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Abstract

We study a random graph Gn that combines certain aspects of geometric random
graphs and preferential attachment graphs. The vertices of Gn are n sequentially
generated points x1, x2, . . . , xn chosen uniformly at random from the unit sphere in
R

3. After generating xt, we randomly connect it to m points from those points in
x1, x2, . . . , xt−1 which are within distance r. Neighbors are chosen with probability
proportional to their current degree and a parameter α biasses the choice towards
self loops. We show that if m is sufficiently large, if r ≥ lnn/n1/2−β for some
constant β, and if α > 2, then whp at time n the number of vertices of degree
k follows a power law with exponent α + 1. Unlike the preferential attachment
graph, this geometric preferential attachment graph has small separators, similar to
experimental observations of [8]. We further show that if m ≥ K lnn, K sufficiently
large, then Gn is connected and has diameter O(lnn/r) whp.

1 Introduction

Recently there has been much interest in understanding the properties of real-world
large-scale networks such as the structure of the Internet and the World Wide Web. For
a general introduction to this topic, see Bollobás and Riordan [9], Hayes [23], Watts
[34], or Aiello, Chung and Lu [3]. One approach is to model these networks by random
graphs. Experimental studies by Albert, Barabási, and Jeong [4], Broder et al [13],
and Faloutsos, Faloutsos, and Faloutsos [21] have demonstrated that in the World Wide
Web/Internet the proportion of vertices of a given degree follows an approximate inverse
power law i.e. the proportion of vertices of degree k is approximately Ck−α for some
constants C, α. The classical models of random graphs introduced by Erdős and Renyi
[19] do not have power law degree sequences, so they are not suitable for modeling these
networks. This has driven the development of various alternative models for random
graphs.
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One approach is to generate graphs with a prescribed degree sequence (or prescribed
expected degree sequence). This is proposed as a model for the web graph by Aiello,
Chung, and Lu in [1]. Mihail and Papadimitriou also use this model [29] in their study
of large eigenvalues, as do Chung, Lu, and Vu in [15].
An alternative approach, which we will follow in this paper, is to sample graphs via some
generative procedure which yields a power law distribution. There is a long history of
such models, outlined in the survey by Mitzenmacher [31]. We will use an extension
of the preferential attachment model to generate our random graph. The preferential
attachment model has been the subject of recently revived interest. It dates back to
Yule [35] and Simon [33]. It was proposed as a random graph model for the web by
Barabási and Albert [5], and their description was elaborated by Bollobás and Riordan
[10] who showed that at time n, whp the diameter of a graph constructed in this way is
asymptotic to ln n

ln ln n . Subsequently, Bollobás, Riordan, Spencer and Tusnády [12] proved
that the degree sequence of such graphs does follow a power law distribution.
The random graph defined in the previous paragraph has good expansion properties.
For example, Mihail, Papadimitriou and Saberi [30] showed that whp the preferential
attachment model has conductance bounded below by a constant. On the other hand,
Blandford, Blelloch and Kash [8] found that some WWW related graphs have smaller
separators than what would be expected in random graphs with the same average degree.
The aim of this paper is to describe a random graph model which has both a power-law
degree distribution and which has small separators.
We study here the following process which generates a sequence of graphs Gt, t =
1, 2, . . . , n. The graph Gt = (Vt, Et) has t vertices and mt edges. Here Vt is a sub-
set of S, the surface of the sphere in R

3 of radius 1
2
√

π
(so that area(S) = 1).

For u ∈ S and r > 0 we let Br(u) denote the spherical cap of radius r around u in S.
More precisely, Br(u) = {x ∈ S : ||x − u|| ≤ r}.

1.1 The random process

The parameters of the process are m > 0 the number of edges added in every step and
α ≥ 0 a measure of the bias towards self loops.
Notice that there exists a constant c0 such that for any u ∈ S, we have

Ar = Area(Br(u)) ∼ c0r
2.

• Time step 0: To initialize the process, we start with G0 being the Empty
Graph.

