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Abstract

In combinatorial optimization, a popular approach to NP-hard problems is the
design of approximation algorithms. These algorithms typically run in polynomial time
and are guaranteed to produce a solution which is within a known multiplicative factor
of optimal. Unfortunately, the known factor is often known to be large in pathological
instances. Conventional wisdom holds that, in practice, approximation algorithms will
produce solutions closer to optimal than their proven guarantees. In this paper, we use
the rigorous-analysis-of-heuristics framework to investigate this conventional wisdom.

We analyze the performance of 3 related approximation algorithms for the unca-
pacitated facility location problem (from [Jain, Mahdian, Markakis, Saberi, Vazirani,
2003] and [Mahdian, Ye, Zhang, 2002]) when each is applied to an instances created
by placing n points uniformly at random in the unit square. We find that, with high
probability, these 3 algorithms do not find asymptotically optimal solutions, and, also
with high probability, a simple plane partitioning heuristic does find an asymptotically
optimal solution.

∗Supported in part by NSF Grant ccf0502793
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1 Introduction

Many optimization problems are NP-hard. This is an unfortunate fact of life. There are a
variety of approaches to dealing with this problem. One approach is to find approximation
algorithms with provably good worst-case performance guarantees. Another approach is to
design heuristics which work well “on average”. In this paper we will combine these two
approaches and analyze an approximation algorithm in a probabilistic setting. The aim is to
investigate the notion that such algorithms will “typically” do better than their worst-case
guarantees. This type of analysis is differs from the more common approach in probabilistic
analysis, where the algorithm is designed with the probability distribution of inputs in mind.
It has been used in the study of approximation algorithms for MAX-CUT [9], the stacker
crane problem [7], and bin packing [6].

In the uncapacitated facility location problem (UFLP) we are given a set of facilities F and
a set of cities C. For every facility i ∈ F there is a cost fi for opening that facility, and for
every facility-city pair (i, j) ∈ F × C there is a cost ci,j for connecting facility i to city j.
There are no bounds on the number of cities that can be connected to a facility. Thus, if
we open the set of facilities F ⊆ F then each city j will connect to the open facility with
cheapest connection cost, and the total cost will be

c(F ) =
∑

i∈F

fi +
∑

j∈C

min
i∈F

ci,j.

The goal is to find a set of facilities F that will minimize the total cost c(F ).

Unfortunately, the problem is NP-hard, as it contains set-cover as a special case. It has been
the focus of a great deal of attention from many perspectives. In the 1980’s, the Operations
Research community focused on branch and bound algorithms for solving it, which led to
some considerable success, see for example [13]. From that period, there is also some worst-
case analysis of the performance of greedy heuristics [8] and a probabilistic analysis of the
related k-median problem [1]. More recently, the Theoretical Computer Science community
has placed a significant emphasis on finding approximation algorithms for NP-hard problems
and one of its most notable successes has been in finding constant factor approximations for
this problem when the connection costs obey the triangle inequality. The first algorithm
to obtain a constant factor approximation was based on LP rounding [17] and subsequent
approaches based on LP rounding improved the constant to 1+2/e [5] and then to 1.58 [19].
Alternative approaches to approximating the solution are based on local search techniques
[14], primal-dual schema [12] and combinations of these [4]. At the present time the best
approximation guarantee that is obtainable in polynomial time is 1.52, due to Mahdian, Ye
and Zhang [15]. This is a greedy augmentation algorithm, and in the present paper, we will
focus our attention on it and on 2 related greedy algorithms [11].

It is likely that approximation algorithms will find solutions closer to optimal than their
guarantees guarantee. How much closer? One way to provide some answer to this question
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is via an experimental study, which is exactly the approach of [2, 10] and is also considered in
Section 7 of [11]. Another way, which we will follow in this paper, is to consider theoretically
the result of applying the algorithms to an appropriate random instance. Since the constant
factor approximation algorithms are only supposed to work on metric instances, we rule out
one common random model, in which all distances are chosen independently and uniformly
from [0, 1]. Another random model we do not study comes from choosing all distances from
a discrete distribution that takes only the values 1 and 2. The random model we use will
be geometric in nature, formed by placing points uniformly at random in the unit square.
For additional reference on combinatorial optimization over instances derived from random
points, see [16, 18, 20]. Although it is possible to design algorithms to take advantage of
the special structure of these instances, that is not the focus of the current investigation.
Instead of first choosing a distribution over instances and then designing an algorithm to
work whp over this distribution, we begin by choosing the algorithms to study and then
choose an interesting (but tractable) distribution of instances on which to run them.

1.1 Random model

We will study random instances formed by choosing n points X = {X1, X2, . . . , Xn} uni-
formly at random in the unit square [0, 1]2. We assume that each point represents a city and
also the possible location of a facility. For simplicity we will use the ℓ∞ distance between
each facility-city pair as the connection cost (the techniques presented below would also work
for the ℓ1 norm, but for the ℓ2 norm, additional effort would be needed to replace the results
from Section 2).

Let m be a positive integer satisfying m = o((n/ log n)1/2). Then let α = m−1 and define
ω = m−1(n/ log n)1/2, so that ω → ∞ with n.

We will give every facility the same opening cost,

f =
1

6
α3n.

