A Geometric Preferential Attachment Model of Networks II

Abraham D. Flaxman, Microsoft Research

Alan M. Frieze, Carnegie Mellon University

Juan Vera University of Waterloo

December 11, 2007

Outline

Introduction

Preferential Attachment and its relatives

Model

Geometric Preferential Attachment I Geometric Preferential Attachment II

Results

Theorems
Proof techniques

Conclusion

▶ Build a graph dynamically. At time t have G_t = (V_t, E_t).

- ▶ Build a graph dynamically. At time t have G_t = (V_t, E_t).
- At time t, add vertex v_t, and connect it randomly to m neighbors

- ▶ Build a graph dynamically. At time t have $G_t = (V_t, E_t)$.
- At time t, add vertex vt, and connect it randomly to m neighbors, with probability given by:

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w).$$

- ▶ Build a graph dynamically. At time t have G_t = (V_t, E_t).
- At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by:

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w).$$

Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

Powerlaw degree distribution

PA graph has a "scale-free" degree distribution:

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

New concept or mechanism	Limits of y	Reference
Linear growth, linear pref. attachment	γ=3	Barabási and Albert, 1999
Nonlinear preferential attachment $\Pi(k_i) \sim k_i^{\alpha}$	no scaling for $\alpha \neq 1$	Krapivsky, Redner, and Leyvraz, 2000
Asymptotically linear pref. attachment $\Pi(k_i) {\sim} a_= k_i$ as $k_i {\rightarrow} \infty$	$\gamma \rightarrow 2$ if $a_m \rightarrow \infty$ $\gamma \rightarrow \infty$ if $a_m \rightarrow 0$	Krapivsky, Redner, and Leyvraz, 2000
Initial attractiveness $\Pi(k_i) \sim A + k_i$	$\gamma = 2$ if $A = 0$ $\gamma \rightarrow \infty$ if $A \rightarrow \infty$	Dorogovtsev, Mendes, and Samukhin, 2000s 2000b
Accelerating growth $\langle k \rangle \sim t^{\theta}$ constant initial attractiveness	$\gamma = 1.5 \text{ if } \theta \rightarrow 1$ $\gamma \rightarrow 2 \text{ if } \theta \rightarrow 0$	Dorogovtsev and Mendes, 2001a
Accelerating growth $(k)=at+2b$	$\gamma = 1.5$ for $k \ll k_c(t)$ $\gamma = 3$ for $k \gg k_c(t)$	Barabási et al., 2001 Dorogovtsev and Mendes, 2001c
Internal edges with probab. p	$q = \frac{\gamma = 2 \text{ if}}{1 - p + m}$ $q = \frac{1 - p + m}{1 + 2m}$	
Rewiring of edges with probab. q	$\gamma \rightarrow \infty$ if $p,q,m \rightarrow 0$	Albert and Barabási, 2000
c internal edges or removal of c edges	$\gamma \rightarrow 2$ if $c \rightarrow \infty$ $\gamma \rightarrow \infty$ if $c \rightarrow -1$	Dorogovtsev and Mendes, 2000c
Gradual aging $\Pi(k_i) \sim k_i (t-t_i)^{-\nu}$	$\gamma \rightarrow 2$ if $\nu \rightarrow -\infty$ $\gamma \rightarrow \infty$ if $\nu \rightarrow 1$	Dorogovtsev and Mendes, 2000b
Multiplicative node fitness $\Pi_i {\sim} \eta_i k_i$	$P(k) {\sim} \frac{k^{-1-C}}{\ln(k)}$	Bianconi and Barabási, 2001a
Additive-multiplicative fitness	$P(k) \sim \frac{k^{-1-m}}{\ln(k)}$	
$\Pi_i \sim \eta_i(k_i-1) + \zeta_i$	1≤m≤2	Ergün and Rodgers, 2001
Edge inheritance	$P(k_{in}) = \frac{d}{k_{in}^{\sqrt{2}}} \ln(ak_{in})$	Dorogovtsev, Mendes, and Samukhin, 2000
Copying with probab. p	$\gamma = (2-p)/(1-p)$	Kumar et al., 2000a, 2000b
Redirection with probab. r	$\gamma = 1 + 1/r$	Krapivsky and Redner, 2001
Walking with probab. p	$\gamma=2$ for $p>p_c$	Vázquez, 2000
Attaching to edges	γ=3	Dorogovtsev, Mendes, and Samukhin, 2001
p directed internal edges $\Pi(k_i, k_j) \propto (k_i^{in} + \lambda)(k_j^{out} + \mu)$	$\gamma_{in} = 2 + p\lambda$ $\gamma_{out} = 1 + (1-p)^{-1} + \mu p/(1-p)$	Krapivsky, Rodgers, and Redner, 2001
1-p directed internal edges Shifted linear pref. activity	$\gamma_{in} = 2 + p$ $\gamma_{out} = 2 + 3p$	Tadić, 2001a

