Efficient communication in an ad-hoc network
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Abstract

We model the dynamic of an ad-hoc sensor network as a continuum percolation
model, and prove that a simple, local flooding, technique yields an efficient communi-
cation protocol in that setting.

1 Introduction

We consider a setting in which a large number of low power sensors are distributed in a large
geographic area. The locations of the sensors are random and to save battery life only a
random subset of the sensors are active at any given time. Furthermore, individual sensors
are not reliable and a random subset of the sensors might be malfunctioned. A low power
sensor can communicate directly only with neighbors within a relatively small radius. A
communication to a distant unit must propagate through a large number of intermediate
units. This setting poses especially challenging communication problems since individual
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sensors do not have a full knowledge of the network and the set of active nodes is dynamically
changing in time [1, 3, 12]. A number of recent papers address basic static questions related
to this setting, such as the density of sensors that guarantees connectivity of the system,
exploring the relation between this setting and the percolation model studied in probability
theory [5, 7, 8]. Very little has been done in developing provably efficient algorithms for
communication and data exchange in this setting, which is the focus of our work.

Consider, for example, a large number of heat or fire sensors distributed in a large area.
Even if only a random subset of the sensors is active at any given time, a sufficiently dense
distribution of sensors would guarantee that a local fire triggers some number of sensors. The
triggered sensors need now to propagate the signal to some data collecting units. Assume
that data collection is done by units located in the perimeter of the controlled area. How
can the signal be propagated as fast as possible to the data collecting units, and without
using the battery power of too many intermediate units?

Since the topology of the network is unknown to the individual units, an obvious approach
is to execute a sequence of local message flooding steps in order to push the message in the
required direction, without involving an unnecessarily large number of units. The efficiency
of this protocol depends on choosing the appropriate parameters for the flooding steps. If
the flooding is too shallow there might be no path for the message. Too deep a flooding
would waste battery power of too many units. Building on results from percolation theory
we design an adaptive algorithm that transmits a message from an arbitrary location in the
system to a boundary unit in time and number of hops that is close to linear in the length of
the shortest path to the boundary. The total number of units involved in the communication
is also close to linear in that length.

Another important communication problem is sending a message between two remote zones
in the area covered by the sensor network. In the sensor setting there is no point in sending
a message to an individual sensor since the set of active sensors is dynamically changing in
time. Instead, we are interesting in a protocol for sending a message from some sensor in a
given zone to some sensor in another zone. Our local flooding protocol provides an efficient
solution to this problem as well.

2 Probabilistic Model and Main Result

Place n points X; = (a;, b;), i = 1,2, ..., n uniformly at random in the unit square S = [0, 1]2.
Let D;, 1 = 1,2,...,n denote the disc with center X; and radius p = r/n1/2. The disc D;
represents the transmission area of a sensor located at X;.

Consider the graph G = (V, E) where V = {X3,...,X,,} and F = {(X;, X;) : D;ND; # 0}.
A theorem of (continuum) percolation theory (see Penrose and Pisztora [10]) says that there
is a critical radius r, such that for r > r., there is a giant component Cy of G such that whp



no point of S is at distance greater than d, = a};’lg/;, a = a(r) from the set Sy = Uy,co, Di-
Thus, in the context of fire prevention, if a sensor can sense a fire at distance d, then,
for any location of fire in the area, at least one sensor in the giant connected component
will be triggered by the fire. This sensor will be able to pass a message to the eastern
boundary 0 = {(1,z) : 0 < z < 1} since whp this boundary cuts S, (else we would get
a contradiction from considering a 1 x 2 rectangle). We present a simple algorithm which
whp finds a path from any X; € C, to g of length O(n'/?logn), which maintains a stack of
depth O((logn)?) and visits O(n'/?1logn) discs altogether. The algorithm LDFS is a limited
depth-first-search. In summary,

Theorem 1 There is an algorithm LDFS which, assuming r is a sufficiently large constant,
whp finds a path from any X; € Cy to O of length O(n'/?logn), which maintains a stack
of depth O((logn)?) and visits O(n'/?logn) sensors altogether.

The same technique can be used to communicate efficiently between different zones of the
covered area.

Theorem 2 Assume that the area S = [0,1]? is partitioned into sub-squares of side
O(r(logn)/n'/?). Fiz an arbitrary pair of sub-squares, there is an algorithm which whp finds
a path from some sensor in one sub-square to some sensor in the other square. The path is
of length O(n'/?logn), and the algorithm maintains a stack of depth O((logn)?) and visits
O(n?logn) sensors altogether.