We have selected these values for later convenience in notation, and summarize it in the
following table. It is really the facility cost f that controls the structure of the optimal
solution. As f tends to ∞, the optimal solution will open 1 facility in the center of the
square and connect everything to it. As f tends to 0, the optimal solution will open a
facility at every city. Section 2 will show that the transition between these extreme behaviors
is described by f as parameterized above. For f = 1

6
m−3n, the optimal solution will open

about m2 facilities.
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ω → ∞ m = ω−1

√

n

log n
α = ω

√

log n

n

f =
1

6
ω3 (log n)3/2

√
n

We denote the ℓ∞ distance between two points Xi and Xj by d(Xi, Xj). All logarithms are
base e.

We initially expected to prove that the algorithm of [15], which has worst-case approximation
ratio 1.52, was asymptotically optimal i.e. that whp1, as n → ∞, the ratio of the cost of
the solution found by the approximation algorithm and the optimum tends to 1. Instead we
give a proof of the following: Let OPT denote the value of a minimum cost solution. The
algorithm of [15] is similar in spirit to the 2 algorithms given in [11], which have worst-case
approximation ratios of at most 1.861 and 1.61. We denote these approximation algorithms
by H1, H2, H3, and recall their descriptions in detail in Section 2. We let Zi denote the value
of the solution found by Hi.

Theorem 1. There exists a positive constant ǫ > 0 such that for i = 1, 2, 3, whp

Zi

OPT
≥ 1 + ǫ.

On the other hand it is not difficult to describe a “trivial heuristic” which is asymptotically
optimal and so it is disappointing that these sophisticated approximation algorithms are in
fact beaten by triviality whp.

1.2 Outline

In the next section we describe the greedy approximation algorithms and the trivial heuristic
in detail, and give a non-rigorous explanation of “what goes wrong” to prevent the approxi-
mation algorithms from finding an asymptotically optimal solution.

Since our non-rigorous explanation will rely heavily on the asymptotic optimality of the
trivial heuristic, we prove that the heuristic is asymptotically optimal in Section 3. The
proof has 2 parts. First we obtain an upper bound that holds whp on the value of the
solution found by the heuristic. Since the heuristic is so simple, this only requires us to
consider basic probabilistic arguments. Some of these recur frequently enough to merit
little lemmas, which are stated and proved in Section 3.1. Then we obtain an asymptotically
matching lower bound that holds whp on the value any solution. We do this by constructing
a solution to the dual of the LP-relaxation which is feasible whp.

1A sequence of events En occurs with high probability (whp), if limn→∞ Pr(En) = 1
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The remainder of the paper proves Theorem 1. To do so, in Section 4.1, we state and prove
some lemmas which show that the structure of any near optimal solution must take a certain
form; it must choose facilities to open so that, for most open facilities, the region of the plane
which is closer to that facility than any other is approximately a square of a certain size and
is approximately centered on the facility. Lemma 5 from Section 4.1 is a quantitative version
of this. Roughly, it says that if there are ǫn facilities opened which violate these conditions
then the solution will be a 1 + δ factor away from optimal.

To complete the proof of Theorem 1, in Section 4.2 we show that the approximation algo-
rithms from Section 2 open too many facilities which do not meet the requirements for a
close to optimal solution.

2 Approximation Algorithms

The approximation algorithms we consider are all similar. We first recall Algorithm 1 of [11]
(which is most convenient for us in its restated form).

Approximation Algorithm 1

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The
set of unconnected cities is denoted by U . All facilities are considered to be unopened
and δi = 0 for i ∈ C, the set of cities.

(b) While U 6= ∅, increase the time and simultaneously for every city i ∈ U increase the
parameter δi at the same rate, until one of the following events occurs:

1. For some unconnected city i, and some open facility j, δi = d(i, j). In this case,
connect city i to facility j and remove j from U .

2. For some unopened facility j,
∑

i∈U max{0, δi − d(i, j)} = fj. In this case open
this facility and for every unconnected city with δi ≥ d(i, j), connect i to j and
remove it from U .

Now we recall Algorithm 2 of [11], which is very similar to Algorithm 1, but allows connected
cities to contribute funds towards opening additional facilities.

Approximation Algorithm 2

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The
set of unconnected cities is denoted by U . All facilities are considered to be unopened
and δi = 0 for i ∈ C, the set of cities. We denote by π the mapping from connected
cities to open facilities.
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(b) While U 6= ∅, increase the time and simultaneously for every city i ∈ U increase the
parameter δi at the same rate, until one of the following events occurs:

1. For some unconnected city i, and some open facility j, δi = d(i, j). In this case,
connect city i to facility j and remove j from U .

2. For some unopened facility j, we have

∑

i∈U

max{0, δi − d(i, j)} +
∑

i6∈U

max{0, ci,j − ci,π(i)} = fj.

In this case open this facility and for every unconnected city with δi ≥ d(i, j),
connect i to j and remove it from U , and for every connected city with ci,j < ci,π(i)

change the facility to which i connects from π(i) to j.

Now, we recall Algorithm 3, which appears in [15] and currently has the best proven bound
on worst-case approximation ratio.

Approximation Algorithm 3

(a) In the first phase, the algorithm scales up the opening costs of all facilities by a constant
δ = 1.504, and uses Algorithm 2 to find a solution to the problem with these new costs.

(b) In the second phase, the algorithm considers the unmodified costs and performs a greedy
augmentation to the solution found in phase 1. Let C denote the total connection
cost in the phase 1 solution. For each unopened facility j, let Cj denote the total
connection cost when j is also opened. If the maximum over unopened facilities of the
ratio (C − Cj − fj)/fj is positive, then open the facility that maximizes this ratio.