Modifications

It's fun to analyze, it looks like some graphs from the real-world. Let's consider the many possible modifications:

New concept or mechanism	Limits of y	Reference
Linear growth, linear pref. attachment	γ=3	Barabási and Albert, 1999
Nonlinear preferential attachment $\Pi(k_i) \sim k_i^{\alpha}$	no scaling for $\alpha \neq 1$	Krapivsky, Redner, and Leyvraz, 2000
Asymptotically linear pref. attachment $\Pi(k_i){\sim}a_uk_i \text{ as } k_i{\rightarrow}\infty$	$\gamma \rightarrow 2$ if $a_m \rightarrow \infty$ $\gamma \rightarrow \infty$ if $a_m \rightarrow 0$	Krapivsky, Redner, and Leyvraz, 2000
Initial attractiveness $\Pi(k_i) \sim A + k_i$	$\gamma = 2$ if $A = 0$ $\gamma \rightarrow \infty$ if $A \rightarrow \infty$	Dorogovtsev, Mendes, and Samukhin, 2000a, 2000b
Accelerating growth $\langle k \rangle \sim t^{\theta}$ constant initial attractiveness	$\gamma = 1.5 \text{ if } \theta \rightarrow 1$ $\gamma \rightarrow 2 \text{ if } \theta \rightarrow 0$	Dorogovtsev and Mendes, 2001a
Accelerating growth $\langle k \rangle = at + 2b$	$\gamma=1.5$ for $k \ll k_c(t)$ $\gamma=3$ for $k \gg k_c(t)$	Barabási et al., 2001 Dorogovtsev and Mendes, 2001c
Internal edges with probab. p	$\gamma = 2$ if $q = \frac{1 - p + m}{1 + 2m}$	
Rewiring of edges with probab. q	$\gamma \rightarrow \infty$ if $p,q,m \rightarrow 0$	Albert and Barabási, 2000
c internal edges or removal of c edges	$\gamma \rightarrow 2$ if $c \rightarrow \infty$ $\gamma \rightarrow \infty$ if $c \rightarrow -1$	Dorogovtsev and Mendes, 2000c
Gradual aging $\Pi(k_i) \sim k_i (t-t_i)^{-\nu}$	$\gamma \rightarrow 2$ if $\nu \rightarrow -\infty$ $\gamma \rightarrow \infty$ if $\nu \rightarrow 1$	Dorogovtsev and Mendes, 2000b
Multiplicative node fitness $\Pi_i {\sim} \eta_i k_i$	$P(k) \sim \frac{k^{-1-C}}{\ln(k)}$	Bianconi and Barabási, 2001a
Additive-multiplicative fitness	$P(k) \sim \frac{k^{-1-m}}{\ln(k)}$	
$\Pi_i \sim \eta_i(k_i-1) + \zeta_i$	1≤m≤2	Ergün and Rodgers, 2001
Edge inheritance	$P(k_{in}) = \frac{d}{k_{in}^{\sqrt{2}}} ln(ak_{in})$	Dorogovtsev, Mendes, and Samukhin, 2000c
Copying with probab. p	$\gamma = (2-p)/(1-p)$	Kumar et al., 2000a, 2000b
Redirection with probab. r	$\gamma = 1 + 1/r$	Krapivsky and Redner, 2001
Walking with probab. p	$\gamma=2$ for $p>p_c$	Vázquez, 2000
Attaching to edges	γ=3	Dorogovtsev, Mendes, and Samukhin, 2001a
p directed internal edges $\Pi(k_i, k_j) \propto (k_i^{in} + \lambda)(k_j^{out} + \mu)$	$\gamma_{in} = 2 + p\lambda$ $\gamma_{out} = 1 + (1-p)^{-1} + \mu p/(1-p)$	Krapivsky, Rodgers, and Redner, 2001
1-p directed internal edges Shifted linear pref. activity	$\gamma_{in} = 2 + p$ $\gamma_{out} = 2 + 3p$	Tadić, 2001a

[Barabási, A.-L., and R. Albert, Statistical mechanics of complex networks, Reviews of Modern Physics, Vol 74, page 47-97, 2002.]