• Time step t + 1: We choose vertex xt+1 uniformly at random in S and add it
to Gt. Let Vt(xt) = Vt ∩ Br(xt+1) and let Dt(xt) =

∑
v∈Vt(xt)

degt(v). We add m
random edges (xt+1, yi), i = 1, 2, . . . , m incident with xt+1. Here, each yi is chosen
independently from Vt(xt)∪ {xt+1} (parallel edges and loops are permitted), such
that for each i = 1, . . . , m, for all v ∈ Vt(xt+1),

Pr(yi = v) =
degt(v)

max (Dt(xt+1), αmArt)
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and

Pr(yi = xt+1) = 1 − Dt(xt+1)

max (Dt(xt+1), αmArt)

(When t = 0 we have Pr(yi = x1) = 1.)

Let dk(t) denote the number of vertices of degree k at time t and let dk(t) denote the
expectation of dk(t).
We will prove the following:

Theorem 1

(a) If 0 < β < 1/2 and α > 2 are constants and r ∼ nβ−1/2 lnn and m is a sufficiently
large constant then there exist constants c, γ, ǫ > 0 such that for all k = k(n) ≥ m,

dk(n) = Ck
n

k1+α
+ O(n1−γ) (1)

where Ck = Ck(m, α) tends to a constant C∞(m, α) as k → ∞.

Furthermore, for n sufficiently large, the random variable dk(n) satisfies the fol-
lowing concentration inequality:

Pr(|dk(n) − dk(n)| ≥ n1−γ) ≤ e−nǫ

. (2)

(b) If α ≥ 0 and r = o(1) then whp Vn can be partitioned into T, T̄ such that |T |, |T̄ | ∼
n/2, and there are at most 4

√
πrnm edges between T and T̄ .

(c) If If α ≥ 0 and r ≥ n−1/2 lnn and m ≥ K lnn and K is sufficiently large then whp
Gn is connected.

(d) If If α ≥ 0 and r ≥ n−1/2 lnn and m ≥ K lnn and K is sufficiently large then whp
Gn has diameter O(lnn/r).

We note that geometric models of trees with power laws have been considered in [20], [6]
and [7]. We also note that Gómez-Gardeñes and Moreno [22] have empirically analyzed
a one dimensional version of our model when α = 0 and their experiments suggest that
this yields a power-law exponent of 3.

1.2 Open Questions

In an earlier version of the paper there was no α and we have failed to produce a proof
of Theorem 1(a) when α ≤ 2. This remains a challenge for us at the present moment.
We do not think that the lnn factors are necessary in parts (c),(d).
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1.3 Some definitions

Given U ⊆ S and u ∈ S, we define

Vt(U) = Vt ∩ U and Vt(u) = Vt(Br(u))

and
Dt(U) =

∑

v∈Vt(U)

degt(v) and Dt(u) = Dt(Br(u)).

Given v ∈ Vt, we also define

deg−t (v) = degt(v) − m. (3)

Notice that deg−t (v) is the number of edges of Gt that are incident to v and were added
by vertices that chose v as a neighbor, including loops at v.
Given U ⊆ S, let D−

t (U) =
∑

v∈Vt(U) deg−t (v). We also define D−
t (u) = D−

t (Br(u)).

Notice that Dt(U) = m|Vt(U)| + D−
t (U).

We localize some of our notation: given U ⊆ S and u ∈ S we define dk(t, U) to be the
number of vertices of degree k at time t in U and dk(t, u) = dk(t, Br(u)).

2 Outline of the paper

In Section 3 we show that there are small separators. This is easy, since any give great
circle can whp be used to define a small separator.
We prove a likely power law for the degree sequence in Section 4. We follow a standard
practise and prove a recurrence for the expected number of vertices of degree k at time
step t. Unfortunatley, this involves the estimation of the expectation of the reciprocal of
a random variable and to handle this, we show that this random variable is concentrated.
This is quite technical and is done in Section 4.3.
Section 5 proves connectivity when m grows logarithmically with n. The idea is to
show that whp the sub-graph Gn(B) induced by a ball B of radius r/2, center u ∈
S, is connected. This is done by constructing a connected subgraph of Gn(B) via a
coupling argument. We then show that the union of the Gn(B)’s for u = x1, x2, . . . , xn

is connected and has small diameter.