Finally, we describe the plane partitioning heuristic, which is not guaranteed to produce a
solution within any constant factor. Figure 1 provides a visual reference.

Trivial Heuristic

(a) We partition the square into an m × m grid Γ of subsquares Sp,q, 1 ≤ p, q ≤ m of
side length α, and then open the facility Fp,q closest to the center of each subsquare,

assuming that there is one within distance α/ω =
(

log n
n

)1/2
of its center.

(b) If any subsquare Sp,q has no facility within distance α/ω of its center, then open each
Xi in Sp,q as a facility.

The Trivial Heuristic pays little attention to the structure of the instance, but, as we will
prove in Section 3, it produces a solution which is asymptotically optimal whp. In fact, in
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Figure 1: A schematic representation of the asymptotically optimal solution.

some sense, it is because it does not pay attention to the instance that it out-performs the
approximation algorithms. All of the greedy algorithms are distracted by local deviations in
city density, and (at least at first) they will open facilities at what amount to random points
in the plane. This results in non-uniform coverage and requires some unlucky cities to suffer
excessive connection costs.

3 An asymptotically optimal solution

In this section, we prove that the solution found by the Trivial Heuristic is asymptotically
optimal. To do so, we obtain an upper bound on the cost of this solution and a matching
lower bound on the dual of the LP-relaxation.

Let HEU denote the total cost of the solution found by the Trivial Heuristic.

An intuition which explains the near optimality of this solution is that the cities and facil-
ities are roughly uniformly distributed in the square, so the advantage of using the special
structure of the instance is negligible.

To make this intuition rigorous, in the following 2 subsections, we obtain an upper bound
on HEU which holds whp, and a lower bound on OPT which also holds whp and asymp-
totically matches the upper bound on HEU . But first we state and prove 2 lemmas that
will aid in our analysis.
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3.1 Some simple lemmas

The following 2 lemmas will help us in analyzing the heuristic and the dual lower bound.

Lemma 1. Let A1, . . . , Ak be subsets of [0, 1]2 each of area a, let X be a set of n random
points distributed uniformly and independently in [0, 1]2, and let λ be a positive real with
λ ≤ 1/3. Then

Pr[∃i : Ai ∩ X = ∅] ≤ k · e−an (1)

Pr[∃i : |Ai ∩ X| 6∈ (1 ± λ)an] ≤ k · 2e−λ2an/3 (2)

Proof (1) follows because the probability that a single point avoids Ai is 1 − a and
1 − x ≤ e−x and the union bound.

(2) follows from Chernoff’s bound and the union bound. 2

Lemma 2. Let t be a positive real, let F1, . . . , Fk be points in [t, 1 − t]2, let X be a set of n
random points distributed uniformly and independently in [0, 1]2, and let λ be a positive real
with λ ≤ 1/6. For i = 1, . . . , k, let Zi =

∑

X∈X
d(X,Fi)≤t

d(X,Fi). Then

E[Zi] =
n(2t)3

3
(3)

Pr

[

∃i : Zi 6∈ (1 ± λ)
n(2t)3

3

]

≤ k · 4e−λ2(2t)2n/12. (4)

Proof

We begin by considering the contribution of a particular point X to Zi. Conditioning on
d(X,Fi) ≤ t, the expected distance is

E[d(X,Fi) | d(X,Fi) ≤ t] = t−2

∫ t

0

(u · 2u) du =
2t

3
.

We define Ni to be the number of points within distance t of Fi,

Ni = |{X ∈ X : d(X,Fi) ≤ t}|.

It follows from the linearity of expectations that

E[Zi | Ni] = Ni
2t

3
.

And, since E[Ni] = (2t)2n, we have established (3),

E[Zi] =
(

(2t)2n
) 2t

3
.
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Conditioning on Ni, Zi is a sum of Ni independent random variables in the range [0, t]. So
Hoeffding’s inequality gives

Pr

[

Zi 6∈ (1 ± λ)Ni
2t

3

∣

∣

∣

∣

Ni

]

≤ 2e−2(λNi2t/3)2/(Nit
2)

= 2e−8λ2Ni/9.

Now, we apply Lemma 1 with Ai = {X : d(X,Fi) ≤ t} and (2) shows that the probability
that some Ni does not contain (1 ± λ)(2t)2n points is at most k · 2e−λ2(2t)2n/3. Combining
this with the conditional upper bound on the large deviation probability of Zi and the union
bound gives

Pr

[

∃i : Zi 6∈ (1 ± λ)
(

(1 ± λ)(2t)2n
) 2t

3

]

≤ k · 2e−λ2(2t)2n/3 + k · 2e−8λ2(1−λ)(2t)2n/9.

Since λ ≤ 1/3, this simplifies to

Pr
[

∃i : Zi 6∈ (1 ± λ)(2t)3n/3
]

≤ 4ke−λ2(2t)2n/3.

2

3.2 An upper bound on HEU

To achieve this goal, we define several events and random variables and bound probabilities
related to them.

Let F̂p,q be the point in the center of subsquare Sp,q.

