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Abstract

We study a random graph Gn that combines certain aspects of geometric ran-
dom graphs and preferential attachment graphs. This model yields a graph with
power-law degree distribution where the expansion property depends on a tunable
parameter of the model.

The vertices of Gn are n sequentially generated points x1, x2, . . . , xn chosen
uniformly at random from the unit sphere in R

3. After generating xt, we randomly
connect it to m points from those points in x1, x2, . . . , xt−1.

1 Introduction

During the last decade a large body of research has centered on understanding and
modeling the structure of large-scale networks like the Internet and the World Wide
Web. Several recent books provide a general introduction to this topic [38, 41]. One
important feature identified in early experimental studies (including [4, 13, 23]) is that
the vertex degree distribution of many real-world networks has a heavy-tailed property,
which may follow a power-law (i.e., the proportion of vertices of degree at least k is
proportional to k−α for some constant α). This has driven the investigation of random
graph distributions which generate heavy-tailed degree distributions, including the fixed
degree sequence model, the copying model, and the preferential attachment model.

The preferential attachment model and its derivatives have been particularly popular
for theoretical analysis. Preferential attachment was proposed as a model for real-
world complex networks by Barabási and Albert [5]. The distribution was formalized by
Bollobás and Riordan [10], and in [12] it was proved rigorously that whp a graph chosen
according to this distribution has a power-law degree distribution with complementary
cumulative distribution function (ccdf) Pr[deg(v) ≥ k] = Θ(k−2). By changing the
initial attactiveness or incorporating more random addition and deletion, the power of
the ccdf power-law can be tuned to take any value in the interval (1,∞) [14, 18].

However, there are some significant differences between graphs generated by prefer-
ential attachment and those found in the real world. One major difference is found in
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their expansion properties. Mihail, Papadimitriou, and Saberi [36] showed that whp the
preferential attachment model has conductance bounded below by a constant. On the
other hand, Blandford, Blelloch and Kash [8] found that some WWW related graphs
have smaller separators than the preferential attachment model predicts. This obser-
vation is consistient with observations due to Estrada [20], who found that half of the
real-world networks he looked at were good expanders and the other half were not so
good. The perturbed random graph framework provides one approach to understand-
ing expansion in real-world networks [24], but it does not give a generative procedure.
This paper investigates a generative procedure, based on a geometric modification of
the preferential attachment model, which yields a graph that might or might not be
a good expander, depending on a tunable parameter of the geometry. This is a strict
generalization of the geometric preferential attachment graph developed in [25] which
was designed specifically to avoid being a good expander.

The primary contribution of this paper is to provide a parameterised model that
exhibits a sharp transition between low and high conductance. Choosing this parameter
appropriately provides a unified approach to generating preferential attachment graphs
with and without good expansion processes.

1.1 The random process

In [25] we studied a process which generates a sequence of graphs Gt, t = 1, 2, . . . , n. The
graph Gt = (Vt, Et) has t vertices and mt edges. Here Vt is a subset of t random points on
S, the surface of the sphere in R

3 of radius 1
2
√

π
(so that area(S) = 1). After randomly

choosing xt+1 ∈ S, it is connected, by preferential attachment (i.e. proportional to
degree), to m vertices in Vt among those of distance at most r from xt+1. We showed
that this graph has a power law degree distribution, small seperators and a moderate
diameter. In this paper we provide a “smoothed” version of this model, instead of
choosing proportional to degree among those vertices within distance r of xt+1, the m
neighbors of xt are chosen proportional to degree and some function of the distance to
xt+1.

Let F : R+ → R+. Define

I =

∫

S
F (|u − u0|)du =

1

2

∫ π

x=0
F (x) sinxdx

where u0 is any point in S and 0 ≤ |u − u0| ≤ π is the angular distance from u to u0

along a great circle. Other parameters of the process are m > 0 the number of edges
added in every step and α ≥ 0 a measure of the bias towards self loops.

• Time step 0: To initialize the process, we start with G0 being the Empty
Graph.

• Time step t + 1: We choose vertex xt+1 uniformly at random in S and add it
to Gt. Let

Tt(xt+1) =
∑

v∈Vt

F (|xt+1 − v|) degt(v).
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We add m random edges (xt+1, yi), i = 1, 2, . . . , m incident with xt+1. Here, each
yi is chosen independently from Vt+1 = Vt ∪ {xt+1} (parallel edges and loops are
permitted), such that for each i = 1, . . . , m, for all v ∈ Vt,

Pr(yi = v) =
degt(v)F (|xt+1 − v|)
max (Tt(xt+1), αmIt)

and

Pr(yi = xt+1) = 1 − Tt(xt+1)

max (Tt(xt+1), αmIt)

(When t = 0 we have Pr(yi = x1) = 1.)

For z > 0 we define

Iz =
1

2

∫ z

x=0
F (x) sinx dx and Jz = I − Iz.

Where possible we will illustrate our theorems using the canonical functions:

F0(u) = 1|u|≤r, r ≥ nǫ−1/2.

F1(u) =
1

max{n−δ, u}β
where δ < 1/2.

