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The Preferential Attachment Graph

I Build a graph dynamically. At
time t have Gt = (V t ,E t ).

I At time t , add vertex v t , and
connect it randomly to m
neighbors, with probability given
by:

Pr[v t → w ] =
1
Z

degt (w).
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Powerlaw degree distribution

PA graph has a “scale-free” degree distribution:
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Fig. 1. Evidence for a Frequency Vs Degree Power Law in (a) the Pansiot-Grad dataset and (b) a sampled subgraph of a random graph.
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Modifications

It’s fun to analyze, it looks like some graphs from the real-world.
Let’s consider the many possible modifications:

ued by adding a new word. With probability p , this is a
new word. However, with probability 1�p , this word is
already present. In this case Simon assumes that the
probability that the (N�1)th word has already ap-
peared i times is proportional to ifN(i), i.e., the total
number of words that have occurred i times.

As noticed by Bornholdt and Ebel (2001), the Simon
model can be mapped exactly onto the following net-
work model: Starting from a small seed network, we
record the number of nodes that have exactly k incom-
ing edges, Nk . At every time step one of two processes
can happen:

TABLE III. Summary of the mechanisms behind the current evolving network models. For each model (beyond the Barabási-
Albert model) we list the concept or mechanism deviating from linear growth and preferential attachment, the two basic ingre-
dients of the Barabási-Albert model, and the interval in which the exponent � of the degree distribution can vary.

New concept or mechanism Limits of � Reference

Linear growth, linear pref. attachment ��3 Barabási and Albert, 1999

Nonlinear preferential attachment
�(ki)�ki

� no scaling for ��1 Krapivsky, Redner, and Leyvraz, 2000

Asymptotically linear pref. attachment �→2 if a�→�

�(ki)�a�ki as ki→� �→� if a�→0 Krapivsky, Redner, and Leyvraz, 2000

Initial attractiveness ��2 if A�0
�(ki)�A�ki �→� if A→� Dorogovtsev, Mendes, and Samukhin, 2000a,

2000b

Accelerating growth �k��t	 ��1.5 if 	→1
constant initial attractiveness �→2 if 	→0 Dorogovtsev and Mendes, 2001a

Accelerating growth ��1.5 for k�kc(t) Barabási et al., 2001
�k��at�2b ��3 for k�kc(t) Dorogovtsev and Mendes, 2001c

Internal edges with probab. p ��2 if

q�
1�p�m

1�2m
Rewiring of edges with probab. q �→� if p ,q ,m→0 Albert and Barabási, 2000

c internal edges �→2 if c→�

or removal of c edges �→� if c→�1 Dorogovtsev and Mendes, 2000c

Gradual aging �→2 if 
→��

�(ki)�ki(t�t i)
�
 �→� if 
→1 Dorogovtsev and Mendes, 2000b

Multiplicative node fitness P�k��
k�1�C

ln�k�

� i�
 iki Bianconi and Barabási, 2001a

Additive-multiplicative fitness P�k��
k�1�m

ln�k�

� i�
 i(ki�1)�� i 1�m�2 Ergün and Rodgers, 2001

Edge inheritance P�kin��
d

kin
&

ln�akin�
Dorogovtsev, Mendes, and Samukhin, 2000c

Copying with probab. p ��(2�p)/(1�p) Kumar et al., 2000a, 2000b

Redirection with probab. r ��1�1/r Krapivsky and Redner, 2001

Walking with probab. p ��2 for p�pc Vázquez, 2000

Attaching to edges ��3 Dorogovtsev, Mendes, and Samukhin, 2001a

p directed internal edges � in�2�p�

�(ki ,kj)�(ki
in��)(kj

out��) �out�1�(1�p)�1��p/(1�p) Krapivsky, Rodgers, and Redner, 2001

1�p directed internal edges � in�2�p
Shifted linear pref. activity �out�2�3p Tadić, 2001a
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One modification that’s missing from list

Underlying geometry of vertices:
I A feature nodes have in many real-world networks.
I Often a reasonable hypothesis even when the nodes do

not explicitly live in a metric space.
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Central Question in this talk

How does underlying geometric structure affect preferential
attachment?