We begin by showing that in each subsquare, there is likely to be a facility within distance
α/ω of F̂p,q that we will open. To do this, we apply Lemma 1 with k = m2 and Apm+q equal

to the square within distance α/ω of F̂p,q. Then, since area(Apm+q) = (2α/ω)2 = 4 log n
n

, (1)
shows that

Pr[∃p, q : Apm+q ∩ X = ∅] ≤ m2 · e−4 log n = o(n−3). (5)

Now we bound the transportation costs. We define a mapping π so that for each Xi with
Xi ∈ Sp,q and Fp,q = Xj we have π(i) = j to indicate that facility j services city i. In the
unlikely event that Apm+q is empty, we open all the facilities in Sp,q and set π(i) = i for each
of them, which results in transportation cost 0.

Note that, since Fp,q is within α/ω of F̂p,q, we have

∑

Xi∈X

d(Xi, Xπ(i)) ≤
∑

Xi∈X

d(Xi, Fp,q) + nα/ω. (6)

9



We apply Lemma 2 with t = α/2, k = m2, Fpm+q = F̂p,q, and λ = ω−1. Then (3) and (6)
together imply that

E

[

∑

Xi∈X

d(Xi, Xπ(i))

]

≤ m2nα3

3
+ nα/ω

and (4) and (6) imply that

Pr

[

∑

Xi∈X

d(Xi, Xπ(i)) ≥ m2 · (1 + 4ω−1)
nα3

3
+

nα

ω

]

≤ m2 · 4e−16ω−2α2n/12

= 4m2e−4 log n/3.

Since there are m2 facilities opened with probability at least 1− n−3, and there are at most
n facilities opened in even the most pathological point set, we may the bound expected total
cost of the solution by

E[HEU ] =
nα

3
+ nα/ω + m2f + nfn−3 =

1

2
αn(1 + o(1)).

Finally, we observe that the probability that HEU exceeds this bound tends to 0; the
transportation cost is at most nα

3
(1 + O(ω−1)) with probability 1− o(1) and the probability

that more than m2 facilities open is o(1). So we conclude that

HEU ≤ nα

2
(1 + o(1)) whp. (7)

3.3 Lower bound on OPT

To show this solution is asymptotically optimal, we will construct a solution to the dual of
the strong LP relaxation (which has been studied since [3]):

(LP-RELAX)

min
n
∑

j=1

fyj +
n
∑

i=1

n
∑

j=1

d(Xi, Xj)xi,j

subj. to
n
∑

j=1

xi,j = 1 1 ≤ i ≤ n

0 ≤ xi,j ≤ yj 1 ≤ i, j ≤ n.

(DUAL)

max
n
∑

i=1

ui

subj. to
n
∑

i=1

vi,j ≤ f 1 ≤ j ≤ n

−vi,j + ui ≤ d(Xi, Xj) 1 ≤ i, j ≤ n
vi,j ≥ 0 1 ≤ i, j ≤ n.
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We get a good solution to DUAL as follows:

ui =

{

α
2
(1 − 3ω−1) Xi ∈ [α, 1 − α]2.

0 otherwise.

vi,j = max {ui − d(Xi, Xj), 0} .

The fact that this solution is feasible whp follows from Lemma 1 and Lemma 2. We take
t = α

2
(1 − 3ω−1), k = n, Fi = Xi, and λ = 4ω−1. Then (4) shows that

Pr
[

∃i : Zi ≤ (1 − 4ω−1)n(α(1 − 3ω−1))3/3
]

≤ n · 4e−16ω−2(α(1−3ω−1))2n/12

= 4ne−16(1−3ω−1)2 log n/12

= o(1).

Taking Ai to be the α (1 − 3ω−1) × α (1 − 3ω−1) square centered at Xi, (2) shows that

Pr[∃i : |Ai ∩ X| ≥ (1 + 4ω−1)(1 − 3ω−1)2α2n]

≤ n · 2e−16ω−2(1−3ω−1)
2
α2n/3

= 2ne−16(1−3ω−1)
2
log n/3

= o(1).

So whp for all j we have

n
∑

i=1

vi,j =
∑

Xi∈X

max
{α

2

(

1 − 3ω−1
)

− d(Xi, Xj), 0
}

<
nα3

6
= f.

Since the objective value of this solution asymptotically matches that of (7), we conclude
that our “heuristic” is asymptotically optimal.

4 Proof of Main Theorem

To prove Theorem 1, in Section 4.1 we state and prove some lemmas which show that the
structure of any near optimal solution must take a certain form. In particular, the solution
must choose facilities to open so that, for most open facilities, the region of the plane which
is closer to that facility than any other (the Voronoi cell) is approximately a square of a
certain size and is approximately centered on the facility. Lemma 5 from Section 4.1 gives a

11



quantitative version of this fact: it says roughly that if there are ǫn facilities opened which
violate the conditions then the solution will be a 1 + δ factor away from optimal.

To complete the proof of Theorem 1, in Section 4.2 we show that the approximation algo-
rithms from Section 2 open too many facilities which do not meet the requirements given in
Lemma 5 for a close to optimal solution whp.

4.1 Properties of close-to-optimal solutions

4.1.1 Refining Γ to super-grid Γ1

Now let m1 = ⌊ω1/2⌋m and let Γ1 be the m1 ×m1 super-grid of Γ where each subsquare has
side α1 = m−1

1 . If we fix a subsquare S of Γ1 then the number of points νS of X which fall in
S is distributed as B(n, α2

1). Thus E(νS) = α2
1n = ω log n(1 + o(1)). It follows from Lemma

1, part (2) that

Pr
[

∃S ∈ Γ1 : νS 6∈ (1 ± ω−1/3)α2
1n
]

≤ m2
1 · 2e−ω−2/3α2

1n/3

< n · 2e−ω1/3 log n/3

We use the term quite surely (qs) to describe a sequence of events which occurs with prob-
ability exceeding 1 − O(n−k) for any constant k. In this notation, we may say that

|νS − α2
1n| ≤ ω2/3 log n, ∀S ∈ Γ1, qs. (8)

4.1.2 An assignment which respects super-grid Γ1

For a set of facilities F and an assignment of cities to facilities φ : X → F we let

κ(F , φ) = f |F| +
∑

X∈X

d(X,φ(X)).