F2(u) = e−βu β = β(n) ≥ 0.

Notice that F0 corresponds to the model presented in [25]. Also notice that without the
n−δ term in the definition of F1 for β ≥ 2 we would have I = ∞. One can justify its
inclusion (for some value of δ) from the fact that whp the minimum distance between
the points in Vn is greater than 1/n lnn.

Observe that

Iz(F0) =
1

2
(1 − cos(min {z, r})).

Iz(F1) =











βnδ(β−2)

4(β−2) + O(n(β−4)δ + z2−β) z ≥ n−δ, β > 2.

Θ(z2−β) + O(n(β−2)δ) z ≥ n−δ, β < 2

ln(nδz) + O(1) z ≥ n−δ, β = 2

Iz(F2) =
1

2(1 + β2)
(1 − e−βz(cos z + β sin z)).

Let dk(t) denote the number of vertices of degree k at time t and let dk(t) denote
the expectation of dk(t).

We will first prove the following result about the degree distribution and the existence
of small separators:

Theorem 1
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(a) Suppose that α > 2 and in addition that
∫ π

x=0
F (x)2 sinxdx = O(nθI2) (1)

where θ < 1 is a constant.

Then there exists a constant γ1 > 0 such that for all k = k(n) ≥ m,

dk(n) = eϕk(m,α)
(m

k

)1+α
n + O(n1−γ1) (2)

where ϕk(m, α) = O(1) tends to a constant ϕ∞(m, α) as k → ∞.

Furthermore, for n sufficiently large, the random variable dk(n) satisfies the fol-
lowing concentration inequality:

Pr(|dk(n) − dk(n)| ≥ I2nmax{1/2,2/α}+δ) ≤ e−nδ

. (3)

(b) Suppose that α > 0 and m0 ≤ m where m0 is a sufficiently large constant and
ϕ, η = o(1) are such that ηn → ∞ and Jη ≤ ϕI. Then whp, Vn can be partitioned
into T, T̄ such that |T |, |T̄ | ∼ n/2, and there are Õ((η + ϕ)mn) edges between T
and T̄ .

Remark 1 Note that the exponent in (a) does not depend on the particular function F .
F manifests itself only through the error terms.

For Part (a) of the above theorem:

F = F0: θ = 1 − 2ǫ.

F = F1, β > 2: θ = 2δ.

F = F1, β < 2: θ = 0.

F = F1, β = 2: θ = 2δ.

F = F2: θ = 0.

For Part (b) of the above theorem:

F = F0: η = r, ϕ = 0.

F = F1, β > 2: η = n−δ/2, ϕ = O(n−(β−2)δ/2).

F = F1, β = 2: η = ln ln n
ln n , ϕ = O(η).

We now consider the connectivity and diameter of Gn. For this we will place some
more restrictions on F .

Define the parameter ρ(µ) by
Iρ = µI. (4)

As we will see in Theorem 3, F = F1, β < 2 does not fit the hypotheses of part (b) of
this theorem.

We will say that F is smooth (for some value of µ) if
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(S1) F is monotone non-increasing.

(S2) ρ2n ≥ L lnn for some sufficiently large constant L.

(S3) ρ2F (2ρ) ≥ c3I for some c3 which is bounded below.

Theorem 2 Suppose that α > 2 and F is smooth for some constant µ > 0 and m ≥
K lnn for K sufficiently large. Then whp

(a) Gn is connected.

(b) Gn has diameter O(lnn/ρ).

For the above theorem:

F = F0: I ∼ r2/4 and so we can take µ ∼ 1/4, ρ = r/2, c3 ∼ 1.

F = F1, β > 2: I ∼ nδ(β−2)

2(β−2) and so we can take µ ∼ 1/4, ρ = n−δ/2, c3 ∼ (β − 2)/2.

F = F1, β < 2: I = Θ(1) and we can take ρ = 1, µ = Ω(1), c3 = Ω(1).

F = F2: I = Θ(1) and we can take ρ = 1, µ = Ω(1), c3 = Ω(1).

We have a problem fitting the case of F1 with β = 2 into the theorem.
We now consider conditons under which Gn is an expander.
Let F be tame if there exist absolute constants C1, C2 such that

(T1) F (x) ≥ C1 for 0 < x ≤ π.

(T2) I ≤ C2.

We note that F1 with β < 2 is tame since F1(x) ≥ π−β for 0 ≤ π and

I =
1

2

∫ π

x=0
sinxx−βdx ≤ π2−β

2(2 − β)
.

The conductance Φ of Gn is defined by

Φ = min
degn(K)≤mn

Φ(K) = min
degn(K)≤mn

|E(K : K̄)|
degn(K)

.

Theorem 3 If α > 2 and F is tame and m ≥ K lnn for K sufficiently large then whp

(a) Gn has conductance bounded from below by a constant.

(b) Gn is connected.

(c) Gn has diameter O(logm n).

Mihail et al [32] have some empirical results on the conductance of Gn in the case where
F = F1. They observe poor conductance when β < 2 and good conductance when β > 2.
This fits nicely with the results of Theorems 2 and 3.

