
SybilGuard: Defending Against Sybil Attacks
via Social Networks

Haifeng Yu Michael Kaminsky Phillip B. Gibbons Abraham Flaxman
Intel Research Pittsburgh Carnegie Mellon University

{haifeng.yu,michael.e.kaminsky,phillip.b.gibbons}@intel.com abie@cmu.edu

ABSTRACT
Peer-to-peer and other decentralized, distributed systems are known
to be particularly vulnerable to sybil attacks. In a sybil attack, a
malicious user obtains multiple fake identities and pretends to be
multiple, distinct nodes in the system. By controlling a large fraction
of the nodes in the system, the malicious user is able to “out vote”
the honest users in collaborative tasks such as Byzantine failure
defenses. This paper presents SybilGuard, a novel protocol for
limiting the corruptive influences of sybil attacks. Our protocol
is based on the “social network” among user identities, where an
edge between two identities indicates a human-established trust
relationship. Malicious users can create many identities but few
trust relationships. Thus, there is a disproportionately-small “cut” in
the graph between the sybil nodes and the honest nodes. SybilGuard
exploits this property to bound the number of identities a malicious
user can create. We show the effectiveness of SybilGuard both
analytically and experimentally.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; C.2.0 [Computer-Communica-
tion Networks]: General—Security and protection (e.g., firewalls)

General Terms
Security, Design, Algorithms, Experimentation

Keywords
Sybil attack, sybil identity, SybilGuard, social networks

1. INTRODUCTION
As the scale of a decentralized distributed system increases, the pres-
ence of malicious behavior (e.g., Byzantine failures) becomes the
norm rather than the exception. Most designs against such malicious
behavior rely on the assumption that a certain fraction of the nodes
in the system are honest. For example, virtually all protocols for tol-
erating Byzantine failures assume that at least 2/3 of the nodes are
honest. This makes these protocols vulnerable to sybil attacks [9],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

in which a malicious user takes on multiple identities and pretends
to be multiple, distinct nodes (called sybil nodes or sybil identities)
in the system. With sybil nodes comprising a large fraction (e.g.,
more than 1/3) of the nodes in the system, the malicious user is
able to “out vote” the honest users, effectively breaking previous
defenses against malicious behaviors. Thus, an effective defense
against sybil attacks would remove a primary practical obstacle to
collaborative tasks on peer-to-peer (p2p) and other decentralized
systems. Such tasks include not only Byzantine failure defenses, but
also voting schemes in file sharing, DHT routing, and identifying
worm signatures or spam.

Problems with using a central authority. A trusted central author-
ity that issues and verifies credentials unique to an actual human
being can control sybil attacks easily. For example, if the system
requires users to register with government-issued social security
numbers or driver’s license numbers, then the barrier for launching
a sybil attack becomes much higher. The central authority may also
instead require a payment for each identity. Unfortunately, there are
many scenarios where such designs are not desirable. For example,
it may be difficult to select/establish a single entity that every user
worldwide is willing to trust. Furthermore, the central authority
can easily be a single point of failure, a single target for denial-of-
service attacks, and also a bottleneck for performance, unless its
functionality is itself widely distributed. Finally, requiring sensitive
information or payment in order to use a system may scare away
many potential users.

Challenges in decentralized approaches. Defending against sybil
attacks without a trusted central authority is much harder. Many de-
centralized systems today try to combat sybil attacks by binding an
identity to an IP address. However, malicious users can readily har-
vest (steal) IP addresses. Note that these IP addresses may have little
similarity to each other, thereby thwarting attempts to filter based on
simple characterizations such as common IP prefix. Spammers, for
example, are known to harvest a wide variety of IP addresses to hide
the source of their messages, by advertising BGP routes for unused
blocks of IP addresses [19]. Beyond just IP harvesting, a malicious
user can co-opt a large number of end-user machines, creating a
botnet of thousands of compromised machines spread throughout
the Internet. Botnets are particularly hard to defend against because
nodes in botnets are indeed distributed end users’ computers.

The first investigation into sybil attacks [9] proved a series of
negative results, showing that they cannot be prevented unless spe-
cial assumptions are made. The difficulty stems from the fact that
resource-challenge approaches, such as computation puzzles, re-
quire the challenges to be posed/validated simultaneously. More-
over, the adversary can potentially have significantly more resources
than a typical user. Even puzzles that require human efforts, such
as CAPTCHAs [23], can be reposted on the adversary’s web site
to be solved by other users seeking access to the site. Furthermore,

267

Attack
Edges

nodes
Honest
nodes

Sybil

Figure 1: The social network with honest nodes and sybil
nodes. Note that regardless of which nodes in the social net-
work are sybil nodes, we can always “pull” these nodes to the
right side to form the logical network in the figure.

these challenges must be performed directly instead of trusting
someone else’s challenge results, because sybil nodes can vouch
for each other. A more recent proposal [4] suggests the use of
network coordinates [17] to determine whether multiple identities
belong to the same user (i.e., have similar network coordinates).
Despite its elegance, a malicious user controlling just a moderate
number of network positions (e.g., tens in practice) can fabricate
network coordinates and thus break the defense. Finally, reputation
systems based on historical behaviors of nodes are not sufficient
either, because the sybil nodes can behave nicely initially, and later
launch an attack. Typically, the damage from such an attack can be
much larger than the initial contribution (e.g., the damage caused by
throwing away another user’s backup data is much larger than the
contribution of storing the data). In summary, there has been only
limited progress on how to defend against sybil attacks without a
trusted central authority, and the problem is widely considered to be
quite challenging.

SybilGuard: A new defense against sybil attacks. This paper
presents SybilGuard, a novel decentralized protocol that limits the
corruptive influence of sybil attacks, including sybil attacks exploit-
ing IP harvesting and even some sybil attacks launched from botnets
outside the system. Our design is based on a unique insight regard-
ing social networks (Figure 1), where identities are nodes in the
graph and (undirected) edges are human-established trust relations
(e.g., friend relations). The edges connecting the honest region (i.e.,
the region containing all the honest nodes) and the sybil region (i.e.,
the region containing all the sybil identities created by malicious
users) are called attack edges. Our protocol ensures that the number
of attack edges is independent of the number of sybil identities, and
is limited by the number of trust relation pairs between malicious
users and honest users.

The basic insight is that if malicious users create too many sybil
identities, the graph becomes “strange” in the sense that it has a
small quotient cut—i.e., a small set of edges (the attack edges)
whose removal disconnects a large number of nodes (all the sybil
identities) from the rest of the graph. On the other hand, we will
show that social networks do not tend to have such cuts. Directly
searching for such cuts is not practical, because we would need
to obtain the global topology and verify each edge with its two
endpoints. Even if we did know the global topology, the problem of
finding cuts with the smallest quotient (the Minimum Quotient Cut
problem) is known to be NP-hard.

Instead, SybilGuard relies on a special kind of verifiable random
walk in the graph and intersections between such walks. These
walks are designed so that the small quotient cut between the sybil
region and the honest region can be used against the malicious users,
to bound the number of sybil identities that they can create. We

will show the effectiveness of SybilGuard both analytically and
experimentally.

The next section more precisely defines our system model and the
sybil attack. Section 3 provides an overview of SybilGuard. Sections
4 and 5 elaborate on SybilGuard in depth. The effectiveness of
SybilGuard is shown experimentally in Section 6. Finally, Section 7
discusses related work and Section 8 draws conclusions.

2. MODEL & PROBLEM FORMULATION
This section formalizes the desirable properties and functions of
a defense system against sybil attacks. We begin by defining our
system model. The system has n honest human beings as honest
users, and one or more malicious human beings as malicious users.
By definition, a user is distinct. Each honest user has a single (hon-
est) identity, while each malicious user has one or more (malicious)
identities. To unify terminology, we simply refer to all the identities
created by the malicious users as sybil identities. Identities are also
called nodes, and we will from now on use “identity” and “node”
interchangeably. All malicious users may collude, and we say that
they are all under the control of an adversary.

Nodes participate in the system to receive and provide service
(e.g., file backup service) as peers. Because the nodes in the system
may be honest or sybil, a defense system against sybil attacks aims
to provide a mechanism for a node V to decide whether or not
to accept or reject another node S. Accepting S means that V is
willing to receive service from and provide service to S. Ideally, the
defense system should guarantee that V accepts only honest nodes.
Because such an idealized guarantee is challenging to achieve, we
aim at providing the following guarantees that, while weaker, are
still sufficiently strong to be useful.