The assignment which maps points to their closest facility in F will be denoted φ⋆
F so that

c(F) = κ(F , φ⋆
F ).

Consider a particular facility set F = {F1, F2, . . . , Fk} ⊆ X . For each Fi let Vi be the Voronoi
cell associated with Fi, which is to say Vi is the set of points in [0, 1]2 which are at least as
close (in ℓ∞ norm) to Fi as to any other member of F .

We say an assignment φ respects Γ1 if all the cities in a common subsquare of Γ1 are assigned
to the same facility by φ.

The next lemma says that there is an assignment which respects Γ1 and is not much worse
than φ⋆

F .
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Lemma 3. There exists an assignment φ̃F that respects Γ1 and has |κ(F , φ̃F)|−κ(F , φ⋆
F )| ≤

2α1n.

Proof The proof of the lemma is a shifting argument. For any assignment φ, if there
exists some S ∈ Γ1 and i ∈ [k] such that Vi∩S∩X 6= ∅ and S\Vi 6= ∅ then we make a slightly
different assignment φ̃ which assigns all cities in S to the same facility. Let i be the smallest
index in [k] such that cities in S are assigned to Fi. Then we re-assign all Xj ∈ S \ Vi to
facility Fi. We claim that this adds at most 2α1 in transportation cost for each city. Indeed,
suppose that Xj ∈ S ∩ Vi′ for i′ 6= i. Then d(Xj, Fi) ≤ d(Xj , X) + d(X,Fi). If X ∈ Vi ∩ S,
then we also have that d(X,Fi) ≤ d(X,Xj) + d(Xj, Fi′), since X is in Vi and not Vj. So
d(Xj, Fi) ≤ d(Xj, Fi′) + 2d(X,Xj). Since X and Xj are both in S, d(X,Xj) ≤ α1.

By starting with φ⋆
F and repeating this shifting we eventually arrive with an assignment φ̃F

(since assignments to cities in each cell are adjusted at most once). This assignment respects
Γ1 by construction, and (again because each city is reassigned at most once) we have

κ(F , φ̃F ) ≤ κ(F , φ⋆
F) + 2α1n. (9)

2

4.1.3 The likely cost per facility under φ̃F

For Fi ∈ F , let the Ṽi be the union of the subsquares in Γ1 which contain cities which are
mapped to Fi by φ̃F (we think of Ṽi as the “quantized Voronoi cell” of Fi). Let ηi denote
the number of subsquares in Ṽi. Let Xi = X ∩ Ṽi and let

ci =
∑

X∈Xi

d(X,Fi).

Note that, because of the way φ̃F was constructed, for any Γ1-subsquare S, if S ⊆ Vi then
S ⊆ Ṽi.

We say that Ṽi is an ǫ-quasi-square if there exists a square S centered at Fi such that
max{area(S \ Ṽi), area(Ṽi \ S)} ≤ ǫ area(Ṽi).

Lemma 4. Assume that (8) holds. Assume that ǫ ≫ α1. Then whpthe following hold for
all i

(i) ci ≥ 1
3
n(1 − ω−1/3) area(Ṽi)

3/2.

(ii) If Ṽi is not an ǫ-quasi-square then ci ≥ 1+ǫ2/4
3

n(1 − ω−1/3) area(Ṽi)
3/2.
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Proof In light of (8), this lemma reduces to a pair of geometric facts about collections
of squares. However, it is convenient for us to prove the facts via linear programming.

We begin by establishing part (i) of the lemma. Fix i. For every j define Uj = {S ∈ Γ1 :
S ⊆ Ṽi and jα1 ≤ d(S, Fi) < (j + 1)α1}. We have |Uj| ≤ 8j + 4. Let k be such that Uj = ∅
for every j > k. Such k exists because Ṽi is compact. By counting the number of Γ1-squares
in Ṽi we get

k
∑

j=0

|Uj| = ηi = area(Ṽi)/α
2
1.

Now,

ci =
∑

X∈Xi

d(X,Fi)

=
∑

S∈Γ1:S⊆Ṽi

∑

X∈S

d(X,Fi)

≥
∑

S⊆Ṽi

νSd(Fi, S)

≥ (α2
1n − ω2/3 log n)

∑

S⊆Ṽi

d(Fi, S)

= (α2
1n − ω2/3 log n)

k
∑

j=0

∑

S∈Uj

d(Fi, S)

≥ (α2
1n − ω2/3 log n)α1

k
∑

j=0

j|Uj|

As we want a lower bound for ci we consider the primal-dual pair

(P.i)

min
k
∑

j=0

jxj

subj to xj ≤ 8j + 4 j = 0, 1, . . . , k
k
∑

j=0

xj = ηi

xj ≥ 0 j = 0, 1, . . . , k

(D.i)

max ηiz −
k
∑

j=0

(8j + 4)yj

subj. to z − yj ≤ j j = 0, 1, . . . , k
yj ≥ 0 j = 0, 1, . . . , k
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A feasible solution for D.i is to take z = η
1/2
i /2 and yj = max(η

1/2
i /2 − j, 0), j = 0, . . . , k

with dual value ≥ η
3/2
i /3, and then

∑k
j=0 j|Uj| ≥ η

3/2
i /3 = area(Vi)

3/2/3α3
1.

