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Abstract

We consider random instances I of a constraint satisfaction problem generalizing
k-SAT: given n boolean variables, m ordered k-tuples of literals, and ¢ “bad” clause
assignments, find an assignment which does not set any of the k-tuples to a bad
clause assignment. We consider the case where k = Q(logn), and generate instance I
by including every k-tuple of literals independently with probability p. Appropriate
choice of the bad clause assignments results in random instances of k-SAT and not-
all-equal k-SAT. For constant ¢, a second moment method calculation yields the
sharp threshold

lim Pr[7 is satisfiable] =

n—~0o0

Lo ifp < (1—e) i
0, ifp>(1+e) 52
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1 Introduction

We study the following constraint satisfaction problem (CSP):
Input:
e A set of boolean variables V = {z1,...,z,}

o A set of clauses, C = {C4,...,Cy}, where C; = (s;,;,,...,s;.2;,), for
Sij S {—1,1}
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o A set of “bad” clause assignments Q C {—1,1}* with |Q| = ¢.

Question: Does there exists an assignment ¢: V — {—1,1} such that for all

C;, we have (s;,¥(x;,), ..., s;,0(x;,)) € Q7

An instance I = (V,C, Q) is called satisfiable if such an assignment exists. If
no such assignment exists, I is called unsatisfiable.

This note focuses on instances generated by including every k-tuple of literals
independently at random with probability p = p(n), while allowing arbitrary
sets (@ of bad clause assignments (provided that ¢ = |@| is constant). By
considering particular sets of bad clause assignments, CSP specializes to two
well known problems, k-SAT and not-all-equal £-SAT.

o k-SAT is a special case of CSP: we take Q = {—1*}, i.e. there is one way for
a clause to go bad, the setting which makes every literal in the clause false.
Random k-SAT has been well studied, and a sharp threshold is known for
k = 21[6,10,12,14,15,17,21] and k — logn — oo [16]. For other values of k,
in particular k£ = 3, a sharp threshold function is known to exist [13], but
it is unknown what the function is. Upper and lower bounds are given in
[1,4,7-9,11,15,18,20]

e not-all-equal k-SAT is a special case of CSP: we take Q = {—1%,1*}. The
satisfiability threshold for random not-all-equal-SAT is studied for £ = 3 in
[2] and a sharp threshold is known when £ is sufficiently large [3].

In this note, we make the clause size k = k(n) a function satisfying k >
D.log, n, where D, is sufficiently large (for ¢ < %,D > 5%1n% is enough).
Then for any p and for a family of bad clause assignments {Q;} with |@Q,| = ¢,
we define I = I,,,, to be ({z1,...,2,},Chyp, Qn), where C,, is generated by

including each k-tuple of literals independently at random with probability p.

Theorem 1 For any natural number q and any € > 0 there exists D, such
that for k > D.logn and any family of bad clause assignments {Q;} with
|Qn| = q we have

lim Pr[I,, is satisfiable] =

n—oo

L, yp< (l—E)qu;%l;
0, ifp>(1+e)-12

qnF—1°

The consideration of “moderately growing clauses” is inspired by the work
of Frieze and Wormald [16]. It appears that threshold results which require
great labor for constant clause size become much easier when clause size is
a sufficiently large function of n. In the following, the minimum necessary
clause size D, logn will be larger than logn, so Theorem 1 holds for a smaller
range of k than the threshold of [16]. However, Theorem 1 does not require
as delicate a calculation as [16], and proves thresholds for other interesting



specializations in one go.

Xu and Li obtained similar results using similar techniques for a different type
of constraint satisfaction problem in [22]. They consider instances which have
clauses of a fixed size k, allow variables to take values from a domain with
d = n® values, and have a different bad set for each clause chosen randomly,
to prohibit ©(d*) candidate assignments. (In contrast, we have clauses of size
k = Q(logn), a boolean domain of size d = 2, and a bad set prohibiting a
constant number candidate assignments, which is the same set for each clause,
and chosen non-randomly.)

The remainder of this note will prove Theorem 1. In Section 2 we will show
unsatisfiability above the threshold by the first moment method. In Section 3
we will show satisfiability below the threshold by the second moment method.

In this note logx means log, x. We use Inz for the natural logarithm, and
log,, x for the base-a logarithm.

2 Upper bound

We first show I = I,,, is unsatisfiable above the threshold. The proof is by
the first moment method.