Bounding the number of sybil groups. The first guarantee is based
on defining an equivalence relation among accepted nodes. The
equivalence relation partitions all accepted nodes into equivalence
classes, called equivalence groups. Notice that nodes that are re-
jected do not belong to any equivalence groups. An equivalence
group that includes one or more sybil nodes is called a sybil group.
The defense system provides a guaranteed bound on the number of
sybil groups, without necessarily knowing which groups are sybil.

Such notion of equivalence groups was also implicitly used by
Bazzi and Konjevod [4], where they define (implicit) equivalence
classes according to network coordinates. In their scheme, all nodes
are accepted, and those nodes with similar network coordinates (e.g.,
nodes within the same university campus) are considered equivalent.
Thus, the number of sybil groups is simply the number of distinct
network locations that the adversary controls.

To understand why bounding the number of sybil groups is suffi-
cient in some scenarios, imagine that we are maintaining replicas of
a file that has been digitally signed for authenticity. Our goal is to
ensure that not all replicas are placed on sybil nodes. If the defense
system guarantees that the number of sybil groups is at most some
value g, then placing the file on nodes from g+1 different equiva-
lence groups will ensure at least one good copy of the file. Another
example is replicating a file that is not signed. As long as we obtain
the file from 2g+1 nodes from 2g+1 different equivalence groups,
the majority is guaranteed to have the correct file.

Bounding the size of sybil groups. In some other scenarios, only
bounding the number of sybil groups is not effective. Unavoidably,
the bound on the number of sybil groups depends on how “powerful”
the adversary is. For example, the adversary can always “bribe”
or even threaten honest users to act maliciously and thus force the
defense system to accept more sybil groups. As a result, one may
want a pessimistic estimation of the number of sybil groups g. On

268

the other hand, even when g is only moderately large (e.g., 100),
maintaining g+1 replicas is wasteful.

To be more effective, a defense system may further bound the
number of nodes accepted into each of the g sybil groups. If the
number of nodes in each sybil group (or the size of the sybil group)
is at most w, then a node will accept at most g ·w sybil nodes. To
see the benefits of bounding both the number and size of the sybil
groups, consider our running example of replicating unsigned and
signed files. Suppose we use a simple assignment that maps replicas
to random nodes. If g ·w is smaller than the number of honest
nodes n, then from Chernoff bounds [14], the probability of having
a majority of the replicas on honest nodes (as required for unsigned
files) approaches 1.0 exponentially fast with the number of replicas.
Similarly, as long as g ·w is not much larger than n, the probability
of having at least one replica on an honest node (as required for
signed files) also approaches 1.0 exponentially fast.

Choosing roughly uniformly random nodes as replicas is not
difficult in most decentralized distributed systems. For example,
DHT-based systems (such as those based on Chord [22]) typically
place replicas on a random set of nodes. It may appear that instead
of choosing uniformly random nodes, we could avoid the need for
bounding sybil group sizes by instead choosing uniformly random
equivalence groups (and then picking a random node from each
chosen group). However, such a design would cause severe load
imbalance under heterogeneous group sizes, which is the case, for
example, in the network coordinates approach. Moreover, for DHT-
based systems, the design would completely disrupt DHT routing.

Side-effects on honest nodes. As side-effects of bounding the
number and size of sybil groups, the defense system may both
(mistakenly) reject some honest nodes and (mistakenly) consider
two or more distinct honest nodes as equivalent. For example, as
noted above, all honest nodes in the same university campus may be
considered equivalent in the network coordinates approach.

Summary of SybilGuard functionalities. SybilGuard is com-
pletely decentralized and all functionalities are with respect to a
given node. SybilGuard guarantees that an honest node accepts, and
also is accepted by, most other honest nodes (except a few percent in
our later simulation) with high probability. Thus, an honest node can
successfully obtain service from, and provide service to, most other
honest nodes. SybilGuard also guarantees that with high probabil-
ity, an honest node only accepts a bounded number of sybil nodes.
Notice that since SybilGuard is decentralized, the set of accepted
nodes by node V1 can be different from those accepted by node V2.
However, the difference should be small since both V1 and V2 should
accept most honest nodes with high probability.

SybilGuard further enables a node V to partition the accepted
nodes (by V) into equivalence groups such that only a certain num-
ber of those groups contain sybil nodes. Notice that if the application
only wants to bound the number of sybil nodes accepted, the notion
of equivalence groups does not need to be visible to the applica-
tion. It is possible for two distinct honest users to be mistakenly
considered by SybilGuard to belong to the same equivalence group.
This does not affect their ability to receive service. As for providing
service, the application may prevent them from, for example, both
storing replicas of the same file. As argued in [4], as long as there
are a sufficiently large number of equivalence groups, this will not
likely result in wasted resource capacity.

3. SYBILGUARD OVERVIEW
Social network and attack edges. SybilGuard leverages the ex-
isting human-established trust relationships among users to bound
both the number and size of sybil groups. All honest nodes and

Verifier

Sybil nodesHonest nodes

Suspect

Figure 2: Verifier accepts the suspect because their random
routes intersect. SybilGuard leverages the facts that (1) the av-
erage honest node’s random route is highly likely to stay within
the honest region and (2) two random routes from honest nodes
are highly likely to intersect within w steps.

sybil nodes in the system form a social network (see Figure 1). An
undirected edge exists between two nodes if the two corresponding
users have strong social connections (e.g., colleagues or relatives)
and trust each other not to launch a sybil attack. If two nodes are
connected by an edge, we say the two users are friends. Notice that
here the edge indicates strong trust, and the notion of friends is quite
different from friends in other systems such as online chat rooms.
An edge may exist between a sybil node and an honest node if a
malicious user (Malory) successfully fools an honest user (Alice)
into trusting her. Such an edge is called an attack edge and we use
g to denote the total number of attack edges. The authentication
mechanism in SybilGuard ensures that regardless of the number of
sybil nodes Malory creates, Alice will share an edge with at most
one of them (as in the real social network). Thus, the number of
attack edges is limited by the number of trust relation pairs that
the adversary can establish between honest users and malicious
users. While the adversary has only limited influence over the social
network, we do assume it may have full knowledge of the social
network.

The degree of the nodes in the social network tends to be much
smaller than n, so the system would be of little practical use if nodes
only accepted their friends. Instead, SybilGuard bootstraps from the
given social network a protocol that enables honest nodes to accept
a large fraction of the other honest nodes. It is important to note that
SybilGuard does not increase or decrease the number of edges in
the social network as a result of its execution.

Random routes and route intersection. SybilGuard uses a special
kind of random walks, called random routes, in the social network.
In a standard random walk, at each hop, the current node flips a
coin on the fly and selects a (uniformly) random edge to direct the
walk. In random routes, each node uses a pre-computed random
permutation as a one-to-one mapping from incoming edges to out-
going edges. As a result, two random routes entering an honest
node along the same edge will always exit along the same edge
(called the convergence property). Furthermore, the outgoing edge
uniquely determines the incoming edge as well; thus the random
routes can be back-traced (called the back-traceable property). Of
course, these properties can be guaranteed only for the portions of a
route that do not contain sybil nodes. Sybil nodes may deviate from
any aspect of the protocol.

In the simplest form of SybilGuard, each node performs a random
route (starting from itself)1 of a certain length w (e.g., w is roughly
2000 for the one-million node topology in our later experiments).
These random routes form the basis of SybilGuard whereby an
honest node (called the verifier) decides whether or not to accept

1In the full protocol, each node performs multiple random routes.

269

Verifier

e1

Sybil nodes

intersection
node edge

Honest nodes

Figure 3: All random routes traversing the same edge merge.

another node (called the suspect). In particular, the verifier only
accepts a suspect whose random route intersects with the verifier’s
random route (see Figure 2). Because of the limited number of attack
edges, with appropriate w, the verifier’s route will remain entirely
within the honest region with high probability. (An exception is
a verifier with a nearby attack edge; our redundancy techniques
discussed in Section 4.4 will address such nodes.)

Bounding the number and size of sybil groups. To intersect with
the verifier’s random route, a sybil node’s random route must tra-
verse one of the attack edges (whether or not the sybil nodes follow
the protocol). Suppose there were only a single attack edge (as in
Figure 3). Based on the convergence property, the random routes
from sybil nodes must merge completely once they traverse the
attack edge. Thus, all of these routes will have the same intersection
node with the verifier’s route; furthermore, they enter the intersec-
tion node along the same edge (edge e1 in the figure). The verifier
thus considers all of these nodes to be in the same equivalence group,
and hence there is only a single sybil group. In the more general
case of g attack edges, the number of sybil groups is bounded by g.

