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Abstract

We consider random instances I of a constraint satisfaction problem generalizing
k-SAT: given n boolean variables, m ordered k-tuples of literals, and q “bad” clause
assignments, find an assignment which does not set any of the k-tuples to a bad
clause assignment. We consider the case where k = Ω(log n), and generate instance I

by including every k-tuple of literals independently with probability p. Appropriate
choice of the bad clause assignments results in random instances of k-SAT and not-
all-equal k-SAT. For constant q, a second moment method calculation yields the
sharp threshold

lim
n→∞

Pr[I is satisfiable] =

{

1, if p ≤ (1 − ǫ) ln 2
qnk−1 ;

0, if p ≥ (1 + ǫ) ln 2
qnk−1 .
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1 Introduction

We study the following constraint satisfaction problem (CSP):

Input:

• A set of boolean variables V = {x1, . . . , xn}
• A set of clauses, C = {C1, . . . , Cm}, where Ci = (si1xi1 , . . . , sikxik), for
sij ∈ {−1, 1}
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• A set of “bad” clause assignments Q ⊆ {−1, 1}k with |Q| = q.

Question: Does there exists an assignment ψ : V → {−1, 1} such that for all
Ci, we have (si1ψ(xi1), . . . , sikψ(xik)) 6∈ Q?

An instance I = (V, C,Q) is called satisfiable if such an assignment exists. If
no such assignment exists, I is called unsatisfiable.

This note focuses on instances generated by including every k-tuple of literals
independently at random with probability p = p(n), while allowing arbitrary
sets Q of bad clause assignments (provided that q = |Q| is constant). By
considering particular sets of bad clause assignments, CSP specializes to two
well known problems, k-SAT and not-all-equal k-SAT.

• k-SAT is a special case of CSP: we take Q = {−1k}, i.e. there is one way for
a clause to go bad, the setting which makes every literal in the clause false.
Random k-SAT has been well studied, and a sharp threshold is known for
k = 2 [6,10,12,14,15,17,21] and k − logn → ∞ [16]. For other values of k,
in particular k = 3, a sharp threshold function is known to exist [13], but
it is unknown what the function is. Upper and lower bounds are given in
[1,4,7–9,11,15,18,20]

• not-all-equal k-SAT is a special case of CSP: we take Q = {−1k, 1k}. The
satisfiability threshold for random not-all-equal-SAT is studied for k = 3 in
[2] and a sharp threshold is known when k is sufficiently large [3].

In this note, we make the clause size k = k(n) a function satisfying k ≥
Dǫ log2 n, where Dǫ is sufficiently large (for ǫ ≤ 1

9
, D ≥ 51

ǫ
ln q

ǫ
is enough).

Then for any p and for a family of bad clause assignments {Qi} with |Qn| = q,
we define I = In,p to be ({x1, . . . , xn}, Cn,p, Qn), where Cn,p is generated by
including each k-tuple of literals independently at random with probability p.

Theorem 1 For any natural number q and any ǫ > 0 there exists Dǫ such

that for k ≥ Dǫ log n and any family of bad clause assignments {Qi} with

|Qn| = q we have

lim
n→∞

Pr[In,p is satisfiable] =







1, if p ≤ (1 − ǫ) ln 2
qnk−1 ;

0, if p ≥ (1 + ǫ) ln 2
qnk−1 .

The consideration of “moderately growing clauses” is inspired by the work
of Frieze and Wormald [16]. It appears that threshold results which require
great labor for constant clause size become much easier when clause size is
a sufficiently large function of n. In the following, the minimum necessary
clause size Dǫ log n will be larger than log n, so Theorem 1 holds for a smaller
range of k than the threshold of [16]. However, Theorem 1 does not require
as delicate a calculation as [16], and proves thresholds for other interesting
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specializations in one go.

Xu and Li obtained similar results using similar techniques for a different type
of constraint satisfaction problem in [22]. They consider instances which have
clauses of a fixed size k, allow variables to take values from a domain with
d = nα values, and have a different bad set for each clause chosen randomly,
to prohibit Θ(dk) candidate assignments. (In contrast, we have clauses of size
k = Ω(log n), a boolean domain of size d = 2, and a bad set prohibiting a
constant number candidate assignments, which is the same set for each clause,
and chosen non-randomly.)

The remainder of this note will prove Theorem 1. In Section 2 we will show
unsatisfiability above the threshold by the first moment method. In Section 3
we will show satisfiability below the threshold by the second moment method.

In this note log x means log2 x. We use ln x for the natural logarithm, and
logα x for the base-α logarithm.

2 Upper bound

We first show I = In,p is unsatisfiable above the threshold. The proof is by
the first moment method.

Claim 1 Let p0 = ln 2
qnk−1 . Then for any p ≥ (1+ ǫ)p0, for any Q with |Q| = q,

we have

lim
n→∞

Pr[In,p is satisfiable] = 0.

Proof For a particular assignment φ, there are qnk clauses which violate
some constraint of Q with respect to φ. So the probability that φ satisfies I is
the probability that none of these clauses occur,

Pr[φ satisfies I] = (1 − p)qnk

.

Let X denote the expected number of assignments satisfying I.

E[X] = 2n(1 − p)qnk

.