The role of α: This parameter was introduced in [25] as a means of overcoming
a difficult technical problem. When α > 2 it facilitates a proof of Lemma 2. On the
positive side, it does give a parameter that effects the power law. On the negative side,
when α > 2, there will whp be isolated vertices, unless we make m grow at least as fast
as lnn. It is for us, an interesting open question, as to how to prove our results with
α = 0.
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2 Outline of the paper

We prove a likely power law for the degree sequence in Section 3. We follow a standard
practise and prove a recurrence for the expected number of vertices of degree k at time
step t. Unfortunately, this involves the estimation of the expectation of the reciprocal of
a random variable and to handle this, we show that this random variable is concentrated.
This is quite technical and is done in Section 3.2. In Section 4 we show that under the
assumptions of Theorem 1(b) there are small separators. This is relatively easy, since
any give great circle can whp be used to define a small separator.

Section 5 proves connectivity when m grows logarithmically with n. The idea is to
show that whp the sub-graph Gn(B) induced by a ball B of radius ρ, centered in u ∈ S,
is connected. and has small diameter. We then show that the union of the Gn(B)’s for
u = x1, x2, . . . , xn is connected and has small diameter.

Section 6 deals with the case of tame functions.

3 Proving a power law

3.1 Establishing a recurrence for dk(t): the expected number of vertices

of degree k at time t

Our approach to proving Theorem 1(a) is to find a recurrence for dk(t). For k ∈ N
define Dk(t) = {v ∈ Vt : degt(v) = k}. Thus dk(t) = |Dk(t)|. Also, define dm−1(t) = 0
and dm−1(t) = 0 for all integers t with t > 0. Let ηk(Gt, xt+1) denote the (conditional)
probability that a parallel edge from xt+1 to a vertex of degree no more than k is created
at time t + 1. Then,

ηk(Gt, xt+1) = O



min







k
∑

i=m

∑

v∈Di(t)

F (|xt+1 − v|)2 i2

max{αmIt, Tt(xt+1)}2
, 1









 . (5)

Then for k ≥ m,

E [dk(t + 1) | Gt, xt+1] = dk(t)

+ m
∑

v∈Dk−1(t)

(k − 1)F (|xt+1 − v|)
max{αmIt, Tt(xt+1)}

− m
∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, Tt(xt+1)}

+ Pr [degt+1(xt+1 = k) | Gt, xt+1] + O(mηk(Gt, xt+1)). (6)

Let At be the event
{|Tt(xt+1) − 2mIt| ≤ C1Imtγ lnn}

where
max{2/α, θ} < γ < 1

and C1 is some sufficiently large constant.
Note that if

t ≥ t0 = (lnn)2/(1−γ) (7)
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then
At implies Tt(xt+1) ≤ αmIt.

Then, for t ≥ t0,

E





∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, Tt(xt+1)}





= E





∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, Tt(xt+1)}

∣

∣

∣

∣

At



Pr [At]

+ E





∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, Tt(xt+1)}

∣

∣

∣

∣

¬At



Pr [¬At]

=
k

αmt
E [dk(t)|At]Pr [At] + O (1)Pr [¬At]

=
kdk(t)

αmt
− k

αmt
E [dk(t)|¬At]Pr [¬At] + O (1)Pr [¬At]

=
kdk(t)

αmt
+ O (k)Pr [¬At]

In Lemma 2 below we prove that

Pr [¬At] = O
(

n−2
)

. (8)

Thus, if t ≥ t0 then

E





∑

v∈Dk(t)

kF (|xt+1 − v|)
max{αmIt, Tt(xt+1)}



 =
kdk(t)

αmt
+ O

(

k/n2
)

. (9)

In a similar way

E





∑

v∈Dk−1(t)

(k − 1)F (|xt+1 − v|)
max{αmIt, Tt(xt+1)}



 =
(k − 1)dk−1(t)

αmt
+ O

(

k/n2
)

. (10)

On the other hand, given Gt, xt+1, if

p = 1 − Tt(xt+1)

max (Tt(xt+1), αmIt)

then
Pr

[

degt+1(xt+1 = k) | Gt, xt+1

]

= Pr [Bi(m, p) = k − m]

So, if t ≥ t0,

Pr
[

degt+1(xt+1 = k)
]

=

(

m

k − m

)

E

[

pk−m(1 − p)2m−k

∣

∣

∣

∣

At

]

Pr [At] + O(Pr [¬At])

=

(

m

k − m

)(

1 − 2

α

)k−m (

2

α

)2m−k

(1 + O(mtγ−1 lnn))Pr [At] + O(n−2)

=

(

m

k − m

)(

1 − 2

α

)k−m (

2

α

)2m−k

+ O(mtγ−1 lnn).
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Now note that from equations (5) and (8) that if

t ≥ t1 = n(γ+θ)/2γ

and
k ≤ k0(t) = n(γ−θ)/4

then, from (1), we see that

E(mηk(Gt, xt+1)) = O

(

k2nθ

mt

)

= O(tγ−1). (11)