SybilGuard further bounds the size of equivalence groups (and
hence of sybil groups) within the length of the random routes w.
From the back-traceable property, we know there can be at most w
distinct routes that (i) intersect with the verifier’s random route at a
given node, and (ii) enter the intersection node along a given edge
(e.g., along edge e1 in Figure 3). Specifically, the ith such route,
i = 1, . . . ,w, traverses the given edge in its ith hop. Thus, the verifier
accepts exactly one node for each of the w hop numbers at a given
intersection point and a given edge adjacent to the intersection point.
In summary, there are many equivalence groups, but only g are sybil
and each has at most w nodes.

Guarantees on honest nodes. For honest nodes, we will show that
with appropriate w, (i) an honest node’s random route intersects with
the verifier’s route with high probability, and (ii) such an honest
node will never compete for the same hop number with any other
node (including sybil nodes). Thus, the average honest node will be
accepted with high probability.

SybilGuard partitions the honest nodes in the system into at most
z different equivalence groups, where z is the sum of the degrees of
the w nodes on the verifier’s route. While z can still be far from n,
note that z can easily be much larger than the number of different
equivalence groups needed in practice (e.g., when choosing g +1
different equivalence groups for placing replicas).

Our SybilGuard design leverages the following three important
facts to bound the number of sybil nodes: (i) social networks tend
to be fast mixing (defined in the next section), which necessarily
means that subsets of honest nodes have good connectivity to the
rest of the social network, (ii) too many sybil nodes (compared to
the number of attack edges) disrupts the fast mixing property, and
(iii) the verifier is itself an honest node, which breaks symmetry. We
will elaborate on these aspects later.

4. SYBILGUARD DESIGN
With the preceding high-level sketch in mind, this section provides
the detailed design of SybilGuard, explains the insights, and also
formally argues about its properties.

4.1 Social Network
Consider the social network defined in the previous section. Each
pair of friends shares a unique symmetric secret key (e.g., a shared
password) called the edge key. The edge key is used to authenticate
messages between the two friends (e.g., with a Message Authenti-
cation Code). Because only the two friends need to know the edge
key, key distribution is easily done out-of-band (e.g., via phone
calls). A node can also revoke an edge key unilaterally simply by
discontinuing use of the key and discarding it.

Because of the nature of the social network and the strong trust
associated with the notion of friends in SybilGuard, we expect
node degrees to be relatively small and will tend not to increase
significantly as n grows. As a result, a user only needs to invoke
out-of-band communication a small number of times. In order to
prevent the adversary from increasing the number of attack edges
(g) dramatically by compromising high-degree honest nodes, each
honest node (before compromised) voluntarily constrains its degree
within some constant (e.g., 30). Doing so will not affect the guaran-
tees of SybilGuard as long as the social network remains fast mixing.
On the other hand, researchers have shown that even with rather
small constant node degrees, social networks (or more precisely,
small-world topologies) are fast mixing [6, 11].

A node informs its friends of its IP address whenever its IP address
changes, to allow continued communication via the network. This
IP address is used only as a hint. It does not result in a vulnerability
even if the IP address is wrong, because authentication based on the
edge key will always be performed. If DNS and DNS names are
available, nodes may also provide DNS names and only update the
DNS record when the IP address changes.

4.2 Limiting the Number of Attack Edges
The effectiveness of SybilGuard relies on there being a limited
number of attack edges (g). There are several ways the adversary
might attempt to increase g:

• The malicious users establish social trust and convince more
honest users in the system to “be their friends” in real life.
But this is quite difficult to do on a large scale.

• A malicious user (Malory) who managed to convince an hon-
est user (Alice) to be her friend creates many sybil nodes, and
then tries to convince Alice to also be friends with these sybil
nodes. But Alice only has a single edge key corresponding to
the edge between Alice and Malory. As a result, all messages
authenticated using that edge key will be considered by Alice
to come from the same edge. Thus the number of attack edges
remains unchanged.

• The adversary compromises a single honest node with de-
gree d. Because d was already constrained (before the node
is compromised) within some constant by the user, g can be
increased by at most some constant. On the other hand, the ad-
versary will not be able to create further attack edges from the
node because adding an edge to another honest user requires
out-of-band verification by that user. When a user drops and
then makes new friends, it is possible for the adversary with
access to the old edge keys to “resurrect” dropped edges and
hence further increase g. However, we expect such effect to
be negligible in practice and if necessary, can be prevented by
requiring out-of-band confirmation when deleting edges.

270

Figure 4: Two routes of length 3. Sharing an edge necessarily
means that one route starts after the other.

• The adversary compromises a small fraction of the nodes in
the system. This will not likely increase g excessively due to
the reasons above.

• The adversary compromises a large fraction of the nodes in
the system. Here the system has already been subverted, and
the adversary does not even need to launch a sybil attack.
SybilGuard will not help here.

• The adversary compromises a large number of computers (i.e.,
creates a botnet), only some of which belong to the system.
The increase in g is upper bounded by some constant times
the number of compromised computers which already belong
to the system. The increase is not affected by the total size
of the botnet. Although acquiring a botnet with many nodes
may be relatively easy (e.g., in the black market), acquiring a
botnet containing many nodes that are already in the system
is more challenging.

In summary, SybilGuard is quite effective in limiting the number of
attack edges, as long as not too many honest users are compromised.
Relatively speaking, SybilGuard is more effective defending against
malicious users than defending against compromised honest users
that belong to the system. This is because a malicious user must
make real friends in order to increase the number of attack edges,
while compromised honest users already have friends.

4.3 Random Routes
Starting from here, the rest of Section 4 assumes a static social
network where all nodes are online—we will discuss user and node
dynamics in Section 5. SybilGuard relies on the convergence and
back-traceable properties in random routes to bound the number and
size of sybil groups. Here, we elaborate on how to achieve these
properties and their implications.

For random routes, each node uses a randomized routing table to
choose the next hop. A node A with d neighbors uniformly randomly
chooses a permutation “x1,x2, . . . ,xd” among all permutations of
1,2, . . . ,d. If a random route comes from the ith edge, A uses edge xi
as the next hop. It is possible that i = xi for some i. The routing table
of A, once chosen, will never change (unless A’s degree changes—
see Section 5). Using such a randomized routing table introduces
some correlation in the random choices if a random route visits the
same node multiple times. It is possible that random routes become
repeated loops due to this; however, later we will explain intuitively
and also demonstrate experimentally why this is unlikely.

For random routes in the honest region, these routing tables give
us the following properties. First, once two routes traverse the same
edge along the same direction, they will merge and stay merged
(i.e., the convergence property). Using a permutation as the routing
table further guarantees that the random routes are back-traceable.
In other words, it is impossible for two routes to enter the same
node along different edges but exit along the same direction. With
the above properties, if we know that a random route of a certain
length w traverses a certain edge e along a certain direction in its ith
hop, the entire route is uniquely determined. In other words, there
can be only one route with length w that traverses e along the given
direction at its ith hop. In addition, if two random routes ever share
an edge in the same direction, then one of them must start in the
middle of the other (Figure 4).

startingimpossible
to form loop
at non−starting point

....
node

Figure 5: A loop can form only at the starting point of a route.

4.4 Problematic Routes and Redundancy
A random route is problematic if either (i) it traverses some edge in
the same direction more than once (i.e., a loop), or (ii) it enters the
sybil region. Note that a route traversing the same node more than
once may or may not be a loop. Because of the use of routing tables,
loops will repeatedly visit many nodes, reducing the “effective”
length of the route and the probability of route intersection. On the
other hand, random routes that go into the sybil region fall under
the control of the adversary. If a verifier uses such a route, it may
accept an unbounded number of sybil nodes.

Because the routing table is a permutation, if a random route ever
traverses the same edge twice in the same direction, the first edge
in the route must be the first edge that is traversed twice. In other
words, loops can only form at the starting node (Figure 5). If a loop
is formed, the random route must have come back to the starting
point, and the starting point must have decided to forward the route
along the first edge. Also notice that the smallest loop has three hops,
otherwise it is impossible for the route to traverse the same edge (via
the same direction) twice. More concretely, consider a simplified
scenario where all nodes have the same degree d. At the second
hop, the route will return to the starting point with probability 1/d.
At the third hop, if a loop is formed, the starting point must have
decided to forward the route along the same edge as the first hop.
Thus, a loop is formed at the third hop with probability 1/d2. As
the route proceeds, the chance of repeating the first hop edge will
usually become smaller and smaller. In fact, in a fast mixing graph,
after a small number of hops a random walk is equally likely to
be traversing any edge in a given hop. This provides an intuition
as to why loops are unlikely. As for the probability of a random
route extending to the sybil region, we will later formally argue
(Theorem 1) why this probability is also likely to be small. Finally,
Section 6 will provide concrete experimental results demonstrating
that problematic random routes are relatively rare.

