On the random 2-stage minimum spanning tree
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Abstract

It is known [8] that if the edge costs of the complete graph K, are independent random
variables, uniformly distributed between 0 and 1, then the expected cost of the minimum
spanning tree is asymptotically equal to ((3) = Y ;=, ¢ 3. Here we consider the following
stochastic two-stage version of this optimization problem. There are two sets of edge costs
cy: F — Rand cr: E — R, called Monday’s prices and Tuesday’s prices, respectively.
For each edge e, both costs cpr(e) and cr(e) are independent random variables, uniformly
distributed in [0, 1]. The Monday costs are revealed first. The algorithm has to decide on
Monday for each edge e whether to buy it at Monday’s price cps(e), or to wait until its
Tuesday price cr(e) appears. The set of edges X3 bought on Monday is then completed
by the set of edges X7 bought on Tuesday to form a spanning tree. If both Monday’s
and Tuesday’s prices were revealed simultaneously, then the optimal solution would have
expected cost ((3)/2 + o(1). We show that in the case of two-stage optimization, the
expected value of the optimal cost exceeds ((3)/2 by an absolute constant € > 0. We also
consider a threshold heuristic, where the algorithm buys on Monday only edges of cost
less than « and completes them on Tuesday in an optimal way, and show that the optimal
choice for a is @ = 1/n with the expected cost {(3) —1/2 + o(1). The threshold heuristic
is shown to be sub-optimal. Finally we discuss the directed version of the problem, where
the task is to construct a spanning out-arborescence rooted at a fixed vertex r, and show,
somewhat surprisingly, that in this case a simple variant of the threshold heuristic gives
the asymptotically optimal value 1 — 1/e + o(1).
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dation.



1 Introduction

Stochastic Programming refers to the general class of optimization problems where uncertainty
is modelled by a probability distribution on the input variables. Two stage optimization with
recourse is a widely used framework for stochastic optimization (see, e.g., the recent text by
Birge and Louveaux [4]). In this paper we consider a particular example of this approach in
the context of a basic combinatorial optimization problem.

The 2-stage spanning tree problem is defined as follows: We wish to find a low cost spanning
tree of the complete graph K,,. On Monday, say, we are given edge costs, cpr: E — R. We
also know that on Tuesday we will be given alternative costs for each edge, c7: E — R. We do
not know what the costs ¢ will be, but they are random and we know their joint distribution
m(w), w € Q, the set of possibilities. On Monday we must choose a set of edges X and pay
for them at Monday’s prices. On Tuesday, Monday’s prices will no longer be available. Some
edges will be cheaper and some will be more expensive. We must now choose a set of edges
Xr, at Tuesday’s prices to complete a spanning tree. Our total cost will be ear(Xar) +er(Xr),
and our goal is to choose the set of edges X s which minimizes the expected total cost of the
tree we create. Formally, we wish to compute

OPT = 1}(1in em(Xm) +E rgl(in{cT(XT): Xy U X is a spanning tree} | .
M T

Anupam Gupta [9] has pointed out that in the worst case, we can encode set cover as such a
problem and so it probably cannot be efficiently approximated beyond a ratio of O(logn). A
version of his proof is included in Appendix A.

The inapproximability result requires a worst-case set of costs cjr and a worst-case distribution
for cp. In this paper we carry out a probabilistic analysis for instances where cps(e) and cr(e),
e € E(K,,) are selected independently and uniformly from the interval [0, 1].

It is well-known that if only Monday’s costs are available then we can find a minimum spanning
tree in polynomial time and that the expected cost Z; of the optimum solution is asymptotically
equal to ((3) ~ 1.20205..., Frieze [8]. Here ((3) = Yo%, n~3. Furthermore, if we could
accurately predict the future and could find a minimum spanning tree using costs ca(e) =
min{cp(e),cr(e)} then [8] shows that we could pick edges so that our optimal cost Zj is
asymptotically ((3)/2 ~ .601028.. ..

We first examine the performance of a simple threshold heuristic. Let A, be the algorithm that
finds the minimum spanning forest of K, that only uses eges of cost less than « on Monday
and then completes the tree as cheaply as possible with new edges paid for at Tuesday’s prices.
Let A, be the (random) value of the cost of the solution returned by A,.