Underlying geometry of vertices

Underlying geometry of vertices:

A feature nodes have in many real-world networks.

Underlying geometry of vertices:

- A feature nodes have in many real-world networks.
- Often a reasonable hypothesis even when the nodes do not explicitly live in a metric space.

Central Question in this talk

How does underlying geometric structure affect preferential attachment?

Old setup (Geo-PA-I):

▶ Every vertex *v* is a uniformly random point on the surface of a 3-dimensional sphere.

Old setup (Geo-PA-I):

- ► Every vertex *v* is a uniformly random point on the surface of a 3-dimensional sphere.
- At time t, add vertex v_t, and connect it randomly to m neighbors

Old setup (Geo-PA-I):

- ► Every vertex *v* is a uniformly random point on the surface of a 3-dimensional sphere.
- At time t, add vertex v_t, and connect it randomly to m neighbors, from only neighbors within critical radius r

Old setup (Geo-PA-I):

- ► Every vertex *v* is a uniformly random point on the surface of a 3-dimensional sphere.
- ▶ At time *t*, add vertex *v_t*, and connect it randomly to *m* neighbors, from *only* neighbors within critical radius *r*, with probability given by:

$$\Pr[v_t \to w] = \begin{cases} \frac{1}{Z} \deg_t(w) & \text{if } ||v_t - w|| \le r; \\ 0 & \text{otherwise.} \end{cases}$$

Old setup (Geo-PA-I):

- ► Every vertex *v* is a uniformly random point on the surface of a 3-dimensional sphere.
- ▶ At time *t*, add vertex *v_t*, and connect it randomly to *m* neighbors, from *only* neighbors within critical radius *r*, with probability given by:

$$\Pr[v_t \to w] = \begin{cases} \frac{1}{Z} \deg_t(w) & \text{if } ||v_t - w|| \le r; \\ 0 & \text{otherwise.} \end{cases}$$

We would like to take normalization Z to be

$${\mathcal T}_t(v_t) = \sum_{w: \|v_t - w\| \le r} \mathsf{deg}_t(w).$$

Geometric PA I Image

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|)$$

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

$$\qquad \qquad T_t(v_t) = \textstyle \sum_{w \in V_t} \deg_t(w) F\big(\|v_t - w\|\big),$$

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

- $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(\|v_t w\|),$
- $I = \int_{S^2} F(\|w v_t\|) dw,$

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

- $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(\|v_t w\|),$
- $I = \int_{S^2} F(\|w v_t\|) dw,$
- $ightharpoonup \alpha$ is bias towards self loops.

Introduce affinity function $F: \mathbb{R}_+ \to \mathbb{R}_+$.

At time t, add vertex v_t, and connect it randomly to m neighbors, with probability given by

$$\Pr[v_t \to w] = \frac{1}{Z} \deg_t(w) \times F(\|v_t - w\|),$$

where $Z = \max \{T_t(v_t), \alpha mtI\}$, with

- $T_t(v_t) = \sum_{w \in V_t} \deg_t(w) F(\|v_t w\|),$
- $I = \int_{S^2} F(\|w v_t\|) dw,$
- α is bias towards self loops.

Restrictions on F: I must exist, $0 < I < \infty$.

What happens?

In the Geo-PA-II model, what do you think happens to:

What happens?

In the Geo-PA-II model, what do you think happens to:

▶ The degree distribution?

What happens?

In the Geo-PA-II model, what do you think happens to:

- ▶ The degree distribution?
- ▶ The conductance/sparsest cut?

What happens?

In the Geo-PA-II model, what do you think happens to:

- ► The degree distribution?
- The conductance/sparsest cut?
- The diameter?

Theorem

Theorem

For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon}l^2\right),\,$$

Theorem

For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x \, dx = \mathcal{O}\left(t^{1-\epsilon} I^2\right),$$

we have

$$\mathsf{E}\left[\#\{w:\deg_t(w)=k\}\right]=C_k(m,\alpha)\left(\frac{m}{k}\right)^{1+\alpha}t+\mathcal{O}(t^{1-\delta}),$$

Theorem

For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon}I^2\right),\,$$

we have

$$\mathsf{E}\left[\#\{w:\deg_t(w)=k\}\right]=C_k(m,\alpha)\left(\frac{m}{k}\right)^{1+\alpha}t+\mathcal{O}(t^{1-\delta}),$$

where

$$C_k(m,\alpha) \to C_\infty(m,\alpha)$$
 as $k \to \infty$.