Taking expectations on both sides of (6) and using (9,10,11), we see that if t ≥ t0 and
k ≤ k0(t) then

dk(t + 1) = dk(t) +
k − 1

αt
dk−1(t) −

k

αt
dk(t)

+

(

m

k − m

)(

1 − 2

α

)k−m (

2

α

)2m−k

+ O
(

mtγ−1 lnn
)

(12)

We consider the recurrence given by fm−1 = 0 and for k ≥ m,

fk =
k − 1

α
fk−1 −

k

α
fk +

(

m

k − m

)(

1 − 2

α

)k−m (

2

α

)2m−k

, (13)

which, for k > 2m, has solution

fk = f2m

k
∏

i=2m+1

i − 1

i + α

= f2meϕk(m,α)
(m

k

)α+1
. (14)

Here ϕk(m, α) = O(1) tends to a limit ϕ∞(m, α) depending only on m, α as k → ∞.
Furthermore, limm→∞ ϕ∞(α, m) = 0. We also have

fm+i = f2m

m
∏

j=i+1

(

1 +
α + 1

m + j − 1

)

≤ e2α+3f2m.

It follows that (14) is also valid for m ≤ k ≤ 2m with ϕk(m, α) = O(1).
We finish the proof of (2) by showing that there exists a constant M > 0 such that

|dk(t) − fkt| ≤ M(t1 + mtγ lnn) (15)

for all 0 ≤ t ≤ n and m ≤ k ≤ k0(t).
We have that (15) is trivially true for t < t1, and for t ≥ t1 and k > k0(t) it follows

from dk(t) ≤ 2mt/k.
Now, let Θk(t) = dk(t) − fkt. Then for t ≥ t1 and m ≤ k ≤ k0(t),

Θk(t + 1) =
k − 1

αt
Θk−1(t) −

k

αt
Θk(t) + O(mtγ−1 lnn). (16)
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Let L denote the hidden constant in O(mtγ−1 lnn) of (16). Our inductive hypothesis
Ht is that

|Θk(t)| ≤ M(t1 + mtγ lnn)

for every m ≤ k ≤ k0(t) and M sufficiently large. Assume that t ≥ t1. Then k ≪ t in
the current range of interest, and so from (16),

|Θk(t + 1)| ≤ M(t1 + mtγ lnn) + Lmtγ−1 lnn

≤ M(t1 + m(t + 1)γ lnn).

This verifies Ht+1 and completes the proof by induction.

3.2 Concentration of Tt(u)

Now we turn our attention to prove that Tt(u) is concentrated around its mean.

Lemma 1 Let u ∈ S and t > 0 then E [Tt(u)] = 2Imt

Proof

E [Tt(u)] = E

[

∑

v∈Vt

degt(v)F (|u − v|)
]

= I
∑

v∈Vt

degt(v) = 2Imt

2

Lemma 2 If t > 0 and u is chosen randomly from S then

Pr
[

|Tt(u) − 2Imt| ≥ mI(t2/α + t1/2 ln t) lnn
]

= O
(

n−2
)

.

Proof We use Azuma-Hoeffding inequality (see for example [2]). One may be a
little concerned here that our probability space is not discrete. Although it is not really
necessary, one could replace S by 22n

randomly chosen points X and sample uniformly
from these. Then whp the change in distribution would be negligible. With this re-
assurance, fix τ , with 1 ≤ τ < t. Fix Gτ and let Gt = Gt(Gτ , xτ+1, y1, . . . , ym) and
Ĝt = Gt(Gτ , x̂τ+1, ŷ1, . . . , ŷm), where xτ+1, x̂τ+1 ∈ S and y1, . . . , ym, ŷ1, . . . , ŷm ∈ Vτ .
We couple the construction of Gt and Ĝt, starting at time step τ + 1 with the graph Gτ

and Ĝτ respectively. Then, for every step σ > τ + 1 we choose the same point xσ ∈ S
in both and for every i = 1, . . . , m we choose ui, ûi ∈ Vσ such that each marginal is the
correct marginal and such that the probability of choosing the same vertex is maximized.

Notice that we have

Pr [ui = v = ûi] = min





degGσ−1
(v)F (|v − xσ|)

max (Tσ−1(xσ), αmI(σ − 1))
,

degĜσ−1
(v)F (|v − xσ|)

max
(

T̂σ−1(xσ), αmI(σ − 1)
)





for every v ∈ Vσ−1. Also,

Pr [ui = xσ = ûi] = 1−max





Tσ−1(xσ)

max (Tσ−1(xσ), αmI(σ − 1))
,

T̂σ−1(xσ)

max
(

T̂σ−1(xσ), αmI(σ − 1)
)




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Now, for u ∈ S let

∆σ(u) := ∆σ,τ (u) =
σ

∑

ρ=τ

m
∑

i=1

|F (|u − uρ
i |) − F (|u − ûρ

i |)|.

Lemma 3 Let t ≥ 1 and let u be a random point in S. Then for some constant C > 0,

E [∆t(u)] ≤ CmI

(

t

τ

)2/α

.