Theorem 1 The best choice for o is 1/n in the sense that
1
E [Ay/n] = ((3) — 5 +o(1) < E[4a] +o(1)
for any choice of a.

Furthermore, for all a, the value A, is concentrated around its mean.

The proof of Theorem 1 also gives a lower bound on the value of stochastic solution (VSS),
which is defined as the difference between the expected result of using the expected value solution
(EEV) and the value of the optimal 2-stage solution OPT'. To find the EEV, we observe that
when the distribution of each Tuesday edge costs is replaced by its expected value, then the
optimal solution whp ignores the Tuesday edges (which now have cost 0.5) and buys the whole
tree on Monday. Thus, the FEV is asymptotically equal to the cost of buying the whole tree
on Monday, which is asymptotically ¢(3). So we have V.SS = OPT — EEV > 1 —o(1).

Note that 4(43()3;/12/2 ~ 1.168... and so whp ! Ay /p is within 17% of optimal.
Recently, Dhamdere and Singh showed that A¢(3)/, is a constant factor approximation al-
gorithm for instances where Monday’s costs are arbitrary and Tuesday’s costs are selected
independently and uniformly between 0 and 1 [7].

A threshold algorithm is the best we can do if we do not take account of the structure of the
costs for Monday’s edges. Can we improve on this if we do? The answer is yes. We show that
we can reduce the expected cost by at least a (very) small amount.

Theorem 2 There is a polynomial time algorithm A* for selecting Xps whose (random) cost
A* satisfies

E[A*] <¢(3) — % — 107256,

We see therefore that the algorithm A, /, is not optimal. Is it possible to asymptotically achieve
¢(3)/2? Let OPT denote the minimum expected cost achievable by any 2-stage algorithm.

Theorem 3
OPT >((3)/2+107°

Theorem 3 is equivalent to a lower bound on the ezpected value of perfect information (EVPI),
which is defined between the difference between the value of the optimal 2-stage solution

!We use the term with high probability, abbreviated whp, to refer to a sequence of events {A,} for which
Pr[A,] = 1 as n — oo.



OPT and the expected value of the optimal solution when Tuesday’s costs are known (the
wait-and-see value (WS)). Theorem 3 shows that EVPI = OPT — WS > 1075.

Finding the the optimal choice of Xs and determining what can be done in polynomial time
remain challenging open problems.

We continue with a directed version of this problem. Here we are given Monday and Tuesday
costs for all the arcs of the complete digraph D,,. (The vertices of D,, are {1,...,n}, and
each ordered pair (3,7), 1 <14 # j < n, forms an arc in D,,). We now wish to find a low cost
spanning arborescence rooted at vertex 1 i.e. a tree with arcs directed away from vertex 1.
We first consider the threshold algorithm /Ta which finds a minimum cost rooted forest using
arcs from Monday of cost less than o and then completes it to a rooted arborescence after
Tuesday’s costs are revealed. Here @ = 1/n is also the best choice: Let A, be the cost of the
output from ./Ia

Theorem 4

-

E [El/n} =1-e1+0(1) gE[ a] +o(1)

for any choice of a.

Furthermore, for all o, the value ffa is concentrated around its mean.

N
This turns out to be asymptotically optimal. Let OPT denote the minimum expected cost
achievable by any 2-stage algorithm.

Theorem 5
-1
OPT>1—e" " —o(1).

We prove Theorem 1 in Sections 2.1, 2.2, Theorem 2 in Section 2.3, Theorem 3 in Section 2.4,
Theorem 4 in Section 3 and Theorem 5 in Section 3.2.

2 Undirected case

2.1 Threshold heuristic

Proof of Theorem 1 Fix some 0 < a <1 and let T be the spanning tree produced by
the threshold heuristic A, and let T;, and T; be the edges bought on Monday and Tuesday



respectively. Then

o(T)= > cmle) + Y _ cle)

e€Tm ecTy
=Y / Lon(e)>p}@+ D / Lici(e)>p}dp
eGTm eETt
= / > Leneendp+ / > 1fee>ppdp
eGT eET

For any graph G, let k(G) denote the number of connected components in G.