An effective way to further avoid problematic random routes is
to use redundancy. In SybilGuard, a node with degree d performs
d random routes, one along each of its edges. Now imagine that a
verifier V tries to decide whether to accept a suspect S. Those routes
that are loops can still be used, because they do not compromise
security—they are simply less “effective.” We can also safely use all
routes from S regardless of whether they extend to the sybil region:
If S is an honest node, then using all routes simply increases the
probability of some route intersecting with V ’s routes. On the other
hand, if S is a sybil node, then all of S’s routes still need to cross the
attack edges before intersecting with V ’s routes that are in the honest
region. Because of the convergence property, we can easily see that
this will not compromise SybilGuard’s guarantees (Section 3).

On the other hand, if a route from V extends to the sybil region,
V will not be able to bound the number of sybil nodes using that
route. V uses the following technique to mask the misleading effects
of routes extending to the sybil region. For each of V ’s routes, as
long as at least one route from S intersects that route from V , that
route from V accepts S. If at least a threshold t of V ’s routes accept
S, V accepts S. The parameter t involves the following tradeoff: if
t is too small, then V may have a large probability of having more
than t routes enter the sybil region; if t is too large, then V may have

271

e3 => e4 e5 => e4e1 => e2 e2 => e3
e2 => e1 e3 => e2 e4 => e3 e4 => e5

1 ... 1 C1 A 1 B
2 ...2 ... 2 A 2 B

1 ...1 B 1 C 1 D
2 ... 2 ...2 C 2 D

Node A Node B Node C Node D

edge e2 edge e4
edge edge

e5e1
... ...

edge e3

routing table

registry
table for e1

registry
table for e2 table for e3

registry

table for e2
registry

registry
table for e5table for e4

registry

routing table routing tablerouting table

registry
table for e3

registry
table for e4

Figure 6: Maintaining the registry tables. In order to simplify
this example, w = 2, each node has exactly two edges, and the
routing tables are carefully chosen. The node names in the reg-
istry tables stand for the nodes’ public keys.

trouble accepting other honest nodes if more than (d−t) routes from
V enter the sybil region and if the sybil nodes prevent intersection
from happening. A simplified analysis [27] shows that t = d/2 tends
to provide a good tradeoff, and this effectively becomes majority
voting.

4.5 Secure and Decentralized Design for Ran-
dom Routes and Their Verification

The previous sections explained the basics of random routes. In
the actual SybilGuard protocol, these routes are performed in a
completely decentralized way. The two local data structures (registry
tables and witness tables) described in this section are the only data
structures that each node needs to maintain. Also, propagating these
tables to direct neighbors is the only action each node needs to take
in order to perform random routes.

Registration. In SybilGuard, each node S with degree d must
perform d random routes of w hops each and remember these routes.
To prevent S from “lying” about its routes, SybilGuard requires S to
register with all w nodes along each of its routes. A node Q along
the route permits S to register only if S is one of the nodes that are
within w hops “upstream”. When the verifier V wants to verify S,
V will ask the intersection point (between S’s route and V ’s route)
whether S is indeed registered.

In this registration process, each node needs to use a “token” that
cannot be easily forged by other nodes. Note that the availability
of such tokens does not solve the sybil attack problem by itself,
because a malicious user may have many such tokens. A node will
be accepted based on its token. The token must be unforgeable to
prevent the adversary from stealing the token of an honest node
(unless the node is compromised). Our initial design of SybilGuard
used a node’s IP address as its token and the node simply registered
its IP address. This design assumed no IP spoofing, and was mainly
suited for users with static or slowly changing IP addresses.

Our current design of SybilGuard uses public key cryptography
for the tokens. This improved design does not rely on the stability
of IP addresses, and is secure even under IP spoofing. Each honest
node has a locally generated public/private key pair. Notice that
these public and private keys have no connection with the edge keys
(which are secret symmetric keys). Malicious nodes may create

as many public/private key pairs as they wish. We use the private
key of each node as the unforgeable token, while the public key
is registered along the random routes as a proof of owning the
token. Note that we do not intend or need to solve the public key
distribution problem, because we are not concerned with associating
public keys to, for example, human beings or computers. The only
property SybilGuard relies on is that the private key is unforgeable
and its possession can be verified. To perform the registration in
a secure and completely decentralized manner, SybilGuard uses
registry tables and witness tables, as described next.

Registry tables. Each node I maintains a registry table for each
of its edges (Figure 6). The ith entry in the registry table for edge
e lists the public key of the node whose random route enters I
along e at its ith hop. For example, consider the registry table
on C for edge e3 in Figure 6. Here, one of B’s random routes is
B → (via edge e3)C → (via edge e4)D. In other words, in the first
hop of this random route, B enters C via edge e3. Thus the first entry
in the registry table is B’s public key. Similarly, the second entry
is A’s public key. As a result, the registry table has w entries that
are the public keys of the w “upstream” nodes along the direction of
edge e3 from C.

Suppose that according to C’s routing table, e4 is the outgoing
direction corresponding to e3 (as in Figure 6). C will forward its
registry table for e3 to its neighbor D along e4, via a secure channel
established using the edge key for e4. D then populates its registry
table for e4 by shifting the registry table from C downward by one
entry and adding C’s public key as the new first entry.

As shown in Figure 6, this simple design will ultimately register
each node’s public key with all nodes on its d random routes. The
protocol does not have to proceed in synchronous rounds, and nodes
in the system may start with empty registry tables. The overhead
of the protocol is small as well. Even with one million nodes, if
we were to use w = 2000 (already pessimistic given our simulation
results), then a registry table is roughly 256KB when using 1024-bit
public keys. For a node with 10 neighbors, the total data sent is
2.56MB. A further optimization is to store cryptographically secure
hashes of the public keys in the registry table instead of the actual
public keys. With each hashed key being 160-bit, the total data sent
by each node would be roughly 400KB. Finally, it is important to
notice that registry table updates are needed only when social trust
relationships change (Section 5). Thus, we expect the bandwidth
consumption to be quite acceptable.

Witness tables. Registry tables ensure that each node registers with
the nodes on its random routes. Each node, on the other hand, also
needs to know the set of nodes that are on its random routes. This
is achieved by each node maintaining a witness table for each of
its edges. The ith entry in the table contains the public key (or its
hash, if we use the above optimization) and the IP address of the
node encountered at the ith hop of the random route along the edge.
The public key will later be used for intersection and authentication
purposes, while the IP address will be used as a hint to find the node.
If the IP address is stale or wrong, it will have the same effect as
the intersection node being offline. (Offline nodes are addressed in
Section 5.1.)

The witness table is propagated and updated in a similar fashion
as the registry table, except that it propagates “backward” (using the
reverse of the routing table). In this way, a node will know the w
“downstream” nodes along the direction of each of its edges, which
is exactly the set of nodes that are on its random routes. Different
from registry tables, witness tables should be updated when a node’s
IP address changes (even with a static social network). But this
updating can be done lazily, given the optimizations described below
in the verification process.

272

Verification process. For a node V to verify a node S, V needs to
perform an intersection between each of its random routes and all of
S’s random routes. To do this, S sends all of its witness tables to V ,
together with S’s public key. The communication overhead in this
step can be reduced using standard optimizations such as Bloom
Filters [14] to summarize the nodes in witness tables.

For each of V ’s witness tables, V performs an intersection with
all of S’s tables, and determines the (hashed) public key of the first
intersection point X (if any) on V ’s route. V then contacts X using
the recorded IP address in the witness table as a hint. V authenticates
X by requiring X to sign each message sent, using its private key. If
hashed keys are used, X also sends its public key, which V hashes
and compares with the stored hash, before authenticating X . If X
cannot be found using the recorded IP address, V will try to obtain
X’s IP address from nearby nodes in the witness table. They will
likely have X’s more up-to-date IP address because they are near X .
Because V will always authenticate X based on X’s public key, this
does not introduce a vulnerability.

V then checks with X whether S’s public key is indeed present in
one of X’s registry tables. The entry number is not relevant. If it
is present, then that route from V accepts S. If at least half of V ’s
routes accept S, V accepts S (i.e., S’s public key). Finally, when
interacting with S, V always authenticates S by requiring S to sign
every message sent, using its private key.