Proof We begin with

E
[

|F (|w − uρ
i |) − F (|w − ûρ

i |)|
∣

∣uj
i , û

j
i : i = 1, . . . , m, j = 1, . . . , σ

]

≤ 2I1uρ
i 6=ûρ

i
.

Therefore if we define for every τ < σ ≤ t

∆σ =
σ

∑

ρ=τ

m
∑

i=1

1uσ
i 6=ûσ

i
,

we have
E [∆σ(u)] ≤ 2IE [∆σ] .

Fix τ < σ ≤ t. We have then

∆σ = ∆σ−1 +
m

∑

i=1

1uσ
i 6=ûσ

i
. (17)

Now fix 1 ≤ i ≤ m. Taking expectations with respect to our coupling,

E
[

1uσ
i 6=ûσ

i
|Gσ−1, Ĝσ−1, xσ

]

= 1 − Pr
[

uσ
i = ûσ

i |Gσ−1, Ĝσ−1, xσ

]

= max





Tσ−1(xσ)

max (Tσ−1(xσ), αmI(σ − 1))
,

T̂σ−1(xσ)

max
(

T̂σ−1(xσ), αmI(σ − 1)
)





−
∑

v∈Vσ−1

min





degGσ−1
(v)F (|v − xσ|)

max (Tσ−1(xσ), αmI(σ − 1))
,

degĜσ−1
(v)F (|v − xσ|)

max
(

T̂σ−1(xσ), αmI(σ − 1)
)





≤
max

(

Tσ−1(xσ), T̂σ−1(xσ)
)

− ∑

v∈Vσ−1
min

(

degGσ−1
(v), degĜσ−1

(v)
)

F (|v − xσ|)

max
(

Tσ−1(xσ), T̂σ−1(xσ), αmI(σ − 1)
)

(18)

≤
∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|F (|v − xσ|)

max
(

Tσ−1(xσ), T̂σ−1(xσ), αmI(σ − 1)
) (19)

≤
∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|F (|v − xσ|)

αmI(σ − 1)
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Inequality (18), follows from

max

(

a

max (a, c)
,

b

max (b, c)

)

=
max (a, b)

max (a, b, c)

and

min
(a

b
,
c

d

)

≥ min (a, c)

max (b, d)
.

Inequality (19) is a consequence of max{∑i ai,
∑

i bi} −
∑

i min{ai, bi} ≤ ∑

i |ai − bi|.
Therefore

E

[

∆σ

∣

∣

∣

∣

Gσ−1, Ĝσ−1

]

≤ ∆σ−1 +

∑

v∈Vσ−1
| degGσ−1

(v) − degĜσ−1
(v)|

α(σ − 1)
. (20)

But, for each v ∈ Vσ−1 we have

| degGσ−1
(v) − degĜσ−1

(v)| ≤
σ−1
∑

j=τ

m
∑

i=1

(1
uj

i=v, ûj
i 6=v

+ 1
uj

i 6=v, ûj
i =v

)

and thus

∑

v∈Vσ−1

| degGσ−1
(v) − degĜσ−1

(v)| ≤
σ−1
∑

j=τ

m
∑

i=1

∑

v∈Vσ−1

(

1
uj

i =v, ûj
i 6=v

+ 1
uj

i 6=v, ûj
i =v

)

≤ 2∆σ−1.

Going back to (20) we have

E [∆σ] ≤ E [∆σ−1]

(

1 +
2

α(σ − 1)

)

,

so, E [∆t] ≤ eO(1)
(

t
τ

)2/α
E [∆τ ]. Now, ∆τ ≤ m, because the graphs Gτ and Ĝτ differ at

most in the last m edges. Therefore E [∆t] ≤ eO(1)m
(

t
τ

)2/α
. 2

To apply Azuma’s inequality we note first that

∣

∣EGt [Tt(u)] −EĜt
[Tt(u)]

∣

∣ =
∣

∣

∣E

[

t
∑

ρ=τ

m
∑

i=1

(F (|u − uρ
i |) − F (|u − ûρ

i |))
]

∣

∣

∣ ≤ E [∆t(u)] ,

(21)
and from Lemma 3

t
∑

τ=1

E [∆t(u)]2 ≤ (eO(1)mI)2t4/α
t

∑

τ=1

τ−4/α = O
(

I2m2(t ln t + t4/α)
)

Therefore, there is C1 such that

Pr
[

|Tt(u) − E [Tt(u)] | ≥ C1Im(t2/α + t1/2 ln t)(lnn)1/2
]

≤ e−2 ln n = n−2.2

11



3.3 Concentration of dk(t)

We follow the proof of Lemma 3, replacing Tt(u) by dk(t) and using the same coupling,
When we reach (21) we find that

∣

∣EGt [dk(t)]−EĜt
[dk(t)]

∣

∣ ≤ 2E[∆t], the rest is the same.
This proves (1) and completes the proof of Theorem 1(a) .

4 Small separators

In this section we prove Theorem 1(b). For this, we assume α > 0 and m0 ≤ m where
m0 is a sufficiently large constant and ϕ, η = o(1) are such that ηn → ∞ and Jη ≤ ϕI.