Now, let G|, be the graph containing only edges with Monday cost less than p. Since T, is
the minimum spanning forest on edges with Monday cost less than «, for p < a we have by
the greedy algorithm of Kruskal:

D Len(ezp = £(Gp) — #(Ga)-

ecTm

Let H, be the graph containing edges with Monday cost less than « or Tuesday cost less
than p. Then, since T} is a minimum spanning tree on the graph formed by contracting each
component of T;, to a single vertex, we have

D Leezpy = #(Hp) — 1.

ecTy

Linearity of expectations gives

«

1
BI(T) = [ Blx(Gy) ~ w(Galldp+ [ Bln(,) ~1)dp

Is% 1
— [ BlGld—aBlx(Ga)l + [ Els(Hy)dp—1. 1)
p=0 p=0
We point out here that this implies
1
/  BIK(G)dp = 1+(3) + o(1), 2)

since putting o = 1 into (1) we have E [¢(T')] is the expected value of the minimum spanning
tree using Monday costs. As already mentioned, this is {(3) + o(1). But we have k(G,) =
k(Hp) =1 for all p < 1.

Now, G, is identically distributed with the Erdés-Rényi random graph Gy, (in which each
pair of n vertices appears as an edge independently with probability p) and H,, is identically



distributed with the Erdés-Rényi random graph G, ,y for p’ = a + p — ap. So we have

| Bl == [ BRG] .

! —a

We may assume a < 2logn/n. If @ > 2logn/n then whp G, is connected (see, for example,
Bollobés [5, Thm. 7.3, p. 164]) which means that whp all the edges are purchased on Monday,
and thus the expected cost E[A], will be ¢(3) + o(1).

The integral [ v=a E [k(Gy)] dp' is bounded by fpl,ZOE [£(Gp)] dp' = 1+ ¢(3) + o(1), so we
have (recalhng that o = o( )

a 1 a 1
[ wwGas [ sia= [ sweo- 2 [ BwGw
p p = p

=0 =0 =

_ / " E[x(Gy))dp +of1).

So, altogether we have
E[e(T)] =¢(3) + o(1) — aE[(Ga)] .-

Set 3 so that @ = §/n and put k7 equal to the number of tree components. There are at most
n2/3 components of size at least n'/3 and so we see that

oBlx 5 Z( )kk ) (6>k—1 <1_ §>k(n—k)+(k2_3k+2)/2+0(1) )

:g’f; (87)" +o(0). (4)

Note that the sum in (4) is convergent, even for § = 1.

Let xk denote the number of non-tree components. Then we have

aE[kn(Gq)] < gzé (Z)kk (g)’“ <1 _ g)k(n_k) ﬂ Z (Bel=P)* + o(1) = o(1),

and so
o0 kk: 2

aE[k(Ga)] = (ﬂe ) +o(1). (5)

k=1

Now Be~? has a unique maximum at 8 = 1, which shows that the threshold o = 1/n is
asympotically best for the threshold heuristic.

Finally, we note that for § =1,

aE[k(Ga)] =) %e_k +o(1) = % +o(1), (6)
k=1



and so the threshold heuristic attains a value of ((3) — 1 + o(1).

(The last equation in (6) can be justified as follows: Consider the exponential generating func-

tion U(z) =) 5oy kl;c—fcck for the number of labelled trees with k vertices and the exponential
generating function T'(z) = 3 -, k’;—?lwk for the number of labelled rooted trees with k ver-

tices. These satisfy U(z) = T'(z) — T(;)2 (equation (3.3) of [10]). Now T'(e~!) = 1 can be seen

from the fact that nT(e~!) is asymptotically equal to the number of vertices on trees in the
random graph G,, 1/,,. The sum in (6) is U(e™?).)

2.2 Concentration

The goal of this section is to prove that for any constant A > 0, there exists § = 6(A) > 0 such
that for sufficiently large n,

Pr[|A, —E[A4]| > A < e ™

We need only show this for A sufficiently small, and it is convenient to define € so that € +
4(1 —e)~!(2¢ + H(e)) = A, where H(z) = —zlnz — (1 — z)In(1 — z) is the entropy function.

In our analysis we consider separately the contribution of long and short edges. Let C = 2¢7!,
and let Z denote the total cost of the edges used by A, with edge cost at most C/n. Let
N = 2(7;) and note that Z is a function of N i.i.d. random variables X1, ..., Xy (one for each
edge for each day). Also, each X; is uniformly distributed on [0, 1].