(The expression
∑ℓ

j=0(8j +4)(A− j) = 4A(ℓ+1)2 −
(

8
3
ℓ3 + 6ℓ2 + 4

3
ℓ
)

will no doubt help the
reader to verify the above claim.)

Now we show that part (ii) of the lemma holds. We introduce extra constraints in the linear
program above in order to enforce the condition that Ṽi is not an ǫ-quasi-square. For this,
assume that Ṽi is not an ǫ-quasi-square, let ℓ = ⌊η1/2

i /2⌋ and let S be the square of side
2ℓα1 centered a Fi. Then area(Ṽi) ≥ area(S) ≥ (1 − ǫ) area(Ṽi) and therefore area(S ∩
Ṽi) < (1 − ǫ) area(Ṽi), otherwise area(Ṽi \ S) = area(Ṽi) − area(Ṽi ∩ S) ≤ ǫ area(Ṽi) and
area(S \ Ṽi) = area(S) − area(S ∩ Ṽi) ≤ ǫ area(Ṽi). Then

∑ℓ
j=0 |Uj| = area(S ∩ Ṽ1)/α

2
1 ≤

(1 − ǫ) area(Ṽi)/α
2
1 = (1 − ǫ)ηi, so we consider the primal-dual pair

(P.ii)

min
k
∑

j=0

jxj

subj to xj ≤ 8j + 4 j = 0, 1, . . . , k
k
∑

j=0

xj = ηi

ℓ
∑

j=0

xj ≤ (1 − ǫ)ηi

xj ≥ 0 j = 0, 1, . . . , k

(D.ii)

max ηiz − (1 − ǫ)ηiz1 −
k
∑

j=0

(8j + 4)yj

subj to z − z1 − yj ≤ j j = 0, 1, . . . , ℓ
z − yj ≤ j j = ℓ + 1, . . . , k

z1 ≥ 0
yj ≥ 0 j = 0, 1, . . . , k

A feasible solution for D.ii is z = (1 + ǫ)η
1/2
i /2, z1 = ǫη

1/2
i /2, yj = (1 − ǫ/2)η

1/2
i /2 − j,

j = 0, . . . , ℓ and yj = max((1 + ǫ/2)η
1/2
i /2 − j, 0), j = ℓ + 1, . . . , k with dual value ≥

(1 + ǫ2/4)η
3/2
i /3, and then

∑k
j=0 j|Uj| ≥ (1 + ǫ2/4)η

3/2
i /3 ≥ (1 + ǫ2/4) area(Vi)

3/2/3α3
1. 2

4.1.4 The structure of any near optimal solution

We continue by proving a property of any near optimal solution to the UFLP.

Lemma 5. Assume that (8) holds. Let ǫ be a sufficiently small constant, and let F ⊆ X
with κ(F , φ⋆

F ) ≤ (1 + ǫ)αn/2. Then for ǫ1 = 5ǫ1/2,
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(a) |F| ∈ [(1 − ǫ1)m
2, (1 + ǫ1)m

2].

(b) Suppose that θ1 = 2ǫ1/3 and θ2 = 4ǫ1/3 and ǫ0 = 3ǫ1/3. Then at least (1 − 2θ2)m
2 of

the points Fi ∈ F are such that Ṽi is an ǫ0-quasi-square of area in the range [(1 −
θ1)α

2, (1 + θ1)α
2].

Proof Let F = {F1, F2, . . . , Fk} and let ai = |Ṽi| for 1 ≤ i ≤ k. Let J = {j :
Ṽj is not a ǫ0-quasi-square}. Applying Lemma 4 and equation (9) we see that

κ(F , φ⋆
F) ≥ kf +

1 − ω−1/3

3
n

(

k
∑

i=1

a
3/2
i +

ǫ2
0

12

∑

j∈J

a
3/2
j

)

− 2α1n. (10)

Now let aj =
1+xj

k
, where −1 ≤ xj and

∑k
j=1 xj = 0.

By examining the power series for (1 + x)3/2 when |x| ≤ 1 and using elementary calculus for
x > 1 we see that

(1 + x)3/2 ≥ 1 +
3

2
x + min

{

1,
1

4
x2

}

x ≥ −1. (11)

It follows from (10) that

κ(F , φ⋆
F) ≥

kf +

(

1 − ω−1/3

3
n

)

×
(

k−1/2 + k−3/2

k
∑

i=1

min

{

1,
1

4
x2

i

}

+
ǫ2
0

12

∑

j∈J

a
3/2
j

)

− 2α1n (12)

Now, let k = (1 + θ)α−2 for some θ ≥ −1 and assume wlog that |θ| ≫ ω−1/6. Notice that
from (10) that we can assume θ < 3, otherwise kf ≥ 4

6
αn. If θ ∈ [−1, 3] then 1

(1+θ)1/2 ≥
1 − 1

2
θ + 1

16
θ2, and we get

kf +
1 − ω−1/3

3
nk−1/2 − 2α1n ≥
(1 + θ)

6
αn +

(1 − ω−1/3)

3
αn

(

1 − 1

2
θ +

1

16
θ2

)

− 2α1n ≥

αn

2

(

1 +
θ2

25

)

. (13)

And using (12) we get

κ(F , φ⋆
F ) ≥ αn

2

(

1 +
θ2

25

)

+
n

4

(

k−3/2

k
∑

i=1

min

{

1,
1

4
x2

i

}

+
ǫ2
0

12

∑

j∈J

a
3/2
j

)

. (14)
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Part (a) follows from (14): (1 + ǫ)αn/2 ≥ κ(F , φ⋆
F) ≥ αn

2

(

1 + θ2

25

)

and so |θ| ≤ ǫ1/2/5.