3 Small separators

Theorem 1(b) is the easiest part to prove. We use the geometry of the instance to obtain
a sparse cut. Consider partitioning the vertices using a great circle of S. This will divide
V into sets T and T̄ which each contain about n/2 vertices. More precisely, we have

Pr [|T | < (1 − ǫ)n/2] = Pr
[
|T̄ | < (1 − ǫ)n/2

]
≤ e−ǫ2n/4.

Edges only appear between vertices within distance r, so only vertices appearing in the
strip within distance r of the great circle can appear in the cut. Since r = o(1), this
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strip has area less than 3r
√

π, and, letting U denote the vertices appearing in this strip,
we have

Pr
[
|U | ≥ 4

√
πrn

]
≤ e−

√
πrn/9.

Even if every one of the vertices chooses its m neighbors on the opposite side of the cut,

this will yield at most 4
√

πrnm edges whp. So the graph has a cut with e(T,T̄ )
|T ||T̄ | ≤ 17

√
πrm
n

with probability at least 1 − e−Ω(rn).

4 Proving a power law

4.1 Establishing a recurrence for dk(t): the expected number of vertices

of degree k at time t

Our approach to proving Theorem 1(a) is to find a recurrence for dk(t).
We define dm−1(t) = 0 for all integers t with t > 0. Let ηk(Gt, xt+1) denote the (condi-
tional) probability that a parallel edge to a vertex of degree no more than k is created.
Then,

ηk(Gt, xt+1) = O

(
k∑

i=m

di(t, xt+1) i2

max{αmArt, Dt(xt+1)}2

)

= O

(
min

{
k2

max{αmArt, Dt(xt+1)}
, 1

})
. (4)

Then for k ≥ m,

E [dk(t + 1) | Gt, xt+1] = dk(t)

+ mdk−1(t, xt+1)
k − 1

max{αmArt, Dt(xt+1)}
− mdk(t, xt+1)

k

max{αmArt, Dt(xt+1)}
+ Pr [degt+1(xt+1 = k) | Gt, xt+1] + O(mηk(Gt, xt+1)). (5)

Let At be the event
{|Dt(xt+1) − 2mArt| ≤ C1Armtγ lnn}

where
max{2/α, 1/2, 1 − 2β} < γ < 1

and C1 is some sufficiently large constant.
Note that if

t ≥ (lnn)2/(1−γ)

then
At implies Dt(xt+1) ≤ αmArt.
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Then, because E[dk(t, xt+1)] ≤ k−1E[m|Vt(B2r(xt+1))|] ≤ k−1m(4Art) and dk(t, xt+1) ≤
k−1Dt(xt+1) < mt, we have for t ≥ (lnn)2/(1−γ),

E

[
dk(t, xt+1)

max{αmArt, Dt(xt+1)}

]

= E

[
dk(t, xt+1)

max{αmArt, Dt(xt+1)}

∣∣∣∣ At

]
Pr [At] +

+ E

[
dk(t, xt+1)

max{αmArt, Dt(xt+1)}

∣∣∣∣ ¬At

]
Pr [¬At]

=
E [dk(t, xt+1) | At]

αmArt
Pr [At] + E

[
O

(
dk(t, xt+1)

Dt(xt+1)

) ∣∣∣∣ ¬At

]
Pr [¬At]

=
E [dk(t, xt+1) | At]

αmArt
Pr [At] + O

(
Pr [¬At]

k

)

=
E [dk(t, xt+1)]

αmArt
+

(
O

(
1

k

)
− E [dk(t, xt+1) | ¬At]

αmArt

)
Pr [¬At]

=
E [dk(t, xt+1)]

αmArt
+ O

(
1

k
+

1

Ar

)
Pr [¬At] .