We will show Z is concentrated using a variant of the Symmetric Logarithmic Sobolev In-
equality from [6]. Let Z denote the same quantity as Z, but with the variable X; replaced
by an independent copy X;. Then a simplified form of the Symmetric Logarithmic Sobolev
Inequality [6, Corollary 3] says that if

N
5|32~ 201
=1

Xl,...,XN:| SC

then for all ¢ > 0, ,
Pr[Z > E[Z] + ] < et/

and if

N
E [Z(Zé 2P,
=1

Xl,...,XN:| SC

then for all ¢ > 0, ,
Pr[Z < E[Z] —t] < e ¥/

Changing the value of one edge can change the value of Z by at most C/n, so (Z — ZZ{)2 <
(C/n)?. Let I denote the indices of the edges which contribute to Z. If i ¢ I then Z! < Z



implies X] < C/n. So

N
Y (Z =217 < (C/n)+ Y (C/n)*1x1ccym:
i=1 il il

Since there are less than n terms in the first sum and less than n? terms in the second sum,
we have

N
B| Y2~ 2010
=1

Xl,...,XN] < C?/n+C3/n < 2C3/n.

If ¢ ¢ I then we also have that Z; > Z implies X} < C/n. So we also have

N
B| Y%~ 217

=1

Xl,...,XN:| S 02/n+03/n S 203/n.

Therefore, 2 3 5
Pr[|Z —E[Z]| > ¢] < 2e ©M8C° = 9¢c"n/64

Let Z' denote the total cost of the edges used by A, with edge cost at least C/n. We will
show that Z’ > X\ — € with exponentially small probability.

Let G be the graph containing edges with Monday or Tuesday cost less than C/n. Then G is
identically distributed with G, , for p = 2C/n — (C/n)?. Let S denote the set of vertices that
are not in the giant (more precisely, largest) component of G. We will obtain a exponential
bound on the probability that |S| > en. To do so, we let By denote the event “there exists a
set T such that en < |T| < n/2 and no edge of G crosses the cut between T and T.” Note
that in order for |S| > en, it is necessary that event By holds: if |[S| > en, then (since |S]
also exceeds en) either T = S or T = S shows that B; occurs; if |S| < en, then all connected
components of the graph have size at most én and we can choose T to be the union of an
appropriate collection of connected components.

Since C = 2¢71, we have

n/2 n O\ 2k(n—k) n/2 Ch(1—k/n)
> < < - < n—2Ck(1—k/n < -n
Pr[|S| > en] < Pr[B;] < kzzm <k) <1 n) < kzzsne < ne (7)

Z' can be bounded by the sum of (i) the edges of length > C'/n in the minimum spanning tree
using Monday costs and (ii) the sum of the edges of length > C/n in a minimum spanning tree
of the graph obtained by shrinking the components of the Tuesday forest. (ii) is stochastically
less than by (i). The sum in (i) can be bounded by the sum over the vertices s € S of the
length of the cheapest edge from s to the giant component (more precisely largest component)
of the graph spanned by the edges of length < C/n.



We finish by calculating an upper bound on the probability that any subset of size en has the
sum of the minimum cost edges exceeding (A — €)/2. Let V; denote the minimum of n’ :=
(1—¢)n independent random variables each uniformly distributed in [0, 1]. Then E[V}] =
and

1
n/4+1?

E[etVl]z/;_O n'(l-z)" e =14 — (n + 1) k(n+k—1) <1+2t)

k>1

(The second equality follows from integration by parts, inequality holds for ¢ < n'/2).

Then, for any set T' with |T'| = k,

n’ I ! i k I
Pr [ZVE(D) > )\] — Pr [67 SCoer Vi(v) > hn /2] <e 2R [en V1/2} < e /2t
veT

Let Bz denote the event “there exists a set T' with |T'| < en and ), .7 Vi(v) > (A —¢€)/2 =
2(1 —e)~!(2e + H(¢))”. Then we have

n —en—H(e)n —en
Pr[Bs] < Z <k)e en—H(En < epeen, (8)
1<k<en

We combine (7) and (8) to show that the probability Z’ exceeds A — ¢ is small.