We use the geometry of the instance to obtain a sparse cut. Consider partitioning
the vertices in Vn using a great circle of S. This will divide Vn into sets T and T̄ which
each contain about n/2 vertices. More precisely, we have

Pr [|T | < (1 − ξ)n/2] = Pr
[

|T̄ | < (1 − ξ)n/2
]

≤ e−ξ2n/5.

To bound e(T, T̄ ), the number of edges crossing the cut, we divide the edges into
two types. We call an edge {u, v} in Gn long if |u − v| ≥ η, otherwise we call it short.
We will show that whp the number of long edges is small, and therefore we just need
to consider short edges in a cut. Let Z denote the number of long edges. Then

E [Z] ≤ mt0 + m
∑

t≥t0

∑

v∈Vt

degt(v)Jη

αmIt

≤ mt0 + m
∑

t≥t0

Jη

αI

= mt0 + O(mnϕ).

2

Now whp there are at most E [Z] /ϕ1/2 long edges. Apart from these, edges only
appear between vertices within distance η, so only edges incident with vertices appearing
in the strip within distance η of the great circle can appear in the cut. Since η = o(1),
this strip has area less than 3η

√
π, and, letting U denote the vertices appearing in this

strip, we have
Pr

[

|U | ≥ 4
√

πηn
]

≤ e−
√

πηn/9 = o(1).

Even if every one of the vertices chooses its m neighbors on the opposite side of the cut,
this will yield at most 4

√
πηnm edges whp. So the graph has a cut with

e(T, T̄ ) = Õ((η + ϕ1/2)mn)

with probability at least 1 − o(1).

5 Connectivity and Diameter

Here we prove Theorem 2. Let µ be such that F is smooth for µ, and let ρ = ρ(µ). Fix
u ∈ S let

Bρ = {v ∈ S : |v − u| ≤ ρ}

12



and let Aρ =
∫

v∈Bρ
dv ∈ [c1ρ

2, c2ρ
2] denote the area of Br. Here c1, c2 are some absolute

constants, independent of ρ.
We denote the diameter of G by diam(G), and follow the convention of defining

diam(G) = ∞, when G is disconnected. In particular, when we say that a graph has
finite diameter this implies it is connected.

Let

T =
K1 lnn

Aρ
≤ K1n

c1L

where K1 is sufficiently large, and L2/3 ≪ K1 ≪ K, L.

Lemma 4
Pr [diam(Gn(Bρ)) ≥ 2(K1 + 1) lnn] = O(n−1)

where Gn(Bρ) is the induced subgraph of Gn in Bρ.

Proof Let N = |Gn(Bρ)| and let V (Gn(Bρ)) = {xt1 , . . . , xtN}, where ts < ts+1

for all s < N and tN ≤ n. For s = 1, . . . , N let Hs = Gts(Bρ). We concentrate our
attention to the evolution of Hs.

Notice that s, is the number of steps for which xt ∈ Bρ with t ≤ ts, and so s ∼
Bi(ts, Aρ). By the Chernoff bound we have that if ts ≥ T ,

Pr

[

1

2
<

tsAρ

s
<

3

2

]

≥ 1 − n−K1/13.

Therefore, if N0 is the number of vertices in Bρ at time T , we may assume for all s ≥ N0,
s/2 < tsAρ < 3s/2. In particular, N ≥ 2nAρ/3 ≥ c1L lnn/2 and N0 ≤ 2TAρ ≤ 2K1 lnn.

Let Xs be the number of connected components of Hs. Then

Xs+1 = Xs − Ys + 1, X0 = 0

where Ys ≥ 0 is the number of components conected to xts .
Bρ is contained in B2ρ(xts) the ball of radius 2ρ centered at xts . Therefore if v ∈

Bρ ∩ Vts and ts > T ,

Pr [xts chooses v] ≥ degts(v)F (|xts − v|)
αmIts

≥ F (2ρ)

αIts
≥ 2AρF (2ρ)

3αIs
≥ 2c1ρ

2F (2ρ)

3αIs
≥ 2c1c3

3αs
.

Now, we can bound the probability of generating a new component,

Pr [Ys = 0|Hs−1] =



1 −
∑

v∈Hs−1

Pr [xts chooses v]





m

≤
(

1 − 2c1c3

3α

)m

≤ exp

(

−2c1c3m

3α

)

≤ n−10

13



If s < 2K1 lnn, as m ≥ K lnn, we can bound the probability of not collapsing compo-
nents,

Pr [Ys = 1|Xs ≥ 2] ≤ Pr [Ys = 1|Xs ≥ 2, Ys > 0] + Pr [Ys = 0|Xs ≥ 2]

≤ 2

(

1 − 2c1c3

3αs

)m

+ n−10

≤ 2 exp

(

−2mc1c3

3αs

)

+ n−10 ≤ 1/10

Therefore, Xs is stochastically dominated by the random variable max{1, N0 − Zs}
where Zs ∼ Bi(s, 9/10). We then have

Pr [X4K1 ln n > 1] ≤ Pr [Z4K1 ln n < N0] ≤ Pr [Z4K1 ln n < 2K1 lnn] ≤ n−3.