In Lemmas 1 and 3 below we prove that

E [dk(t, xt+1)] = mArdk(t)

and that
Pr [¬At] = O

(
n−2

)
. (6)

Thus, if t ≥ (lnn)2/(1−γ) then

E

[
dk(t, xt+1)

max{αmArt, Dt(xt+1)}

]
=

dk(t)

αmt
+ O

(
1

n2

(
1

Ar
+

1

k

))
. (7)

In a similar way

E

[
dk−1(t, xt+1)

max{αmArt, Dt(xt+1)}

]
=

dk−1(t)

αmt
+ O

(
1

n2

(
1

Ar
+

1

k

))
. (8)

On the other hand, given Gt, xt+1, if

p = 1 − Dt(xt+1)

max (Dt(xt+1), αmArt)

then
Pr [degt+1(xt+1 = k) | Gt, xt+1] = Pr [Bi(m, p) = k − m]

So, if t ≥ (lnn)2/(1−γ),

Pr [xt+1 = k] =

(
m

k − m

)
E

[
pk−m(1 − p)2m−k

∣∣∣∣ At

]
Pr [At] + O(Pr [¬At])

=

(
m

k − m

)(
1 − 2

α

)k−m( 2

α

)2k−m

(1 + O(tγ−1 lnn))Pr [At] + O(n−2)

=

(
m

k − m

)(
1 − 2

α

)k−m( 2

α

)2k−m

+ O(tγ−1 lnn).
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Now note that from equations (4) and (6) that if

t ≥ t0 = n(1−2β)/γ

and
k ≤ k0(t) = (mArt

γ lnn)1/2

then
E(ηk(Gt, xt+1)) = O(tγ−1 lnn). (9)

Taking expectations on both sides of (5) and using (7,8,9), we see that if t ≥ t0 and
k ≤ k0(t) then

dk(t + 1) = dk(t) +
k − 1

αt
dk−1(t) −

k

αt
dk(t)

+

(
m

k − m

)(
1 − 2

α

)k−m( 2

α

)2m−k

+ O
(
tγ−1 lnn

)
(10)

We consider the recurrence given by fm−1 = 0 and for k ≥ m,

fk =
k − 1

α
fk−1 −

k

α
fk +

(
m

k − m

)(
1 − 2

α

)k−m( 2

α

)2m−k

,

which, for k > 2m, has solution

fk = f2m

k∏

i=m+1

i − 1

i + α

= φk(m, α)
(m

k

)α+1
,

and has that φk(m, α) tends to a limit φ∞(m, α) depending only on m, α as k → ∞, .
We can absorb the values fm, fm+1, . . . , f2m into this notation.
We finish the proof of (1) by showing that there exists a constant M > 0 such that

|dk(t) − fkt| ≤ M(t0 + tγ lnn) (11)

for all 0 ≤ t ≤ n and m ≤ k ≤ k0(t).
This is trivially true for t < t0.
For k > k0(t) this follows from dk(t) ≤ 2mt/k.
Let Θk(t) = dk(t) − fkt. Then for t ≥ t0 and m ≤ k ≤ k0(t),

Θk(t + 1) =
k − 1

αt
Θk−1(t) −

k

αt
Θk(t) + O(tγ−1 lnn). (12)

Let L denote the hidden constant in O(tγ−1 lnn) of (12). Our inductive hypothesis Ht

is that
|Θk(t)| ≤ M(t0 + tγ lnn)

for every m ≤ k ≤ k0(t) and M sufficiently large. It is trivially true for t ≤ t0. So
assume that t ≥ t0. Then, from (12),

|Θk(t + 1)| ≤ M(t0 + tγ lnn) + Ltγ−1 lnn

≤ M(t0 + (t + 1)γ lnn).

This verifies Ht+1 and completes the proof by induction.
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4.2 Expected Value of dk(t, u)

Lemma 1 Let u ∈ S and let k and t be positive integers. Then E [dk(t, u)] = Ardk(t)

Proof By symmetry, for any w ∈ S, dk(t, u) has the same distribution as dk(t, w).
Then

E [dk(t, u)] =

∫

S
E [dk(t, u)] dw =

∫

S
E [dk(t, w)] dw

= E

[∫

S
dk(t, w)dw

]
= E

[∫

S

∑

v∈Vt

1deg v=k1v∈Br(w)dw

]

= E

[∑

v∈Vt

1deg v=k

∫

S
1w∈Br(v)dw

]
= E

[∑

v∈Vt

1deg v=kAr

]