3 The algorithm

Let ¢ be a large constant and € be a small constant, to be specified later. For any point
1/2 1/2 1/2 1/2
(z,y), let (Z,7) be the point with & = L%x]/(%) and § = L%x]/(%) Intuitively,
nl/2?

(Z,7) is the point representing (x,y) on the grid Z*/(%=-). Let By(xo,yo) be a quantized box
of radius ¢ centered at (Zg, go). Formally,

By(zo,90) = {(z,y): |z — Zo| < L and |y — go| < £}.

We let
Bi:Be(ai,bi) i:1,2,...,n.

For simplicity, assume that a fire breaks out at the point (0,%

message to a sensor on Jr. We break the algorithm into steps.

) and the aim is to send a

Step 0: Getting started.
The fire will set off a number of sensors, at least one will be in (. Sensors not in C, will



whp be in components of size O(logn) — see [11]. We follow the progress of the message
from one point (z1,11) € C,. Furthermore, whp at most O((logn)?) sensors will initiate
message pProcesses.

Step i: Let (z;,y;) be the position of the message at the start of Step i. Let G; be the graph
induced by the discs with centers in By, (z;,y;) for £; = ecr(logn)/n'/2. Perform a depth
first search on G; starting from (x;,y;) until the message reaches a point (x;;1,%;11) with
Tip1 > x; + er(logn)/n'/2. If no such point is found, fail.

If the algorithm does not fail, then the message travels from left to right in at most
n'/? /(erlogn) steps. In the next section, we will prove that whp each step visits at most
2¢(1+¢€)(logn)? discs whp and whp no step fails. So the message crosses the square visiting
at most 2c(e"1+1)(n'/?logn) /r discs and the stack never grows beyond depth 2¢(1+¢)(logn)?
whp. We observe that the number of discs visited is within O(logn) of optimality.

The proof below that no step fails requires the radius of connectivity r to be larger than
some constant ry, which is larger than the percolation threshold r.. It would be interesting
to see if the same or similar result can be proved for any r > r,

3.1 Analysis of the algorithm
3.1.1 Proof that whp each step visits at most (1 + €)(2clogn)? discs.

Note that step i visits at most all the discs in By, (z;,y;). We will prove a statement stronger
than needed: Every quantized box By, (z,y) contains at most (1+ ¢)(2erclogn)? disc centers
whp. Let &, , be the event that By, (z, y) contains more than (1+€)(2erclogn)? discs. Since
each point Xj, is placed independently, uniformly at random in the unit square,

Pr(&,,) < Pr(Bin(n,467) > 4(1 + €)47) < exp{—4e*in/3}.

Since By, (z,y) is quantized, the set {&,,: (z,y) € [0,1]*} has at most (5)2 distinct ele-
ments. So

Pr( U Ery) < (—)QPr(Em) < (g)Qexp{—4e2€%n/3} =o(1).

(@,9)€l0,1]" r

3.1.2 Proof that whp no step fails.

We take an approach similar to Penrose [9] and Grimmet [4]. Let 7" be the graph with
V(T) ={(z,9): (z,y) € [0,1]*} and edges connecting all nearest neighbors in V(7T') i.e. T is
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a 2-dimensional grid graph in the unit square with side length A = 5. We will show that

ni/z-

if a steps fails there must exist a large animal in T which contains no disc.

Suppose at step ¢ the message is at point (z;,y;) € Cy. Let B = By,(z;,y;) with £y =
by —p, p= %)\. Let G’ be the subgraph of G with vertices in B, and let 7" be the subgraph
of T with vertices in B.

Let C be the component of G’ containing (z;,y;). Let W denote the union of balls of radius
p centered at the vertices of C'. (We use balls to distinguish from the discs of radius \). Note
that W is path connected and we can assume that our paths do not go through 7. Let U
be the set of z € T" such that z = (Z,7) for some (z,y) € W.