And therefore
Pr [H4K1 ln n is not connected] ≤ n−3.

Now, to obtain an upper bound on the diameter, we run the process of construction
of HN by rounds. The first round consists of 4K1 lnn steps and in each new round we
double the size of the graph, i.e. it consists of as many steps as the total number of
steps of all the previous rounds. Notice that we have less than log2 n rounds in total.
Let A be the event for all i > 0 every vertex created in the (i + 1)th round is adjacent
to a vertex in H2i+1K1 ln n, the graph at the end of the ith round.

On the event A, every vertex in HN is at distance at most log−2n of H2K1 ln n

whose diameter is not greater than 2K1 lnn. Thus, the diameter of HN is smaller than
2(K1 + 2) lnn.

Now, if v is created in the (i + 1)st round,

Pr
[

v is not adjacent to H2i−1K1 ln n

]

≤
(

1 − 2c1c3

3α

)m

.

Therefore

Pr [¬A] ≤
(

1 − 2c1c3

3α

)m

n(lnn) ≤ n1+o(1)−2Kc1c3/(3α).

2

To finish the proof of connectivity and the diameter, let u, v be two vertices of Gn.
Let C1, C2, . . . , CM , M = O(1/ρ) be a sequence of spherical caps of radius ρ such that
u is the center of C1, v is the center of CM and such that the centers of Ci, Ci+1 are
distance ≤ ρ/2 apart. The intersections of Ci, Ci+1 have area at least Aρ/10 and so
whp each intersection contains a vertex. Using Lemma 4 we deduce that whp there is
a path from u to v in Gn of size at most O(lnn/ρ).

6 Proof of Theorem 3

For a set K ⊆ Vn we define degn(K) =
∑

v∈K degn(v).
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Lemma 5 There is an absolute constant 0 < ξ < 1/4 such that

Pr(∃K ⊆ Vn, |K| ≥ (1 − ξ)n : degn(K) ≤ (1 + ξ)mn) = o(n−3).

Proof Let ζ be a small positive constant and divide Vn into approximately 1/ζ
sets S1, S2, . . . of size s = ⌈ζn⌉ plus a set of n − ⌊1/ζ⌋s where Si = {x(i−1)s+1, . . . , xis},
i = 1, 2, . . . ,. We put a high probability upper bound on degn(S1). Now consider the
random variables βk, k = 2, . . . where βk = degτk

(S2 ∪ · · ·Sk)/ms and τk = ks. Now
β2 ≥ ms and conditional on the value of βk ≥ (k − 1)ms

βk+1ms dominates ms + βkms + Bi

(

ms,
βkλ

2(k + 1)

)

where λ = C1/C2.
So, there exist constants γ1, γ2 (independent of ζ) such that

Pr

(

βk+1

ms
≤ 1 + (1 + γ2)

βk

ms

)

≤ e−mγ1n.

So, after some calculations, we find that with probability 1 − O(e−mγ1n),

degn(Vn \ S1) ≥ ms(1 + γ2)γ
−1
2 ((1 + γ2)

⌊1/ζ⌋−3 − 1) ≥ mn(1 + ζ/2)

for small enough ζ.
Now degn(S1) dominates degn(L) for any set L of size ⌈ζn⌉. So, if m > 1/γ1 then

the probability there is a set of size ⌈ζn⌉ which has total degree exceeding mn(1 −
γ2) is exponentially small (≤

( n
⌈ζn⌉

)

e−n)). In which case, every set K of size at least

n − ⌈ζn⌉ has total degree degn(K) ≥ mn(1 + γ2/2) and the lemma follows by taking
ξ = min{ζ, γ2/2, 1/4}. 2

We have to estimate Φ(K) for all K with degn(K) ≤ mn. The above lemma shows
that we can restrict our attention to sets K with |K| ≤ (1 − ξ)n.

We now observe that for K ⊆ Vn,

degn(K) = m|K| + |E(K : K̄)|

and so to bound Φ(K), it suffices to prove lower bounds |E(K : K̄)| ≥ ηm|K| for some
positive constant η.

Lemma 6 If m ≥ C lnn where C is sufficiently large then there exists an absolute
constant κ > 0 such that

Pr (Φ(Gn) < κ) = O(n−3).

Proof

15



6.1 1 ≤ |K| ≤ A0n.

Here A0 is a sufficiently small constant. Let K1 = K ∩ Vn/2 and K2 = K \ K1. Let
W1 = Vn/2 \ K1 and W2 = Vn \ (Vn/2 ∪ K2). The number of edges between K1 and W2

dominates Bi(m(n/2 − |K2|), λ|K1|/(αn)). This is because each edge chosen by Vj , j ∈
W2 has probability at least mλ|K1|/(αmn) of being in K1. Similarly, the number of edges
between K2 and W1 dominates Bi(m|K2|, λ(n/2− |K1|)/(αn)). Thus E

[

|E(K : K̄)|
]

≥
mλ|K|/(3α) and so by Hoeffdings inequality we see that |E(K : K̄)| ≥ mλ|K|/(4α)
with probability 1 − e−cmλ|K| for some constant c = c(α). Thus

Pr(∃K, 1 ≤ |K| ≤ A0n, |E(K : K̄)| < mλ|K|/(4α)) ≤
A0n
∑

k=1

(

n

k

)

e−cCλk ln n = o(1)

if C ≥ 2/(cλ).