Key revocation. A node can easily revoke its old public/private key
pair by unilaterally switching to a new public/private key pair, and
then using the new public key in its registry table and witness table
propagation. The old public key in registry and witness tables will
be overwritten by the new public key.

Sybil nodes. We described the protocol for the case where all nodes
behave honestly. A sybil node may not follow the protocol and
may arbitrarily manipulate the registry tables and witness tables.
SybilGuard is still secure against such attacks. To understand why
and obtain intuition, it helps to consider the set of all registry table
entries on all honest nodes in the system. For simplicity, assume that
all honest nodes have the same degree d. Thus there are altogether,
n ·d ·w registry table entries in the system.

Consider a malicious node M and a single attack edge connecting
an honest node A with M. Clearly, M can propagate to A an arbi-
trary registry table, thus polluting the w entries in A’s registry table.
Suppose A next forwards the registry table to B, who shifts the table
downward and adds A as the first entry. Thus w−1 entries in B’s
registry table are polluted. Continuing this argument, we see that a
single attack edge enables M to control w+(w−1)+ . . .+1≈w2/2
entries system-wide. With g attack edges and even when gw ap-
proaches n, the total number of polluted entries (gw2/2) is still less
than half of the total number of entries (n · d ·w). This provides
some intuition why the number of accepted sybil nodes is properly
bounded even though the adversary may not follow the SybilGuard
protocol.

4.6 Designing the Length of Random Routes
A critical design choice in SybilGuard is w, the length of the random
routes. The value of w must be sufficiently small to ensure that
(i) a verifier’s random route remains entirely within the honest
region with high probability; and (ii) the size of sybil groups is not
excessively large. On the other hand, w must be sufficiently large to
ensure that routes will intersect with high probability.

In the following, we provide some analytical assurance that hav-
ing w = Θ(

√
n logn) will likely satisfy the above requirements si-

multaneously. Our results are for random walks instead of the
random routes used in SybilGuard—considering random walks al-
lows us to leverage the well-established theory on such walks. Our

full paper [27] explains how these results likely apply to random
routes, which will be further confirmed in our later experiments.

We first study the probability that a random walk starting from a
random honest node enters the sybil region of the topology.

THEOREM 1. For any connected and non-bipartite social net-
work, the probability that a length-w random walk starting from
a uniformly random honest node will ever traverse any of the
g attack edges is upper bounded by gw/n. In particular, when
w = Θ(

√
n logn) and g = o(

√
n/ logn), this probability is o(1).

We leave the proof to our full paper [27]. The condition of “con-
nected and non-bipartite” on the social network serves to exclude
theoretical corner cases. As long as the network has any cycle with
an odd number of edges, the network is non-bipartite. The actual
likelihood, as shown in our later experiments, is much better than
the above pessimistic theoretical bound of gw/n.

We should point out that the above theorem provides only an
“average” guarantee for all honest nodes. Those honest nodes that
are closer to attack edges are likely to have a larger probability of
walking into the sybil region. Our later simulation results, however,
will show that using the redundancy techniques from Section 4.4
will give most nodes a high probability of success.

The next property we would like to show is that w = Θ(
√

n logn)
is likely to be sufficiently large for routes from an honest verifier
and an honest suspect to intersect with high probability. Such a
property for random walks has been rigorously proved [3, 15] in
several other contexts, and thus we only give a high-level review.
First, we need to provide some informal background. With a length-
w random walk, clearly the distribution of the ending point of the
walk depends on the starting point. However, for connected and non-
bipartite graphs, the ending point distribution becomes independent
of the starting point when w → ∞. This distribution is called the
stationary distribution of the graph. The mixing time T of a graph
quantifies how fast the ending point of a random walk approach the
stationary distribution. In other words, after Θ(T) steps, the node
on the random walk becomes roughly independent of the starting
point. If T = Θ(logn), the graph is called fast mixing.

Many randomly-grown topologies are fast mixing, including so-
cial networks (or more specifically, small-world topologies) [6, 11].
Thus, a walk of Θ(

√
n logn) steps contains Θ(

√
n) independent

samples drawn roughly from the stationary distribution. When the
verifier’s and the suspect’s walks remain in the honest region, both
walks draw Θ(

√
n) independent samples from roughly the same dis-

tribution. It follows from the generalized Birthday Paradox [3,15]
that they intersect with probability 1−o(1).

4.7 Locally Determining the Appropriate
Length of Random Routes

Because SybilGuard is decentralized, each node needs to locally
determine w. Directly setting w = Θ(

√
n logn) requires the knowl-

edge of n. This is challenging because we must exclude sybil nodes
when estimating n, which requires running SybilGuard with an
appropriate w.

Instead, to locally determine w, a node A first performs a short
random walk (e.g., 10 hops), ending at some node B. Because the
random walk is short, with high probability, it stays in the honest
region and B is an honest node. Next A and B conceptually both
perform random routes to determine how long the two routes need to
be to intersect. In practice, A and B should have already performed
random routes along all directions, thus B simply needs to hand over
one of its witness tables to A. It is important here to use a standard
random walk (instead of a random route) to choose B, otherwise A’s
random route will always intersect with B within a small number of

273

hops. Also, our later simulation will show that even a walk as short
as 3 hops suffices to obtain good estimations on w in a million-node
social network.

The intuition behind the above design is that in fast mixing graphs,
a random walk of short length is sufficient to approach the stationary
distribution. Thus, B is just a random node drawn from the station-
ary distribution, and the procedure yields a random sampling of w.
The sampling, however, is biased because the stationary distribution
is not necessarily a uniform distribution and B is more likely to be a
higher-degree node than a lower-degree node. On the other hand,
notice that if we start a random walk from a uniformly random node
C, then after Θ(T) steps (T being the mixing time), the walk will be
at a node roughly drawn from the stationary distribution. Thus the
needed route length for two routes (starting from A and C, respec-
tively) to intersect is at most Θ(T)+w. Since w = Θ(

√
n logn) and

T = Θ(logn), we can safely ignore the term of Θ(T), which will be
further confirmed in our later experiments.

Finally, node A obtains multiple such samples using the above
procedure, and calculates the median m of the samples (see Section 6
for the number of samples needed). It then sets w = 2.1m, where
the constant 2.1 is derived from our analysis of Birthday Paradox
distributions [27]. The analysis proves that multiplying the median
by 2.1 is sufficient to ensure a collision probability of 95%, regard-
less of n. Note that when B is itself a sybil node or the random route
from either A or B enters the sybil region, the adversary controls
that particular sample. Thus, using the median sample to estimate w
is much more robust than directly using the 95th percentile.

5. SYBILGUARD UNDER DYNAMICS
Our protocol so far assumes that the social network is static. In
decentralized distributed systems, a typical user first downloads
and installs the software (i.e., the user is created). The node cor-
responding to the user may then freely join or leave the system
(i.e., become online and offline) many times. Finally, the user may
decide to uninstall the software and never use it again (i.e., the user
is deleted). Node join/leave tends to be much more frequent than
user creation/deletion. For example, dealing with frequent node
join/leave (or “churn”) is often a critical problem faced by DHTs.

SybilGuard is designed such that it needs to respond only to user
creation/deletion, and not to node churn. The social network in this
paper always includes all users/nodes that have been created and not
yet deleted. In other words, many of the nodes in the graph can be
offline at any given time.

5.1 Dealing with Offline Nodes
In SybilGuard, a node communicates with other nodes only when
(i) it tries to verify another node, and hence needs to contact the
intersection nodes of the random routes, and (ii) it propagates its
registry and witness tables to its neighbors.

For the first scenario, because both the verifier V and the suspect
S perform multiple random routes (Section 4.4), there will likely
be multiple intersections. In fact, even a single route from V and
a single route from S may still have multiple intersections. The
verification can be done as long as a majority of V ’s routes have at
least one intersection point online.

For propagating registry and witness tables, note that this occurs
when a random route changes, due to user creation/deletion or edge
creation/deletion in the social network. Witness table propagation
may also be needed when IP addresses change, but such updating can
be performed lazily (Section 4.5). Previous studies [5] on p2p sys-
tems show that despite high node churn rate, user creation/deletion
occurs only infrequently and the average user lifetime is roughly a

e1e2 e1 e2 e3

e2 e3 e1

after e4 is
added

original
routing table

(e1, e2, e3)
of 3 edges

i.e., (2, 3, 1)

e1e2 e1 e2 e3 e4

e4 e3 i.e., (2, 4, 1, 3)
e2 e4 e1 e3

e3

Figure 7: Incremental maintenance of routing tables. The ex-
ample assumes that d = 3 and k = 2. Note that after edge e4 is
added, only routes entering via edge e2 need to be redirected.

year. Similarly, people make and lose social trust relations in real
life over months-long time horizons. Thus, the system can afford to
take days to completely propagate a new registry or witness table,
waiting for nodes to come online. In the case of a new user, prior
to becoming a full participant, she can always use the system via a
friend as a proxy. As an optimization, a simple lookahead routing
table design [27] may further help to bypass some offline nodes. For
a given node and a given edge adjacent to the node, the lookahead
routing table (established in a secure way) records which nodes the
route should traverse on the next k hops.