Theorem

For $\alpha > 2$ and

$$\int_0^{\pi} F(x)^2 \sin x dx = \mathcal{O}\left(t^{1-\epsilon}I^2\right),\,$$

we have

$$\mathsf{E}\left[\#\{w:\deg_t(w)=k\}\right]=C_k(m,\alpha)\left(\frac{m}{k}\right)^{1+\alpha}t+\mathcal{O}(t^{1-\delta}),$$

where

$$C_k(m,\alpha) \to C_\infty(m,\alpha)$$
 as $k \to \infty$.

(We also have a concentration result.)

Theorem

For $\alpha >$ 0 and m a sufficiently large constant, if there exist ϕ and η with

$$\frac{1}{n} \ll \phi \ll 1$$
 and $\eta \ll 1$

such that

$$\frac{1}{2} \int_{\eta}^{\pi} F(x) \sin x \, dx \le \phi I$$

then the cut induced by a great circle of the sphere contains $\mathcal{O}((\eta + \phi)mn)$ edges **whp**.

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

For β > 2, get

$$e(S, \bar{S})/|S| = \mathcal{O}\left(mn^{-\delta(\beta-1)}\right).$$

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

For β > 2, get

$$e(S, \bar{S})/|S| = \mathcal{O}\left(mn^{-\delta(\beta-1)}\right).$$

For $\beta = 2$, get

$$e(S, \bar{S})/|S| = \mathcal{O}\left(\frac{m \log \log n}{\log n}\right).$$

Example:

$$F(x) = \min\left\{n^{\delta\beta}, \frac{1}{x^{\beta}}\right\}.$$

For $\beta > 2$, get

$$e(S, \bar{S})/|S| = \mathcal{O}\left(mn^{-\delta(\beta-1)}\right).$$

For $\beta = 2$, get

$$e(S, \bar{S})/|S| = \mathcal{O}\left(\frac{m \log \log n}{\log n}\right).$$

For β < 2, G is an expander.

Expander Criteria

Call F tame if exist constants C_1 , C_2 such that

- ► $F(x) \ge C_1$ for $0 \le x \le \pi$,
- $ightharpoonup I \leq C_2$.

Theorem

If $\alpha > 2$, F is tame, and $m \ge K \log n$ for sufficiently large K, then **whp**

- ► *G*_n has conductance bounded below by a constant.
- G_n is connected.
- G_n has diameter $\mathcal{O}(\log n/\log m)$.

Diameter

We also have some results for diameter when affinity function is not tame.

Lemma 1: a simple expectation

Lemma

For u chosen u.a.r. in S^2 and t > 0, we have

$$\mathsf{E}[T_t(u)] = 2Imt.$$

Proof

$$\begin{aligned} \mathsf{E}[T_t(u)] &= \mathsf{E}\left[\sum_{w \in V_t} \mathsf{deg}_t(w) F(\|u - w\|)\right] \\ &= \sum_{w \in V_t} \mathsf{deg}_t(w) \int_{S^2} F(\|u - w\|) dw \\ &= \sum_{w \in V_t} \mathsf{deg}_t(w) I = 2Imt. \end{aligned}$$

Lemma 2: a not-so-simple concentration inequality

Lemma

For any t > 0 and for u chosen u.a.r. in S^2 ,

$$\Pr\left[\left|T_t(u)-2Imt\right|\geq mI(t^{2/\alpha}+t^{1/2}\ln t)\ln n\right]=\mathcal{O}\left(n^{-2}\right).$$

Proof by Azuma-Hoeffding, using a coupling argument.

Summary

Geo-PA-II: choose your own affinity function F(x).

- ▶ Degree distribution has power $1 + \alpha$.
- \triangleright Expander/Sparse cuts depend on F(x).
- Diameter does as well.
- Proof uses tight concentration, coupling.

Future work

- Technical work:
 - $\alpha = 2$ (i.e. remove α)
 - non-uniform random points
 - necess. and suff. condition on F for expansion
- Modelling work: The sparse cuts are "wrong".

Future work: getting sparse cuts right