Claim 1 Let py = q}ﬁ%l. Then for any p > (14 €)po, for any Q with |Q] = q,
we have

lim Pr[l,, is satisfiable] = 0.

n—oo

Proof For a particular assignment ¢, there are gn* clauses which violate
some constraint of () with respect to ¢. So the probability that ¢ satisfies [ is
the probability that none of these clauses occur,

Pr[¢ satisfies 1] = (1 — p)™".
Let X denote the expected number of assignments satisfying I.
E[X] =2"(1-p)™".

For p > q:}ﬁl (1 + €) we have

E[X] <2%exp(—n(l +€)In2) = 27",

Therefore
Pr[X #0] < E[X] <27



3 Lower bound
We next show I = I, , is satisfiable below the threshold. The proof is by the
second moment method.

Claim 2 Let pg = q}fﬁl. Then for any p < (1 —€)pg, for any Q with |Q| = q,
we have

lim Pr[I,, is satisfiable] = 1.

n—oo

Proof As above, let X denote the number of assignments satisfying I.
We begin by calculating the second moment of X. Let Q; = {{b,b'} € @ x
Q: dist(b,b') = i}, where dist(b,V') is the Hamming distance between b and
b’ (in other words, @; is the set of pairs of bad assignments which differ in i
places). Let ¢; = |Q;|. Note that ¢o = ¢ and ¢ < q/2.

E[X?] =) Pr[¢ satisfies I] > Pr[¢’ satisfies I ‘ ¢ satisfies ]
¢ ¢’

n

=) Pr[¢ satisfies I] > <Z> Pr [(b’ satisfies T
é

s=0
Y-pm Y <Z> (1 —p)*
@ s=0
1— p)an i <n> (1 . p)an,Zfzo qisk_i(nfs)i.
s=0 S

¢ satisfies 1
dist(d),d)’):nfs}

k s .
nk_zi:() QiSk z(n_s)z

= o

where the probabilities in the second to last line follow since there are gn*
candidate clauses which are bad for assignment ¢, ¢gn* which are bad for

assignment ¢, and 3% ¢;5*7*(n — s)* which are bad for both ¢ and ¢'.

We now observe that the ratio F[X?]/E[X]? is the expected value of a different
random variable:

n i . )
— N1 _ .\ Zi: qisk~H(n—s)?
E[X]? 2 (s) 2 (L= p) s

(1-p) T mS'H(nS)i]

I
m o

_p (HL
I—p

)

>Zf_o ¢S+~ (n—9)!

where S ~ B(n,1/2).



¥ qiSk=i(n—S)
Lettlng Y = (1 + 1%}7)22:0(1 ( )

ditional expectations:

, we bound E[Y] in 3 parts using con-

3
ElY] < ZE[Y ‘ Ni-1 < [n/2 = S| <] Prnioy < n/2 = S| < nil,

=1

where

\)

0 n n 1 € n
— = €— — — — — .
o n 2 & 2 logn 3

In the following, we will rely on the fact that 3% ;¢ = q(q +1)/2 < ¢*.

2

Tic» we have

First Term: Provided k > 2log, n where a =

E[Y |no <In/2— S| <m]Prine <|n/2— S| < mi

?(n(1+)"
< (1 + 2 )

L—=p
In2(1—e¢) /1 F
§exp<nqn ( e)( —i—e))
1—p 2
=1+o0(1).

Second Term: By the standard Chernoff bound, Pr [ < |n/2 — S| <] <
20-m€%/3_ G provided k& > (% In %) logn we have

E[Y | m < [n/2 =S| < ] Prf < |n/2 = S| < 1)

¢ (n(-515))"
i)
I—p

k
qIn2(1 —¢) € 5
< 1— — 3
= &P (n 1—p 2logn ne/

=o(1).

Third Term: Note that g, < g. So for 7, < |n/2 — S| < n3 we have

k E o k—1
S S* i (n—8)' < gn+q (i) £3° St (n—5)i < (g-+¢/ log ),
i=0 logn i—1



and

E[Y |52 < [n/2 = S| < ns) Prln < |n/2 — S| < ]
nk <q+q2/ log n)
I

—p n/2+mn
< 9o I 10/ logm) (1)
— oltn(1-e)(I+o(1)+n§—n(l-557)
— 9—5n(l—o(1))

=o(1).

Putting the parts together and using the second moment inequality, we have

[\

BIXT S 1 o).

Pr[X # 0] > EX]? 2
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