Pr[Z' > X — | < Pr[|S| > en] 4+ 2Pr[Bsy] < ne™™ + 2ene™*".

Finally,

Prl|Aa —E[Aa]| 2 A < Pr[|Z —E[Z]| 2 e] + Pr[Z' > A —¢]

5
< 2e7E /04 4 pemm 4 2epeEm,

2.3 Beyond the threshold heuristic

We can achieve a slightly better expected value than the threshold heuristic A/, by being
more careful about edges with cost near the threshold.

Let £ be a positive integer and let £ > 0 be a small positive constant and let ' be the minimum
spanning forest on the edges with Monday cost less than (1 —¢)/n. Let an edge e = {u, v} be
bad if it has Monday cost cps(e) € [(1 —€)/n,1/n], and for = u,v there are:

(A) Exactly £ vertices w for which cps(z,w) < (1 — 2¢)/n. Denote this set of vertices by Cy.

(B) No vertices w for which epr(z,w) € [(1 — 2¢)/n,1/n].



(C) No vertices w € Cy and y ¢ {z} U C, for which ep(y, w) < 1/n.

If e is bad then e will be part of an isolated tree of Gy/,, containing 2/ + 1 edges and e will be
chosen by A /.

Let Ty be the tree constructed by A, /,, and let T, be obtained by taking the minimum spanning
forest which uses edges e with cpr(e) < 1/n which are not bad, and then completing this forest
to a tree as cheaply as possible with edges at Tuesday’s costs. We will show that

E[T; — Tp] > 107256 (9)

and so completing the proof of Theorem 2.

We must estimate the expected savings if we leave out the bad edges and only the bad edges
from the threshold solution. In this case, {z} U C%, £ = u,v are trees of the forest of the edges
chosen on Monday.

We consider the contribution from the removal of a single bad edge e = {u,v}. We expose the
costs of the edges carefully to avoid unpleasant conditioning. First we expose the Monday cost
of e. The probability cps(e) is in the correct range is €/n. If cpr(e) is in this range, we expose
the Monday costs of the other edges incident to u and v. The probability that the costs of the
other edges are in the correct range is

()2 02 = o

Now, we expose the Monday costs of the neighbors of C,, UC,. The probability that (C) holds
is (1 —1/n)2n=2-20 — ¢=2(1 4 o(1)).

Thus the expectation of the number of bad edges b is given by

e(1 — 2¢)%te=26-2
2(01)2

We now expose all the Monday and Tuesday costs between the n — 2 — 24 vertices that are
not part of C,, and C,. Let H be the graph containing all edges just exposed with Monday
or Tuesday cost at most (1 — 2¢)/n. Note that H is identically distributed with Gy, for
n=n—-2-20and p = (1+0(1))(2 —4e)/n. If ¢ < 1/4 then H has a giant component
Kp qs?. We expose the remaining edge costs and let X, (resp. X,) be the minimum cost
of a Tuesday edge from C, (C,) to K, assuming that it exists. The size of K is at least
Bn(1—o0(1)) gs, where 3 is the root of f+e 21728 = 1 in the interval (0,1). We take ¢ = 0.1
and then 8 > 0.7. So, for £ = 100 we have E[X,] = E[X,] = Ht;gle) < 0.02n~L. For each bad
edge e = {u,v} we then have expected cost savings of at least

(10)

Bt = (1+o(1))

0.1
—,Xu+Xv} >, (11)
n

2 A sequence of events £, occurs quite surely gs if Pr(£,) =1 — O(n™%) for any K > 0.

10



We can prove (11) as follows: Let e = {u,v} be bad. e ¢ T, and there is a path from u to v
which goes to a vertex of Cy, goes to H via an edge of length X, traverses H and then goes
via an edge of length X, to a vertex of C, and then to v. If A, B are the components of 71 —e
then at least one edge f ¢ T1 of P will join A to B. We observe that

1-—2¢ 1-—2¢

min{cp(f), er(f)} Sma,x{ ,Xu,Xv} Smax{ ,Xu—[—Xv}.

So, if we replace e by f in T} we will, by (11), save at least %. If we repeat this for all bad
edges, then we will have a tree containing all of the Monday purchased edges and it will, in
expectation, be at least %E[b] cheaper. We obtain (9) by using this together with (10) with

£ = 100.