In the process of propagating/updating registry and witness tables,
the social network may change again. Thus, it is helpful to consider
it as a decentralized, background stabilization process. This means
that if the topology were to stop changing, then the registry and
witness tables would eventually stabilize to a consistent state for
this (now static) topology.

5.2 Incremental Routing Table Maintenance
When users and edges are added or deleted in the social network,
the routing tables must be updated as well. Adding a new node
can be considered as first adding a node with no edges and then
successively adding its edges one by one. Deleting a node can be
considered similarly. Thus we only need to discuss edge creation
and deletion.

We first explain how A updates its routing table when a new edge
is added between A and B. Suppose A’s original degree is d and its
original routing table is the permutation “x1,x2, . . . ,xd”. A trivial
way to update A’s routing table would be to pick a new random
permutation of “1,2, . . . ,d,d +1” that is unrelated to “x1,x2, . . . ,xd”.
Doing so, however, would affect/redirect many routes, and incur
unnecessary overhead in updating registry and witness tables.

Instead, SybilGuard uses an incremental maintenance algorithm
where only routes entering A along a specific edge may be affected
(Figure 7). This reduces the expected overhead on the network
by a factor of almost d. In this algorithm, when a new edge is
added to A, A chooses a uniformly random integer k between 1 and
d + 1, inclusive. If k = d + 1, then A’s new routing table will be
“x1,x2, . . . ,xd ,d + 1”. If 1 ≤ k ≤ d, A’s new routing table will be
“x1,x2, . . . ,xk−1,d +1,xk+1, . . . ,xd ,xk”. In other words, we replace
xk (if exists) with d+1, and then append xk to the end of the permuta-
tion. Similarly, for edge deletion, suppose A’s original routing table
is “x1,x2, . . . ,xd ,xd+1”. Without loss of generality, assume that we
are deleting edge d +1, and let k be such that xk = d +1. If k = d +1,
then A’s new routing table is trivially “x1,x2, . . . ,xd”. Otherwise the
new routing table will be “x1,x2, . . . ,xk−1,xd+1,xk+1, . . . ,xd”. In
other words, we simply substitute xk with xd+1. For both insertion
and deletion, only routes entering A via edge k are affected, and one

274

MABC

D

A MBC

E

key1 key1 key1 key1 key1 key2

key2

key2
after D is added:
M uses key2

before D is added:
M uses key1

Figure 8: A potential attack by M during node dynamics.

can prove [27] that the resulting routing table is indeed a uniformly
random permutation.

5.3 Attacks Exploiting Node Dynamics
This section shows that performing random routes along all direc-
tions (Section 4.4) actually is necessary for security and provides
a defense against potential attacks under node dynamics. We first
explain the potential attack scenario. Suppose each node were to
perform only a single random route, and consider the example in
Figure 8, where w = 3. Here M is malicious and the other nodes are
honest. M’s random route is M → A → B →C. Thus A, B, and C
record M’s public key key1 in their registry tables. Now another hon-
est node D joins, and establishes edges with A and E. A updates its
routing table, and suppose that routes from M now go to D instead
of B. Being malicious, M launches the attack by changing its public
key to key2. Now A, D, and E will record key2 in their registry
tables. At this point, key1 is registered on w−1 nodes, while key2
is registered on w nodes. Both of them are likely to be successfully
verified with good probability.

The source of the above vulnerability is that when the routing
table on A changes, the system needs to “revoke” the stale entry
of key1 from the registry tables on B and C, because M’s random
route no longer passes through these nodes. Explicitly revoking
stale entries would introduce considerable complexity because B
and C may be offline. An alternative design would be to associate
TTLs with table entries, which unavoidably introduces a trade-off
between security and overheads to refresh expired entries.

SybilGuard prevents the above attack by having all nodes perform
random routes along all directions. In particular, if D (with key3) has
a random route of D → A → B →C, then key3 will overwrite M’s
key1. It is also possible that D’s route may not be D → A → B →C.
However, it is easy to show that the stale entries will always be
overwritten by some node. To understand why, suppose that an entry
in B’s registry table indicates that B is the ith hop in the random route
of M. If this entry is stale, it means that B is no longer the ith hop in
M’s route. From the back-traceable property of random routes, there
must exist another node F somewhere, such that one of F’s routes
visits B at the ith hop. Thus F’s public key will overwrite the stale
entry on B. In other words, the back-traceable property ensures that
for any registry table entry, there is one and exactly one “owner”.
Under node dynamics, ownership may change and there may be
temporary periods where a malicious user “owns” more entries than
it should. However, after the system stabilizes, all entries will be
“owned” by the right owner. Based on such observations, we can
easily see that other similar attacks under node dynamics will be
prevented by SybilGuard as well.

6. EVALUATION
This section uses simulation to evaluate the guarantees of Sybil-
Guard. We choose to use simulation because it enables us to study
large-scale systems. Because social networks tend to contain private
information, there are only a limited number of publicly available

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500P
ro

b[
ha

ve
 g

iv
en

 #
 o

f i
nt

er
se

ct
]

Length of random routes

with redundancy (>= 10)
no redundancy (>= 1)

no redundancy (>= 10)

Figure 9: Probability of intersection. The legend “with redun-
dancy” means that each node performs random routes along all
directions, while “no redundancy” means performing a single
random route. The legend “(>= x)” means that we are consid-
ering the probability of having at least x distinct intersections.
SybilGuard corresponds to “with redundancy (>= 10)”.

social network datasets. Those that are publicly available [2,1] are
quite small, which prevents a thorough evaluation of probabilistic
guarantees. Thus we use the widely accepted Kleinberg’s synthetic
social network model [12] in our evaluation, which generalizes from
the Watts-Strogatz model [25]. We use the model to instantiate three
different graphs: a million-node graph with average node degree of
24, a 10000-node graph with average degree of 24, and a 100-node
graph with average degree of 12. For space limitations, we leave
to [27] a review of the model and the detailed parameters. We also
focus on the million-node graph, and present only summary results
for the other two graphs. All results below are for the million-node
graph unless otherwise mentioned.

6.1 Results with No Malicious Users
We start by studying the basic behavior of SybilGuard when there are
no malicious users. Without malicious users, the only property we
are concerned with is whether an honest verifier accepts an honest
suspect. This is affected by: (i) whether the random routes from the
two nodes intersect; (ii) whether the random routes from the two
nodes are loops (which will decrease the chance of intersection);
(iii) whether there is at least one intersection node online; and (iv)
whether the needed length of random routes is properly estimated.

Probability of random routes being loops. As discussed in Sec-
tion 4.4, if a random route becomes a loop, then its effective length
is reduced. Our simulation shows that 99.3% of the routes do not
form loops in their first 2500 hops (while later we will show that the
needed length of the routes is below 2000). Furthermore, with the
redundancy technique in Section 4.4, all the nodes in our simulation
have at least one route that is not a loop within their first 2500 hops.
For the 10000-node topology, 99.7% of the routes do not form loops
in their first 200 hops, which is above the needed route length. For
the 100-node topology, 90% of the routes do not form loops in the
first 50 hops, which is again above the needed route length.

As the results show that loops are quite rare, and also because they
only impact effectiveness rather than security, we will not investigate
them further. In all our results below, we do not distinguish loops
from non-loops, and thus all the results will already capture the
impact of random routes being loops.

Probability of an honest node being successfully accepted. We
move on to study the probability of the verifier V accepting the
suspect S. For V to accept S, their routes must intersect and at least
one intersection must be online. We do not directly model nodes

275

 0
 0.005
 0.01

 0.015
 0.02

 0.025

300020001000

Fr
ac

tio
n

Number of hops before first intersection

uniformly random

 0
 0.005
 0.01

 0.015
 0.02

 0.025

300020001000

Fr
ac

tio
n

Number of hops before first intersection

3-hops away

Figure 10: Probability distribution histogram for the number of hops needed before the first intersection.

being online or offline. Rather, we assume that as long as there are
at least 10 intersections, the verification succeeds. Note that even
when nodes are online only 20% of the time, the probability that at
least one out of 10 intersections is online is already roughly 90%.