= ArE [dk(t)]

2

Lemma 2 Let u ∈ S and t > 0 then E [Dt(u)] = 2Armt

Proof

E [Dt(u)] =
∑

k>0

E [dk(t, u)] = Ar

∑

k>0

E [dk(t)] = ArE

[∑

k>0

dk(t)

]
= 2Armt

2

4.3 Concentration of Dt(u)

In this section we prove

Lemma 3 If t > 0 and u is chosen randomly from S then

Pr
[
|Dt(u) − E [Dt(u)] | ≥ Arm(t2/α + t1/2 ln t) lnn

]
= O

(
n−2

)
.

Proof We think of every edge added as two directed edges. We also think of xt,
the vertex added, as being added with (αmArt − Dt(xt))

+ = max{αmArt − Dt(xt), 0}
“phantom” edges pointing to it. Then choosing a vertex is equivalent to choosing one
of these directed edges uniformly, and taking the vertex pointed to by this edge as the
chosen vertex. So the i-th step of the process is defined by a tuple of random variables
T = (X, Y1, . . . , Ym) ∈ S × Em

i where X is the location of the new vertex, a randomly
chosen point in S, and Yj is an edge chosen uniformly at random from among the edges
directed into Br(X) in Gi−1. The process Gt is then defined by a sequence 〈T1, . . . , Tt〉,
where each Ti ∈ S × Em

i .
Let s be a sequence s = 〈s1, . . . , st〉 where si = (xi, y(i−1)m+1, . . . , yim) with xi ∈ S and
yj ∈ E⌈j/m⌉. We say s is acceptable if for every j, yj is an edge entering Br(x⌈t/j⌉).
Notice that non-acceptable sequences have probability 0 of being realized. Fix t >
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0. Fix an acceptable sequence s = 〈s1, . . . , st〉, and let Aτ (s) = {z ∈ S × Em
τ :

〈s1, . . . , sτ−1, z〉 is acceptable}. For any τ with 1 ≤ τ ≤ t and any z ∈ Aτ (s) let

gτ (z) = E [Dt(u) | T1 = s1, . . . , Tτ−1 = sτ−1, Tτ = z] ,

let rτ (s) = sup{|gτ (z) − gτ (ẑ)| : z, ẑ ∈ Aτ (s)} and let r̂2(s) =
∑t

τ=1(sups rτ (s))2, where
the supremum is taken over all acceptable sequences.
From the Azuma-Hoeffding inequality (see for example [2]) we know that for all λ > 0,

Pr [|Dt(u) −E [Dt(u)] | ≥ λ] < 2e−λ2/2r̂2

. (13)

Fix τ , with 1 ≤ τ ≤ t. Our goal now is to bound rτ (s) for any acceptable sequence s.
Fix z, ẑ ∈ Aτ (s). We define Ω(Gt, Ĝt), a coupling between Gt = Gt(s1, . . . , sτ−1, z) and
Ĝt = Gt(s1, . . . , sτ−1, ẑ)

• Step τ : Start with the graph Gτ (s1, . . . , sτ−1, z) and Ĝτ (s1, . . . , sτ−1, ẑ) respec-
tively.

• Step σ (σ > τ): Choose the same point xσ ∈ S in both processes. Let Eσ (resp.
Êσ) be the edges pointing to the vertices in Br(xσ) in Gσ−1 (resp. Ĝσ−1) plus the
(αmArσ − Dσ(xσ))+ (resp. (αmArσ − D̂σ(xσ))+) phantom edges pointing to xσ.
Let Cσ = Eσ ∩ Êσ, Rσ = Eσ \ Êσ, and Lσ = Êσ \ Eσ

Notice that |Eσ|, |Êσ| ≥ αmArσ. Notice also that if Dσ(xσ), D′
σ(xσ) ≤ αmArσ,

then |Eσ| = |Êσ| and |Rσ| = |Lσ|. Without loss of generality assume that |Eσ| ≤
|Êσ|.
Now, define p = 1/|Eσ| and p̂ = 1/|Êσ|. Construct Gσ by choosing m edges
uniformly at random eσ

1 , . . . , eσ
m in Eσ, and then joining xσ to their endpoints,

yσ
1 , . . . , yσ

m. For each of the m edges ei = eσ
i , we define êi = êσ

i by

– If ei ∈ Cσ then, with probability p̂/p, êi = ei. With probability 1− p̂/p, êi is
chosen from Lσ uniformly at random.