Geometric PA I

Old setup (Geo-PA-I):

I Every vertex v is a uniformly random point on the surface
of a 3-dimensional sphere.

I At time t , add vertex v t , and connect it randomly to m
neighbors, from only neighbors within critical radius r , with
probability given by:

Pr[v t → w ] =

{
1
Z degt (w) if ‖v t − w‖ ≤ r ;

0 otherwise.

I We would like to take normalization Z to be

T t (v t ) =
∑

w :‖v t−w‖≤r

degt (w).
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Geometric PA I Image



Geometric PA II

Introduce affinity function F : R+ → R+.

I At time t , add vertex v t , and connect it randomly to m
neighbors, with probability given by

Pr[v t → w ] =
1
Z

degt (w)× F
(‖v t − w‖),

where Z = max {T t (v t ), αmtI}, with
I T t (v t ) =

∑
w∈V t

degt (w)F
(‖v t − w‖),

I I =
∫

S2 F
(‖w − v t‖

)
dw ,

I α is bias towards self loops.

Restrictions on F : I must exist, 0 < I <∞.
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What happens?

In the Geo-PA-II model, what do you think happens to:

I The degree distribution?
I The conductance/sparsest cut?
I The diameter?
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Degree distribution

Theorem

For α > 2 and ∫ π

0
F (x)2 sin xdx = O

(
t1−εI2

)
,

we have

E
[
#{w : degt (w) = k}] = Ck (m, α)

(m
k

)1+α
t +O(t1−δ),

where
Ck (m, α)→ C∞(m, α) as k →∞.

(We also have a concentration result.)
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Conductance/Sparsest cut

Theorem
For α > 0 and m a sufficiently large constant, if there exist φ
and η with

1
n
� φ� 1 and η � 1

such that
1
2

∫ π

η
F (x) sin x dx ≤ φI

then the cut induced by a great circle of the sphere contains
O((η + φ)mn) edges whp.



Conductance/Sparsest cut

Example:

F (x) = min
{

nδβ ,
1

xβ

}
.

For β > 2, get

e(S, S̄)/|S| = O
(

mn−δ(β−1)
)
.

For β = 2, get

e(S, S̄)/|S| = O
(

m log log n
log n

)
.

For β < 2, G is an expander.
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Expander Criteria

Call F tame if exist constants C1,C2 such that
I F (x) ≥ C1 for 0 ≤ x ≤ π,
I I ≤ C2.

Theorem
If α > 2, F is tame, and m ≥ K log n for sufficiently large K ,
then whp

I Gn has conductance bounded below by a constant.
I Gn is connected.
I Gn has diameter O(log n/ log m).



Diameter

We also have some results for diameter when affinity function is
not tame.



Lemma 1: a simple expectation

Lemma
For u chosen u.a.r. in S2 and t > 0, we have

E[T t (u)] = 2Imt .

Proof

E[T t (u)] = E
[ ∑

w∈V t

degt (w)F (‖u − w‖)
]

=
∑

w∈V t

degt (w)

∫
S2

F (‖u − w‖)dw

=
∑

w∈V t

degt (w)I = 2Imt .

2



Lemma 2: a not-so-simple concentration inequality

Lemma
For any t > 0 and for u chosen u.a.r. in S2,

Pr
[∣∣∣∣T t (u)− 2Imt

∣∣∣∣ ≥ mI(t2/α + t1/2 ln t) ln n
]

= O
(

n−2
)
.

Proof by Azuma-Hoeffding, using a coupling argument.



Summary

Geo-PA-II: choose your own affinity function F (x).
I Degree distribution has power 1 + α.
I Expander/Sparse cuts depend on F (x).
I Diameter does as well.
I Proof uses tight concentration, coupling.



Future work

I Technical work:
I α = 2 (i.e. remove α)
I non-uniform random points
I necess. and suff. condition on F for expansion

I Modelling work: The sparse cuts are “wrong”.



Future work: getting sparse cuts right
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