3" deg,(w / F(lu— wil)d
weV;
= > deg,(w)/ =2Imt.
weV;



Lemma 2: a not-so-simple concentration inequality

Lemma
For any t > 0 and for u chosen u.a.r. in S2,

|

Proof by Azuma-Hoeffding, using a coupling argument.

Te(u) — 2lmt‘ > mi(2/* + t'/2Int) In n] =0 (n_z) .



Geo-PA-II: choose your own affinity function F(x).
» Degree distribution has power 1 + a.
» Expander/Sparse cuts depend on F(x).
» Diameter does as well.
» Proof uses tight concentration, coupling.



» Technical work:

» a=2(i.e. remove «)
» non-uniform random points
» necess. and suff. condition on F for expansion

» Modelling work: The sparse cuts are “wrong”.



Future work: getting sparse cuts right
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