– If ei ∈ Rσ, êi ∈ Lσ is chosen uniformly at random.

Notice that for every i = 1, . . . , m and every e ∈ Êσ, Pr [êi = e] = p̂. To finish, in
Ĝσ join xσ to the m vertices pointed to by the edges êi.

Now let

∆σ =
σ∑

ρ=τ

m∑

i=1

1yσ

i
6=ŷσ

i
,

and for u ∈ S let

∆σ(u) =

σ∑

ρ=τ

m∑

i=1

1|{yσ

i
,ŷσ

i
}∩Br(u)|=1.

Lemma 4
|gτ (z) − gτ (ẑ)| ≤ E [∆t(u)] .
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Proof

|gτ (z) − gτ (ẑ)| = |EGt
[Dt(u)] − EĜt

[Dt(u)]|
= |EΩ(Gt,G′

t
)[Dt(u) − D′

t(u)]|
≤ EΩ(Gt,G′

t
)[∆t(u)]

since only when |{yσ
i , ŷσ

i } ∩ Br(u)| = 1 do we add ±1 to the difference Dρ(u) − D′
ρ(u).

2

Recall that Ar = Area(Br(u)) ∼ c0n
2β−1(lnn)2 and we have fixed τ to be an integer

with 1 ≤ τ ≤ t.

Lemma 5 Let t ≥ 1 and u ∈ S. Then for some constant C > 0,

E [∆t(u)] ≤ CmAr

(
t

τ

)2/α

.

Proof Let τ < σ ≤ t. We start with

∆σ = ∆σ−1 +
m∑

i=1

1yσ

i
6=ŷσ

i
. (14)

Now fix Gσ−1, Ĝσ−1 and xσ and i. Then taking expectations with respect to our coupling,

E
[
1yσ

i
6=ŷσ

i

]
= Pr(yσ

i 6= ŷσ
i ) = Pr(eσ

i 6= êσ
i ) =

1 − |Cσ|
|Eσ|

p̂

p
= 1 − |Cσ|

|Êσ|
=

|Lσ|
|Êσ|

=
max {|Lσ|, |Rσ|}
max{|Eσ|, |Êσ|}

≤ |Lσ| + |Rσ|
αmArσ

(15)

Therefore

E

[
∆σ

∣∣∣∣ Gσ−1, Ĝσ−1, xσ

]
≤ ∆σ−1 + m

|Lσ| + |Rσ|
αmArσ

(16)

For each e ∈ E(Ĝσ−1) \ E(Gσ−1), e ∈ Lσ implies xσ is in the ball of radius r centered
at the end point of e. Similarly for e ∈ Rσ. Therefore,

E
[
|Lσ| + |Rσ| | Gσ−1, Ĝσ−1

]
≤ 2Ar∆σ−1. (17)

Then,

E [∆σ] ≤ E [∆σ−1] + m
E [|Lσ| + |Rσ|]

αmArσ
≤ E [∆σ−1] +

2E [∆σ−1]

ασ
= E [∆σ−1]

(
1 +

2

ασ

)
,

so, E [∆t] ≤ e10/α2
(

t
τ

)2/α
E [∆τ ]. Now, ∆τ ≤ m, because the graphs Gτ and Ĝτ differ

at most in the last m edges. Therefore E [∆t] ≤ me10/α2 ( t
τ

)2/α
.