For p ≥ ln 2
qnk−1 (1 + ǫ) we have

E[X] ≤ 2n exp(−n(1 + ǫ) ln 2) = 2−ǫn.

Therefore
Pr[X 6= 0] ≤ E[X] ≤ 2−ǫn.
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3 Lower bound

We next show I = In,p is satisfiable below the threshold. The proof is by the
second moment method.

Claim 2 Let p0 = ln 2
qnk−1 . Then for any p ≤ (1− ǫ)p0, for any Q with |Q| = q,

we have

lim
n→∞

Pr[In,p is satisfiable] = 1.

Proof As above, let X denote the number of assignments satisfying I.
We begin by calculating the second moment of X. Let Qi = {{b, b′} ∈ Q ×
Q : dist(b, b′) = i}, where dist(b, b′) is the Hamming distance between b and
b′ (in other words, Qi is the set of pairs of bad assignments which differ in i
places). Let qi = |Qi|. Note that q0 = q and qk ≤ q/2.

E[X2] =
∑

φ

Pr[φ satisfies I]
∑

φ′

Pr[φ′ satisfies I
∣

∣

∣ φ satisfies I]

=
∑

φ

Pr[φ satisfies I]
n
∑

s=0

(

n

s

)

Pr
[

φ′ satisfies I
∣

∣

∣

φ satisfies I
dist(φ,φ′)=n−s

]

=
∑

φ

(1 − p)qnk
n
∑

s=0

(

n

s

)

(1 − p)qnk
−

∑k

i=0
qisk−i(n−s)i

= 2n(1 − p)qnk
n
∑

s=0

(

n

s

)

(1 − p)qnk
−

∑k

i=0
qisk−i(n−s)i

.

where the probabilities in the second to last line follow since there are qnk

candidate clauses which are bad for assignment φ, qnk which are bad for
assignment φ′, and

∑k
i=0 qis

k−i(n− s)i which are bad for both φ and φ′.

We now observe that the ratio E[X2]/E[X]2 is the expected value of a different
random variable:

E[X2]

E[X]2
=

n
∑

s=0

(

n

s

)

2−n(1 − p)−
∑k

i=0
qisk−i(n−s)i

= E
[

(1 − p)−
∑k

i=0
qiSk−i(n−S)i

]

= E







(

1 +
p

1 − p

)

∑k

i=0
qiSk−i(n−S)i





 ,

where S ∼ B(n, 1/2).
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Letting Y =
(

1 + p
1−p

)

∑k

i=0
qiSk−i(n−S)i

, we bound E[Y ] in 3 parts using con-
ditional expectations:

E[Y ] ≤
3
∑

i=1

E[Y
∣

∣

∣ ηi−1 ≤ |n/2 − S| ≤ ηi] Pr[ηi−1 ≤ |n/2 − S| ≤ ηi],

where

η0 = 0 η1 = ǫ
n

2
η2 =

n

2

(

1 −
ǫ

log n

)

η3 =
n

2
.

In the following, we will rely on the fact that
∑k

i=0 qi = q(q + 1)/2 < q2.

First Term: Provided k ≥ 2 logα n where α = 2
1+ǫ

, we have

E
[

Y
∣

∣

∣ η0 ≤ |n/2 − S| ≤ η1

]

Pr [η0 ≤ |n/2 − S| ≤ η1]

≤

(

1 +
p

1 − p

)q2( 1
2
n(1+ǫ))

k

≤ exp

(

n
q ln 2(1 − ǫ)

1 − p

(

1 + ǫ

2

)k
)

= 1 + o(1).

Second Term: By the standard Chernoff bound, Pr [η1 ≤ |n/2 − S| ≤ η2] ≤

2e−nǫ2/3. So provided k ≥
(

2
ǫ
ln 3q

ǫ2

)

logn we have

E[Y
∣

∣

∣ η1 ≤ |n/2 − S| ≤ η2] Pr[η1 ≤ |n/2 − S| ≤ η2]

≤

(

1 +
p

1 − p

)q2(n(1− ǫ
2 log n

))
k

e−nǫ2/3

≤ exp



n
q ln 2(1 − ǫ)

1 − p

(

1 −
ǫ

2 logn

)k

− nǫ2/3





= o(1).

Third Term: Note that qk ≤ q. So for η2 ≤ |n/2 − S| ≤ η3 we have

k
∑

i=0

qiS
k−i(n−S)i ≤ qnk+q

(

n

logn

)k

+
k−1
∑

i=1

qiS
k−i(n−S)i ≤ (q+q2/ logn)nk,
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and

E[Y
∣

∣

∣ η2 ≤ |n/2 − S| ≤ η3] Pr[η2 ≤ |n/2 − S| ≤ η3]

≤

(

1 +
p

1 − p

)nk(q+q2/ log n)
2

(

n

n/2 + η2

)

2−(n/2+η2)

≤ 2en
ln 2(1−ǫ)

1−p
(1+q/ log n)nn ǫ

2 log n 2−n(1− ǫ
2 log n

)

= 21+n(1−ǫ)(1+o(1))+n ǫ
2
−n(1− ǫ

2 log n
)

= 2−
ǫ
2
n(1−o(1))

= o(1).

Putting the parts together and using the second moment inequality, we have

Pr[X 6= 0] ≥
E[X]2

E[X]2
≥ 1 − o(1).
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