Figure 9 plots the probability of V successfully accepting S, as
a function of w (length of the random routes). For better under-
standing, we also include in Figure 9 two other curves for the cases
where each node performs a single random route, and seeks either at
least 1 or 10 intersections. The results show that in a million-node
social network, even having a w as small as 300 yields a 99.96%
probability of having at least 10 intersections. On the other hand, if
we do not exploit redundancy, the needed length will be much larger.
For our 10000-node topology, w = 30 yields a 99.29% probability of
having at least 10 intersections. For the 100-node topology, w = 15
gives us a probability of 99.97%.

Estimating the needed length of the routes w. In SybilGuard,
each node infers the needed length of the routes using the sampling
technique described in Section 4.7. Using this technique, a node A
first performs a short random walk ending at some node B. Then A
and B both perform random routes to determine how long the routes
need to be in order to intersect. Such estimation would be entirely
accurate if (i) B were chosen uniformly randomly from all nodes in
the system; and (ii) the number of samples were infinite. In practice,
however, neither condition holds.

To gain insight into the impact of B not actually being a uniformly
random node, Figure 10 depicts the distribution of the number of
hops before intersection, comparing the case when B is chosen
uniformly at random to the case when B is chosen using a 3-hop
random walk from A. As the figure shows, the two distributions
are quite similar. This will help to explain later the small impact
of B not being uniformly random. Based on the distribution when
B is chosen uniformly at random, we obtain an accurate w of 1906
needed for 95% of the pairs to intersect. This value of 1906 will be
used as a comparison with SybilGuard’s estimated w.

To understand the error introduced by having only a finite number
of samples, we study how the estimated w fluctuates and approaches
1906 as a node takes more and more samples. This experiment is
repeated from multiple different nodes. In all cases, we observe that
the estimated w always falls within 1906± 300 after 30 samples.
While after 100 samples, the estimated w always falls within 1906±
150. These results show that the estimated w is accurate enough
even after a small number of samples. Even with only 30 samples
and a worst case estimated w of 1606, Figure 9 still shows a close-to-
100% intersection probability when using redundancy. On the other
hand, because taking each sample only involves a 3-hop random
walk and the transfer of a witness table, the overhead is quite small.
Finally, since the number of users n changes slowly and w changes
roughly proportionally to

√
n logn, we do not expect w to change

rapidly. Thus a node needs only to re-estimate w, for example, on

a daily basis. For our 10000-node topology, the accurate w is 197,
and the estimated w falls within 197±30 after 35 samples. For the
100-node topology, the accurate w is 24, and the estimated w falls
within 24±7 after 40 samples.

6.2 Results with Sybil Attackers
Next we study the behavior of SybilGuard when there are malicious
users. In most security research, the term “malicious user” typically
refer to a single malicious user who does not assume additional
identities. In this paper, however, malicious users refer to powerful
attackers who have the sophistication and computation power to
launch sybil attacks. For clarity, we use “sybil attackers” to refer
to these users in our evaluation. Each of these sybil attackers can
potentially create an unlimited number of “malicious users”.

Sybil attackers influence the system by creating attack edges.
There are clearly many possibilities regarding where the attack edges
are in the graph, and we consider two extremes in our experiments.
In random, we repeatedly pick uniformly random nodes in the graph
as sybil attackers, until the total number of attack edges reaches a
certain value. In cluster, we start from a “seed” node and perform
a breadth-first search from the seed. Nodes encountered are marked
as sybil attackers, until the total number of attack edges reaches a
certain value. All our results below are based on random placement,
unless explicitly mentioned. We have obtained all corresponding
results for cluster as well, which are always slightly better but the
difference is usually negligible. The reason for better results under
cluster is that the random routes are more likely to cross attack
edges under random.

For our experiments based on the million-node graph, we vary
the number of attack edges g from 0 to 2500. When g = 2500, there
are roughly 100 nodes marked as sybil attackers. It is crucial to
understand that just having 100 sybil attackers in the system will not
necessarily result in 2500 attack edges—on average, each attacker
must be able to convince 25 real human beings to be his friend. The
hardness of creating these social links is what SybilGuard relies on.

In the presence of sybil attackers, we are concerned with several
measures of “goodness”: (i) the probability that an honest node
accepts more than g ·w sybil nodes; (ii) the probability that an
honest node accepts another honest node; and (iii) the impact of
sybil nodes on estimating w.

Probability of an honest node accepting more than g ·w sybil
nodes. Routes from an honest verifier V may enter the sybil region,
and the adversary can then direct the routes to intersect with the
routes of all sybil nodes. As explained in Section 4.4, SybilGuard
uses redundant routes and majority voting to limit the influence
of such problematic routes. The curve labeled “majority routes”
in Figure 11 shows the probability that the majority of an honest
node’s routes remain entirely in the honest region. Here we use
w = 1906 as obtained before (the same is true for all the following

276

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500

P
ro

ba
bi

lit
y

Number of attack edges

majority routes
single route

Figure 11: Probability of routes remaining entirely within the
honest region.

experiments). If a majority of the routes are in the honest region,
then the remaining routes will not constitute a majority, and the
adversary will not be able to fool the node into accepting more than
g ·w sybil nodes. As we can see from the figure, the probability
is always almost 100% before g = 2000, and only drops to 99.8%
when g = 2500. This means that even with 2500 attack edges, only
0.2% of the nodes are not protected by SybilGuard. These are
mostly nodes adjacent to multiple attack edges. In some sense, these
nodes are “paying the price” for being friends of sybil attackers. For
the 10000-node topology and the 100-node topology, g = 204 and
g = 11 will result in 0.4% and 5.1% nodes unprotected, respectively.
For better understanding, Figure 11 also includes a second curve
showing the probability of a single route remaining entirely in the
honest region.

Probability of an honest node being successfully accepted. In
the presence of sybil nodes, the probability that an honest verifier
V accepts another honest suspect S decreases. First, the routes
from S may enter the sybil region, and the adversary can prevent
these routes from intersecting with V ’s routes. The same is true
for V ’s routes. Second, the presence of sybil nodes necessitates
the technique of majority voting as in Section 4.4. This means that
among the d routes from V , at least d/2 routes need to successfully
accept S before V can accept S.

To capture the worst case scenario, here we will assume that
after a route (from V or S) enters the sybil region, the rest of the
route can no longer be used for verification/intersection. In some
sense, the presence of sybil nodes “prunes” the routes. As in Sec-
tion 6.1, we assume that a “pruned” route from V accepts S if it has
at least 10 distinct intersections with S’s “pruned” routes. Finally, V
successfully accepts S if a majority of V ’s routes accept S.

Figure 12 presents the probability of V accepting S, as a function
of the number of attack edges g. This probability is still 99.8% with
2500 attack edges, which is quite satisfactory. The case without
using redundancy is much worse (even if we seek only a single
intersection), demonstrating that exploiting redundancy is necessary.
For our 10000-node topology and 100-node topology, g = 204 and
g = 11 give probabilities of 99.6% and 87.7%, respectively. Notice
that a 87.7% probability does not mean that 12.3% of the nodes will
not be accepted by the system. It only means that given a verifier,
12.3% of the nodes will not be accepted by that verifier. Each honest
node, on average, should still be accepted by 87.7% of the honest
nodes (verifiers).

Estimating the needed length of the routes w. The final set of
experiments seeks to quantify the impact of sybil nodes on the
estimated w. Recall that to estimate w, a node A performs a short
(3-hop in our experiments) random walk ending at some node B.
A and B then both perform random routes to determine when the
two routes intersect, which is used as a sample. The sample taken
is bad (i.e., potentially influenced by the adversary) if any of the

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500

P
ro

ba
bi

lit
y

Number of attack edges

with redundancy (>= 10)
no redundancy (>= 1)

Figure 12: Probability of an honest node accepting another
honest node (i.e., having at least a target number of intersec-
tions). The legends are the same as in Figure 9, and SybilGuard
corresponds to “with redundancy (>= 10)”.

two routes or the short random walk enters the sybil region. Our
simulation shows that the probability of obtaining bad samples
roughly increases linearly with the number of attack edges g. Even
when g reaches 2500, the fraction of bad samples is still below 20%.
Since our estimation uses the median of the samples, these 20%
bad samples will have only limited influence on the estimate for w.
For our 10000-node topology and 100-node topology, the fraction
of bad samples is always below 20% when g ≤ 204 and g ≤ 11,
respectively.