Finally, note that if v is a random point in S then E [∆t(v)] = ArE [∆t]. For this,
fix u and let φ denote a random rotation of S. Let v = φ(u) and then run Process 1
with φ(Gτ ), φ(Ĝτ ) and xσ, σ > τ and then consider Process 2 starting with Gτ , Ĝτ and
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φ−1(xσ), σ > τ . The mapping φ−1 does not disturb the distribution of xσ, σ > τ and
therefore ∆t(u) in Process 2 is equal to ∆t(v) in Process 1. 2

By applying Lemma 5, we have that for any acceptable sequence

R2(s) =

t∑

τ=1

rτ (s)2 ≤ (CmAr)
2t4/α

t∑

τ=1

τ−4/α = O
(
A2

rm
2(t ln t + t4/α)

)

Therefore, by using Equation (13), we have that there is C1 such that

Pr
[
|Dt(u) − E [Dt(u)] | ≥ C1Arm(t2/α + t1/2 ln t)(lnn)1/2

]
≤ e−2 ln n = n−2.

4.4 Concentration of dk(t)

We follow the proof of Lemma 3, replacing Dt(u) by dk(t) and using the same coupling.
When we reach Lemma 4 we find that |gτ (z) − gτ (ẑ)| ≤ 2E[D̂t] (each edge disrepancy
can affect two vertices), the rest is the same.
This proves (1) and completes the proof of Theorem 1(a) .

5 Connectivity

Here we are going to prove that for r ≥ n−1/2 lnn, m > K lnn, and K sufficiently large,
whp Gn is connected and has diameter O(lnn/r). Notice that Gn is a subgraph of the
graph G(n, r), the intersection graph of the caps Br(xt), t = 1, 2, . . . , n and therefore it is
disconnected for r = o((n−1 lnn)1/2) [32]. We denote the diameter of G by diam(G), and
follow the convention of defining diam(G) = ∞, when G is disconnected. In particular,
when we say that a graph has finite diameter this implies it is connected.
Let

T = K1 lnn/Ar = O(n/ lnn)

where K1 is sufficiently large, and K1 ≪ K.

Lemma 6 Let u ∈ S and let B = Br/2(u). Then

Pr [diam(Gn(B)) ≥ 2(K1 + 1) lnn] = O(n−3)

where Gn(B) is the induced subgraph of Gn in B.

Proof
Given τ0 and N , we consider the following process which generates a sequence of graphs
Hs = (Ws, Fs), s = 1, 2, . . . , N . (The meanings of N, τ0 will become apparant soon).
Time step 1
To initialize the process, we start with H1 consisting of τ0 isolated vertices y1, . . . , yτ0

.
Time step s ≥ 1: We add vertex ys+τ0

. We then add m
8000(α+1)2

random edges incident

with ys+τ0
of the form (ys+τ0

, wi) for i = 1, 2, . . . , m
8000(α+1)2

. Here each wi is chosen

uniformly from Ws.
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The idea is to couple the construction of Gn with the construction of HN for N ∼
Bi(n − T, Ar/4) and τ0 = Bi(T, Ar/4) such that whp HN is a subgraph of Gn with
vertex set Vn(B). We are then going to show that whp diam(HN ) ≤ 2(K1 +1) lnn, and
therefore diam(Gn(B)) ≤ 2(K1 + 1) lnn.
To do the coupling we use two counters, t for the steps in Gn and s for the steps in HN :

• Given Gτ0
, set s = 0. Let W0 = VT (B). Notice that τ0 = |W0| ∼ Bi(T, Ar/4) and

that τ0 ≤ K1 lnn whp.

• For every t > T .

– If xt 6∈ B, do nothing in Hs.

– If xt ∈ B, set s := s + 1. Set ys+τ0
= xt. As we want HN to be a sub-

graph of Gn we must choose the neighbors of ys+τ0
among the neighbors

of xt in Gn. Let A be the set of vertices chosen by xt in Vt(B). No-

tice that |A| stochastically dominates at ∼ Bi
(
m, Dt(B)

max{αmArt,Dt(xt)}

)
. If

Dt(B)
max{αmArt,Dt(xt)} ≥ 1

50(α+1) , then at stochastically dominates bt ∼ Bi(m, 1
50α)

and so whp is at least m
100(α+1) . If Dt(B)

max{αmArt,Dt(xt)} < 1
50(α+1) we declare

failure, but as we see below this is unlikely to happen.