Using (14) again we get

κ(F , φ⋆
F) ≥ 1

2
αn +

n

4k3/2

k
∑

j=1

min

{

1,
1

4
x2

j

}

,

So if B = {j : |xj| ≥ θ1} and |B| ≥ βk for θ1, β ≤ 1, we have κ(F , φ⋆
F) ≥ 1

2
αn+

θ2
1β

16(1+ǫ1)1/2 αn.

Setting θ1 = 2ǫ1/3 we get β ≤ θ2 = 4ǫ1/3. Returning once again to (14) we write

κ(F , φ⋆
F ) ≥ 1

2
αn +

ǫ2
0

48
n
∑

j∈J

a
3/2
j

≥ 1

2
αn +

3ǫ2/3

16
n(|J | − θ2k)

(

1 − θ1

k

)3/2

.

Thus, if |J | ≥ 2θ2m
2 then

κ(F , φ⋆
F) ≥ 1

2
αn +

3ǫ2/3

16
nθ2(2m

2 − k)

(

1 − θ1

k

)3/2

≥ 1

2
αn +

12

16
ǫn(1 − ǫ1)m

2

(

1 − 2ǫ1/3

(1 + ǫ1)m2

)3/2

≥ 1

2
αn +

11

16
ǫαn.

2

4.2 Properties of Solutions Found by Greedy Approximation Al-
gorithms

The goal of this section is to use the characterization of close-to-optimal solutions obtained
in Section 4.1 to show that the greedy approximation algorithms described in Section 2 find
solutions which are not asymptotically optimal. This is achieved by considering the behavior
of the algorithm on a 14α × 7α rectangular subregion of the unit square, and showing that,
with constant probability, this region contains a facility for which the Vornoi region is not
ǫ-quasi-square.

The intuition which motivates this approach is this: the candidate facilities which open
in the subregion will do so at random locations, thus there is no reason to expect these
random locations to result in nice Vornoi cells. Making this intuitive explaination rigorous
requires some work because of the complicated dependencies between which facilities are
opened. For example, all the approximation algorithms track a level of “funding” available
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for opening a candidate facility (in Approximation Algorithm 1, the funds for city j are
∑

i∈U max{0, δi − d(i, j)}, and in Approximation Algorithm 2 and 3, the funds are at least
this much.) The funds available to a facility at time t is a difficult random variable to deal
with, and we must work around this difficulty.

Let pf(X, t) denote the potential funds at point X at time t, given by

pf(X, t) =
∑

i∈C

max{0, t − d(Xi, X)}.

This is the level of funding available to open a facility at X if no other facilities have already
opened within distance 2t of X.

Let T (X) = min{min{t : pf(X, t) = f}, α} be the earliest opening time of point X (which
is truncated at time α, because we want T (X) to only depend on the position of nearby
points).

We note that E(pf(X,α)) = f and pf(X,α) is the sum of n independent bounded random
variables and so the Central Limit Theorem implies that

Pr(pf(X,α) ≥ f) =
1

2
− o(1). (15)

Consider concentric squares, S1, S2, . . . , where Si is an iα× iα square (see Figure 2 for visual
reference). Some facility X⋆ in S5 has the minimum value of T (X) among all facilities in S5,
and which one it is only depends on the configuration of points in S7.

Note that if X⋆ is in S1, (and T (X⋆) < α) then (in all 3 of the greedy approximation
algorithms) X⋆ actually opens at time T (X⋆), because no cities within distance α of S1 are
connected (because no facilities within 2α of S1 are open; in other words, no facilities besides
X⋆ are open in S5.) Since nothing within α of X⋆ is connected,

∑

i∈U

max{0, δi − d(Xi, X
⋆)} =

∑

i∈C

max{0, T (X⋆) − d(Xi, X
⋆)}.

We will partition S7 into subsquares of size α/4, and obtain a constant lower bound on the
probability X⋆ appears in one of these subsquares that is contained in S1. For (p, q) ∈ [4]2,
let Qp,q, denote such a subsquare (with side length α/4 that is contained in S1). Figure 2
provides a visual reference.

Lemma 6. Let X⋆ be the facility in S5 which minimizes T (X) over X ∈ X ∩ S5. There
exists an absolute constant γ0 such that for any (p, q) ∈ [4]2,

Pr[X⋆ ∈ Qp,q and pf(X⋆, α) ≥ f ] ≥ γ0.
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Q3,1

Q4,3

α

5α

7α

S1

S5

S7

2α
X⋆

α/4

Figure 2: Concentric squares S1, S5, and S7.