7. RELATED WORK
The sybil attack [9] is a powerful threat faced by any decentralized
distributed system (such as a p2p system) that has no central, trusted
authority to vouch for a one-to-one correspondence between users
and identities. As mentioned in Section 1, the first investigation [9]
into sybil attacks already proved a series of negative results.

Bazzi and Konjevod [4] proposed using network coordinates [17]
to foil sybil attacks, and a similar idea has also been explored for
sensor networks [21]. The scheme relies on the assumption that a
malicious user can have only one network position, defined in terms
of its minimum latency to a set of beacons. However, with network
coordinates in a d-dimensional space, an adversary controlling more
that d malicious nodes at d different network positions can fabricate
an arbitrary number of network coordinates, and thus break the
defense in [4]. This is problematic because d is usually a small
number (e.g., < 10) in practice. Moreover, a solution based on
network coordinates fundamentally can only bound the number of
sybil groups and not the size of the sybil groups.

Danezis et al. [8] proposed a scheme for making DHT lookups
more resilient to sybil attacks. The scheme leverages the bootstrap
tree of the DHT, where two nodes share an edge if one node intro-
duced the other into the DHT. The insight is that sybil nodes will
attach to the rest of the tree only at a limited number of nodes (or
attack edges in our terminology). One can imagine defining a similar
notion of equivalence groups here, which correspond to subtrees.
The scheme can then properly bound the number of sybil groups.
In comparison, SybilGuard exploits the graph property in social
networks instead of the bootstrap tree, which helps to achieve much
stronger properties. First, SybilGuard is able to further bound the
size of sybil groups, which is not possible based on bootstrap trees.
As a result, even with a single attack edge, the results in [8] deterio-
rate as the adversary creates more and more sybil nodes. Second,
SybilGuard guarantees roughly

√
n equivalence groups to ensure

sufficient diversity. A bootstrap tree can be in any shape and thus the
number of equivalence groups can be rather small. Third, the sizes
of different equivalence groups in SybilGuard are roughly the same.
In the bootstrap tree approach the sizes can be quite different, which

277

can lead to significant load imbalance. Finally, compromising even
a single node in the bootstrap tree will disconnect the tree, breaking
the assumption of the scheme.

Sybil attacks in sensor networks. Sybil attacks have also been
studied for sensor networks [16]. The solutions there, such as radio
resource testing and random key predistribution, unfortunately do
not apply to distributed systems in the wide-area. A sybil-related
attack in sensor networks is the node replication attack [18], where a
single compromised sensor is replicated indefinitely, by loading the
node’s cryptographic information into multiple generic sensor nodes.
All these replicated nodes have the same ID (e.g., they all have to
use the same secret key issued to the compromised sensor). The
solution [18], which is based on simple random walk intersection,
does not extend to sybil attacks because the sybil nodes do not
necessarily share a single, verifiable ID.

Sybil attacks in reputation systems. In a reputation system, each
user has a rating describing how well the user behaves. For example,
eBay ratings are based on users’ previous transactions with other
users. Sybil attacks can create a large number of sybil nodes that
collude to artificially increase a user’s rating. Known defenses
[7, 10, 20] against such attacks aim at preventing the sybil nodes
from boosting a malicious user’s rating (and attracting buyers, in the
case of eBay). They cannot and do not aim to control the number
or size of sybil groups. All the sybil nodes are able to obtain the
same rating/reputation as the malicious user. Thus the sybil attack
problem in reputation systems is fundamentally different from the
one solved by SybilGuard.

In some other reputation systems such as Credence [24], users
cast votes regarding the validity of shared files. The votes are then
combined using a weighted average based on the ratings of the user.
Sybil nodes are able to dramatically influence the average (even
when applying the techniques from [7]), and thus Credence relies
on a central authority to limit sybil nodes [24].

Trust networks and random walks. The social network in Sybil-
Guard is one kind of trust network. Many previous works [7, 10, 24]
use trust networks that are based on past successful transactions or
demonstrated shared interest between users. The trust associated
with our social network is much stronger, which is essential to the
effectiveness of SybilGuard. Such a strong-trust social network is
also leveraged by LOCKSS [13], where the verifier accepts all its
direct social friends, as well as a proportional number of other nodes.
The total number of nodes accepted (proportional to the degree of
the verifier) can be orders of magnitude smaller than the system
size. Because a node can only accept and thus use a limited number
of other nodes in the system, LOCKSS is more suited for specific
application scenarios such as digital library maintenance.

Trust propagation or transitive trust is a technique that researchers
often use on trust networks [7, 10, 20, 24]. SybilGuard is more
related to exploiting graph properties rather than trust propagation.
Random walks have also been used to infer worm origin [26] by
identifying nodes with a small number of incoming messages but
with a large number of outgoing flows. Such techniques are not,
however, applicable or related to sybil attacks.

8. CONCLUSION
This paper presented SybilGuard, a novel decentralized protocol
for limiting the corruptive influences of sybil attacks, by bounding
both the number and size of sybil groups. SybilGuard relies on
properties of the users’ underlying social network, namely that (i)
the honest region of the network is fast mixing, and (ii) malicious
users may create many nodes but relatively few attack edges. In
all our simulation experiments with one million nodes, SybilGuard

ensured that (i) the number and size of sybil groups are properly
bounded for 99.8% of the honest users, and (ii) an honest node
can accept, and be accepted by, 99.8% of all other honest nodes.
Currently we are working on obtaining real social network data to
further validate SybilGuard.

9. ACKNOWLEDGMENTS
We thank David Andersen, Michael Freedman, Petros Maniatis,
Adrian Perrig, Srinivasan Seshan, and the anonymous reviewers for
many helpful comments on the paper.

10. REFERENCES
[1] Center for Computational Analysis of Social and Organizational Systems

(CASOS), 2006.
http://www.casos.cs.cmu.edu/computational tools/data.php.

[2] International Network for Social Network Analysis, 2006.
http://www.insna.org/INSNA/data inf.htm.

[3] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic systems. In
DISC, 2003.

[4] R. Bazzi and G. Konjevod. On the establishment of distinct identities in overlay
networks. In ACM PODC, 2005.

[5] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless
distributed file system deployed on an existing set of desktop PCs. In ACM
SIGMETRICS, 2000.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design,
analysis and applications. In IEEE INFOCOM, 2005.

[7] A. Cheng and E. Friedman. Sybilproof reputation mechanisms. In ACM
SIGCOMM Workshop on Economics of Peer-to-Peer Systems, 2005.

[8] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson.
Sybil-resistant DHT routing. In European Symposium On Research In
Computer Security, 2005.

[9] J. Douceur. The Sybil attack. In IPTPS, 2002.

[10] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for
peer-to-peer networks. In ACM Electronic Commerce, 2004.

[11] A. D. Flaxman. Expansion and lack thereof in randomly perturbed graphs.
Manuscript under submission, 2006.

[12] J. Kleinberg. The small-world phenomenon: An algorithm perspective. In
STOC, 2000.

[13] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, and M. Baker. The
LOCKSS peer-to-peer digital preservation system. ACM TOCS, 23(1), 2005.

[14] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge
University Press, 2005.

[15] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. Marsh. Efficient lookup on
unstructured topologies. In ACM PODC, 2005.

[16] J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil attack in sensor
networks: Analysis & defenses. In ACM/IEEE IPSN, 2004.

[17] T. S. E. Ng and H. Zhang. Predicting internet network distance with
coordinates-based approaches. In IEEE INFOCOM, 2002.

[18] B. Parno, A. Perrig, and V. Gligor. Distributed detection of node replication
attacks in sensor networks. In IEEE Symposium on Security and Privacy, 2005.

[19] A. Ramachandran and N. Feamster. Understanding the network-level behavior
of spammers. In ACM SIGCOMM, 2006.

[20] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the
semantic web. In International Semantic Web Conference, 2003.

[21] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In
ACM Workshop on Wireless Security, 2003.

[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In ACM
SIGCOMM, 2001.

[23] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Telling
humans and computers apart. In Eurocrypt, 2003.

[24] K. Walsh and E. G. Sirer. Experience with an object reputation system for
peer-to-peer filesharing. In USENIX NSDI, 2006.

[25] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393(6684), 1998.

[26] Y. Xie, V. Sekar, D. Maltz, M. Reiter, and H. Zhang. Worm origin identification
using random moonwalks. In IEEE Symposium on Security and Privacy, 2005.

[27] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. SybilGuard: Defending
against sybil attacks via social networks. Technical Report IRP-TR-06-01, Intel
Research Pittsburgh, June 2006. Also available at
http://www.cs.cmu.edu/∼yhf/sybilguard-tr.pdf.

278

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