For any R > 0,

m|Vt(BR(w))| ≤ Dt(BR(w)) = m|Vt(BR(w))| + D−
t (BR(w))

≤ 2m|Vt(BR+r(w))|. (18)

where D−
t (BR(w)) is the sum over vertices x ∈ BR(w) of the of the in-degree

degt(x) − m of x.

Now |Vt(BR(w)| ∼ Bi(t, (R/r)2Ar) and so

Pr(Dt(xt) ≥ 8mArt OR Dt(B) /∈ [mArt/5, 3mArt]

OR |Vt(B)| < Art/5) ≤ n−K1/100. (19)

So we assume that Gt is such that the event described in (19) does not happen.

Thus each vertex of B has probability at least m
8(α+1)mArt ≥ 1

40(α+1)|Vt(B)| of
being chosen under preferential attachment.

Thus, as insightfully observed by Bollobás and Riordan [11] we can legiti-
mately start the addition of xt in Gt by choosing m

8000(α+1)2
random neigh-

bours uniformly in B.

Notice that N , the number of times s is increased, is the number of steps for which
xt ∈ B, and so N ∼ Bi(n − T, Ar/4).
Now we are ready to show that HN is connected whp.
By Chernoff’s bound we have that

Pr

[∣∣∣∣τ0 −
K1

4
lnn

∣∣∣∣ ≥
K1

8
lnn

]
≤ 2n−K1/48
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and

Pr

[
N ≤ 1

3
(lnn)2

]
≤ e−c(lnn)2

for some c > 0. Therefore, we can assume lnn ≤ τ0 ≤ K1 lnn and N ≥ 1
3(lnn)2.

Let Xs be the number of connected components of Hs. Then

Xs+1 = Xs − Ys, X0 = τ0

where Ys ≥ 0 is the number of components (minus one) collapsed into one by ys+τ0
. So

Pr [Ys = 0 | Hs] ≤
Xs∑

i=1

(
ci

s + τ0

)m/8000(α+1)2

where the ci are the component sizes of Hs. If s < 2K1 lnn then because m ≥ K lnn,
we have

Pr [Ys = 0 | Xs ≥ 2] ≤ 2

(
1 − 1

s + τ0

)m/8000(α+1)2

≤ 2e−m/(8000(α+1)2(s+τ0)) ≤ 1/10.

So Xs is stochastically dominated by the random variable max{1, τ0 − Zs} where Zs ∼
Bi(s, 9/10). We then have

Pr [X2K1 ln n > 1] ≤ Pr [Z2K1 ln n < τ0] ≤ Pr [Z2K1 ln n < K1 lnn] ≤ n−3.

And therefore
Pr [H2K1 ln n is not connected] ≤ n−3.

Now, to obtain an upper bound on the diameter, we run the process of construction of
HN by rounds. The first round consists of 2K1 lnn steps and in each new round we
double the size of the graph, i.e. it consists of as many steps as the total number of
steps of all the previous rounds. Notice that we have less than lnn rounds in total. Let
A be the event for all i > 0 every vertex created in the (i + 1)th round is adjacent to a
vertex in H2i−1K1 ln n, the graph at the end of the ith round.
On the event A, every vertex in HN is at distance at most lnn of H2K1 ln n whose diameter
is not greater than 2K1 lnn. Thus, the diameter of HN is smaller than 2(K1 + 1) lnn.
Now, we have that if v is created in the (i + 1)th round,

Pr
[
v is not adjacent to H2i−1K1 ln n

]
≤
(

1

2

)m

.

Therefore

Pr [¬A] ≤
(

1

2

)m

n(lnn) ≤ lnn

nK ln 2−1
.

2

To finish the proof of connectivity and the diameter, let u, v be two vertices of Gn. Let
C1, C2, . . . , CM , M = O(1/r) be a sequence of spherical caps of radius r/4 such that u is
the center of C1, v is the center of CM and such that the centers of Ci, Ci+1 are distance
≤ r/2 apart. The intersections of Ci, Ci+1 have area at least Ar/40 and so whp each

13



intersection contains a vertex. Using Lemma 6 we deduce that whp there is a path from
u to v in Gn of size at most O(lnn/r).
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a major error in our proof in earlier version of this paper. We also thank Zeng Jianyang
for his comments.
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