Proof We write A⋆
p,q = {X⋆ ∈ Qp,q} and B⋆ = {pf(X⋆, α) ≥ f}. We then consider

the analogous question for X ′ = X ∩ S7, where the edges of S7 have been identified to
“wrap-around”, making the distance function

dW ((x1, y1), (x2, y2)) = max{min{|x1 − x2|, 7α − |x1 − x2|},min{|y1 − y2|, 7α − |y1 − y2|}}.

(This makes the space a torus topologically.) In this case, some α/4 × α/4 subsquare of S7

contains the facility X⋆ which minimizes T (X) and, by symmetry, each subsquare is equally
likely to contain it. So the probability that X⋆ is in Qp,q is the same as the probability that
it is in any of the (7 · 4)2 subsquares, which is exactly 1/(7 · 4)2. Using Pr′ for this model
and double ⋆’s to distinguish the S7 case from the S5 case, we have

Pr′(B⋆⋆) =
∑

(a,b)∈[7·4]2

Pr′(B⋆ ∧ A⋆⋆
a,b) = (7 · 4)2Pr′(B⋆⋆ ∧ A⋆⋆

p,q),

giving

Pr′(B⋆⋆ ∧ A⋆⋆
p,q) ≥

1

3(7 · 4)2
.

Now, we remove the wrap-around on S7 but continue to ignore all the points of X that lie
outside S7 (i.e. consider the potential funds for point set X ′ = X ∩S7 under the ℓ∞ distance).
This change can only affect T (X) for a point X which lies within distance α of the boundary
of S7, and for such an X, the change can only makes T (X) larger than it was in the case
with wrap-around. So every X which yielded B⋆⋆ and X⋆⋆ in Qp,q with the wrap-around
distance will have B⋆ and the same X⋆ in this case. So the probability that B⋆ occurs and
Qp,q contains the point which opens first when X ′ = X ∩ S7 is at least (7 · 4)−2/3.

Finally, we return to the original set X , and note that considering the contributions of
points outside of S7 to the potential funds does not affect T (X) for any X in S5. So the
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XL

XR

SRight
7SLeft

7

Σ

Figure 3: Two side-by-side copies of S7

probability that Qp,q contains the point which opens first in S5 with respect to X is at
least the probability that Qp,q contains the point which opens first in S7 with respect to
X ′ = X ∩ S7. The previous paragraph showed that this is at least (7 · 4)−2/3. 2

Now consider 2 side-by-side copies of S7, as shown in Figure 3. Let B1 be the event that, in
the left copy of S7, the facility XL which minimizes T (X) in SL

5 is in QL
q,1 for some q. Let

B2 be the event that, in the right copy of S7, the facility XR which minimizes T (X) in SR
5 is

in QR
q′,3 for some q′. Because QL

q,1 and QR
q′,3 are sufficiently far apart, Pr[B1 | B2] = Pr[B1],

and so Pr[B1B2] ≥ γ2
0 .

Suppose now that B1 and B2 occur. Let Σ be the (1 + ǫ)α × 8α strip containing SL
1 and SR

1

(so that SL
1 , SR

1 are located symmetrically at distance ǫα/2 from the horizontal borders of
Σ, as depicted in Figure 3.) Here ǫ is some sufficiently small positive constant. Let I be the
index set of those open facilities whose quantized Voronoi cells Ṽi meet the strip Σ.

Lemma 7. Whp there must be some facility i ∈ I for which Ṽi is not ǫ3-quasi-square with
area in (1 ± ǫ3)α2.

Proof Assume for the sake of contradiction that this is not the case. Each such Voronoi
region Ṽi can therefore be associated with a square Wi of side in the range (1 ± ǫ3)α. Fur-
thermore, any two such squares have a common area of at most ǫ3α2. Whp there is no open
facility j at distance 2α or more from Σ for which the quantized Voronoi region Ṽj intersects

Σ (every point in X ∩ Σ is connected to a closer open facility). Thus |I| ≤ 8(5+ǫ)
1−ǫ/2

< 50. It

follows that all but an area of at most 50ǫ3α2 of Σ is covered by the Wi, for i ∈ I. Now
let Σ1 denote a strip of length 8α and thickness ǫα/4 running across the middle of Σ. Any
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sub-strip of Σ1 which is of length ǫα is of area ǫ2α2/4 and so will contain members of X
which are covered by some Wi, i ∈ I.

If the center of this Wi is outside Σ then Wi has side at least (1+ǫ/4)α, which contradicts our
assumption. So let J be the set of facilities j with center in Σ for which there is a member
of Σ1 contained in Wj. If any of these facilities is not ǫ3-quasi-square then we are done, so
we may assume that they all are. There is an open facility in SL

q,1 and in SR
q′,3, and these

facilities cover squares of side at least α. Thus the other members of J appear in a substrip
with length between 7.25α and 7.75α. If there are 6 or fewer open facilities in this the strip
bounding the 2 copies, then some pair of facilities are at least 1.04α apart. Therefore, one
of them, call it Fi has a Wi with side at least (1.04 − 100ǫ3)α, contradiction. On the other
hand, if there are 7 or more facilities in the strip, then some pair are at most .96α apart,
and so some Fi has a Wi with side at most (.96 + 2ǫ3

.48
)α, contradiction. 2

Since the event B1B2 occurs independently in sufficiently separated disjoint regions of the
square (modulo there being enough points in the cell), whp we will have Ω(m2) facilities for
which Ṽi is not an ǫ3-quasi-square with area (1± ǫ3)α. So Lemma 5 finishes the proof of the
Theorem. 2
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