6.2 A0n ≤ |K| ≤ (1 − ξ)n.

Here ξ is as in Lemma 5. Let K1, K2, W1, W2 be as in Section 6.1. Let q = |K1| and r =
|K2|. We calculate the expected number of edges µ(K1, K2) of L = (K2 × W1 ∪ W2 × K1)
generated at steps τ, n/2 ≤ τ ≤ n which are directed into K. At step τ the number of
such edges falling in L is an independent random variable with distribution dominating

1τ∈W2 Bi

(

m,
λq

ατ

)

+ 1τ∈K2 Bi

(

m,
λ(n/2 − q)

ατ

)

.

Thus

µ(K1, K2) ≥ mλq

α

∑

τ∈W2

1

τ
+

mλ(n/2 − q)

α

∑

τ∈K2

1

τ

=
mλ

α



(k − r)
∑

τ∈W2

1

τ
+ (n/2 − (k − r))

∑

τ∈K2

1

τ



 .

Let µ(k) = minK1,K2 µ(K1, K2). Then ’somewhat crudely’

∑

τ∈W2

1

τ
≥ ln

n

n/2 + r

∑

τ∈K2

1

τ
≥ ln

n

n − r
.

Thus

µ(k) ≥ mλ

α

(

(k − r) ln
2n

n + 2r
+

(n

2
− (k − r)

)

ln
n

n − r

)

.

Putting k = κn and r = ρn we see that

µ(k) ≥ λmn

α
g(κ, ρ)
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where

g(κ, ρ) = (κ − ρ) ln
2

1 + 2ρ
+

(

1

2
− κ + ρ

)

ln
1

1 − ρ
.

We put a lower bound on g:

ρ ≤ ξ

2
implies κ − ρ ≥ ξ

2
and so g(κ, ρ) ≥ ξ

2
ln

2

1 + ξ
.

So we can assume that ρ ≥ ξ/2. Then

κ − ρ ≤ 1 − ξ

2
implies g(κ, ρ) ≥ ξ

2
ln

2

2 − ξ
.

κ − ρ >
1 − ξ

2
and ρ ≤ 1 − ξ

2
implies g(κ, ρ) ≥ 1 − ξ

2
ln

2

2 − ξ
.

κ − ρ >
1 − ξ

2
and ρ >

1 − ξ

2
implies κ > 1 − ξ.

We deduce that within our range of interest,

µ(k) ≥ ηmn

for some absolute constant η.
Let Z be the number of edges generated within L, so that Z counts a subset of the

edges between K and K. Then

Pr

(

∃K1, K2 ⊆ N : Z ≤ 1

2
ηmn

)

≤ 2ne−ηmn/8 ≤ e−ηmt/10 = o(1).

This completes the proof of Theorem 3(a). Part (b) is an immediate consequence of
Part (a).

To prove part (c) we need to prove some vertex expansion properties of Gn. So fix
K ⊆ Vn with 1 ≤ |K| ≤ A0n and go back to Section 6.1. We see that the number of
neighbors of K1 in W2 dominates B1 = Bi(n/2 − |K2|, 1 − (1 − λ|K1|/(αn))m) and the
number of neighbours of K2 in W1 dominates B2 = Bi(n/2−|K1|, 1−(1−λ/(αn))m|K2|).
So, for i = 1, 2,

E [Bi] ≥
{

λm|Ki|
3α if λm|Ki|

αn ≤ 1
10

n
60 otherwise

Therefore, using the Chernoff bounds, we have

Pr

(

∃K, i : 1 ≤ |Ki| ≤
αn

10λm
and Bi ≤

λm|Ki|
6α

)

≤
αn/(10λm)

∑

k=1

(

n

k

)

e−λmk/(24α)

= o(1). (22)

Pr
(

∃K, i :
αn

10λm
≤ |Ki| ≤ A0n and Bi ≤

n

120

)

≤
A0n
∑

k=1

(

n

k

)

e−n/1000

= o(1). (23)
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Now fix x, y ∈ Vn and then for a = x, y let Si,a = {z ∈ Vn : dist(a, z) = i}. Here
dist(a, z) is the graph distance between a and z in Gn. It follows from (22) and (23)
that there exists ja = O(logm n) such that |Sj,a| ≥ n/120. It follows from the proof of
Lemma 6 that if |Sja | ≤ (1 − ξ)n then |E(Sja : S̄ja | ≥ ηmn/120. It follows that there
exists la ≤ 240/η such that |Sja+la | ≥ (1−ξ)n ≥ 3n/4. It follows that Sjx+lx ∩Sjy+ly 6= ∅
and dist(x, y) ≤ jx + jy + lx + ly = O(logm n). This completes the proof of Theorem 3.

2
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