We claim that the subgraph 77; of 7" induced by U is a connected graph. We prove this by
induction. From the definition of U, we have that for any v € U there is some w € W with
@ = u. And for any wy,wy € W, since W is path connected, we can find a path (in W)
from w; to wy that intersects a minimum number of cells of 7". Let d(uy,us2) denote this
minimum. If d(u;,us) = 1, then u; = uy. Now, suppose that u; and uy are connected in T},
for every pair uy, us with d(uy,us) < d. Let now uy,us € U be vertices with d(uq,us) = d+1.
Let W, = uy,Wy = uy and P be a path in W joining w;,ws and let Ay, As, ..., Agy1 be the
successive cells of T' visited by P. Then let w3 be a point on P in the interior of A; so that
W3 # uy. Since d(Ws,uz) < d (just use the path suggested by P), we know that w3 and us
are connected in 7"[U]. And uy ~p/y] W3, s0 u; and ug are connected in 7"[U] as well.

Let QU denote the boundary of U, i.e. the set of z € T"\ U such that z has a neighbor in U.

For each z € OU, any (z,y) with (&, ) = z is at most distance v/5\ + p from C. Choosing
€ so that € < ﬁ we know {(z,y): (Z,7) = z} contains no discs.

A subset A of T is called a lattice animal if for each z, 2" € A there is a path from z to 2’
with ||2; — 2j1+1]lc = A for each z; in the path.

The next claim is slightly stronger than needed immediately, but will be useful for the proof
of Theorem 2. (The condition 3’ < y; not needed for the proof of Theorem 1).

Claim 1 Let (z;,y;) be the disc at the start of the i-th step. Suppose G' contains no path
to a disc (z,y) with ' > z; + %51 and y' < y;. Then OU contains a lattice animal with
cardinality at least %clog n.

Proof Let R be the set (z,y) € T' with 2’ > z; + %61 + p and 3 < y;. Note that
RNU = 0. So the cut (U,U) separates T" into components A;, As, ..., Ay. Assume without
loss of generality that R C A; and U C A,. Let U’ = Uf:g A;. Then (U’,U’) separates T"
into 2 components, so it is a minimal cut set (a bond).

By planar graph duality, the edges of the dual graph corresponding to (U’,U’) form a path
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or cycle. So the vertices of U’ corresponding to dual vertices of this cycle are *-connected
(i.e. form an animal). But these are all vertices of OU, so they form an animal free from
discs.

It remains to lower bound the size of this animal. We do this by lower bounding the size
of the cut (U’,U’). This is accomplished by exhibiting a collection of %clogn edge-disjoint
paths from U to R. Since U C U’ and R C U’ any cut separating U and U’ must contain an
edge from each of these paths.

We construct the flow as follows. Since (z;,y;) is path connected (in W) to a point on the
boundary of B, U contains a path from (Z;, §;) to the boundary of 7. Suppose first that the
path goes to the west side of the boundary, and let z,...,2; be points on the path, with
zj = (zj,y;) where z; = Z; — jA and k = 3clogn. Now we route 1 unit of flow in an ‘L,
from z; = (z;,y;) to the point (z;,3; — j)) and from there to (Z; + 3¢1,9; — jA). This is
illustrated in Figure (1).

Figure 1: A set of %clogn edge-disjoint paths.

If the path goes to the north side, south side, or north half of the east side, we construct a
similar set of %clogn edge-disjoint paths.

Any cut separating U from U’ must have a different edge to break each of these paths, so
any cut separating U from R has value at least %clog n.

O

Let A,, denote the set of lattice animals A C T of size m. There is a constant v such that
the number of lattice animals of size m containing a given point is bounded above by e’
(see [6]). Therefore the total number of lattice animals in T of size m in T is bounded by



(n1/2 ) 2 M.
By the arguments above, the probability that there exists a step which fails is less than

the probability that there exists a lattice animal A with size at least %clogn for which
{(z,y): (Z,7) € A} contains no discs. We bound this probability as

Pr(exists a step which fails)
< ) Pr(exists A€ An: {(z,9): (,§) € AANV(G) =0)

m2> 3 logn
n
n\2 €r \2
< Z (_) e’ 1—m<12>
. er nt/
m2> 3 logn
_ (2.2
< § (67") 26210gn (e?r 'y)m.
m>2logn

Taking r large enough that €272 — v > 1 and taking ¢ = 6, we have

1

Prlexists a step which fails] < (er)*?e*lognﬁ
— e_

=0(1/n).
O

Assume that [0, 1]? is partitioned into sub-squares of side 2¢;. Then we see that the algorithm
can efficiently find a path from any one square to any other, by traveling (almost) horizontally
and then (almost) vertically. In fact, using the extra condition 3’ < y; (or y’ > y; if needed)
we can first make the message stay in the band {(z,y) : |y —y1| < ¢1}. Then we can make
the message move vertically, proving Theorem 2.
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