2.4 A lower bound on OPT

If we could see all the Monday and Tuesday costs before selecting any edge then we could find
a spanning tree with cost ~ ((3)/2. Since we have to make some decisions before we see the
Tuesday costs, it seems likely that our solution should, in expectation, cost at least ((3)/2+¢,
for some small €. This is the content of Theorem 3.

Let C be a positive constant, (which we will eventually take to be 3, to obtain a concrete
bound). Consider the edges we buy on Monday with cost exceeding % Let

e = Boe—(20+3)/2

where f¢ is the solution to 8+ e (¢~ 18 =1 in the interval (0, 1).

We will see that if we buy more than en of these edges, then we will regret our purchase on
Tuesday. We also argue that if we buy less than en, then we will regret it too.

Case 1: Suppose X contains at least en edges with cys(e) > %, and let e1,es,...,€em, m > en
be these edges. Let H be the graph consisting of all the edges €’ with ¢y (e’) < % Then (for
any C > 2), H contains a giant component Ky with size Son(1 —o(1) whp. Fori=1,...,m,
if e; has both end vertices in K7, then we can find a cheaper spanning tree T; by removing e;
from T;_; and adding an edge from H on Tuesday. This will decrease the cost of the solution
by at least 1/n. Since each edge e; has both vertices in K with probability ~ (ﬁg") /(5) ~ B,
the 2-stage solution exceeds the optimal solution by at least ﬁ%s —o(1) in expectation.

Case 2: Suppose Xy contains less than en edges with cpr(e) > % For a vertex v, let &, be
the event “the cheapest Monday edge incident to v has cost between % and % and the other

endpoint is in Kz”. Then Pr [£, | |Kyl] = |KH|% (1- %)71-2, and so Pr[&,] ~ Bge(¢H1),

Let & be the event “there is no edge incident to v with Tuesday cost less than %”. Then
Pr[&)] = (1 - %)nfl ~ e (C+2) If £, and & occur then not buying the edge from v to Kp

11



with cost less than (C + 1)/n on Monday results in paying at least 1 more than optimal to
connect v on Tuesday. But we only take en edges on Monday with cpr(e) > %, SO we expect
to pay this penalty on at least nBoe~(2C+3) _ en vertices, and so our 2-stage solution exceeds
optimal by at least Soe~(2C+3) /4 in expectation, after accounting for the fact that one edge
has 2 endpoints.

Taking C = 3, numerical computation shows that the 2-stage solution exceeds optimal by at
least 107°.

3 Spanning arborescence problem

The directed version of this problem is to build a cheap spanning out-arborescence rooted at a
fixed vertex r. Given a random cost for each directed edge on Monday and a distribution for
the random cost for each directed edge on Tuesday, find directed edges to buy on Monday to
minimize the expected total cost when you buy the missing edges on Tuesday. In other words,
compute

OPT = r}r(lin e (Xm)+E rgl(in{cT(XT): Xm U Xrp is a spanning arborescence rooted at 7}| .
M T
In this case there is a lower bound that matches the threshold heuristic.

3.1 Threshold heuristic

This comprises two phases:

Phase 1: For each vertex, if the cheapest in-edge on Monday has cost at most o we will
buy it, and otherwise we will wait till Tuesday and buy the cheapest in-edge available. This
does not define an arborescence, it defines a functional digraph, with all in-degrees equal to 1.
This consists of a collection of vertex disjoint cycles Cy,Co,...,Cp, and for each vertex v in
CiuUCyU---UC(,, there is an arborescence directed from v.

Phase 2: We delete the arc directed into ». We then delete one (arbitrary) arc from each cycle
that remains. At this point we have m' vertex disjoint directed rooted trees Ty, 75, ..., Ty,
say, where m < m'’ < m + 1. Assume that r is the root of 7. Now we make a spanning
arborescence as follows:

Fori:=m',m' —1,...,2 we do the following:

Find the cheapest arc, at Tuesday’s prices, into T; from a vertex in Ty N1y N ... N T;_1.

If this arc came from T} then this creates a rooted tree T]{ from the vertices of T}, T;.

T; replaces T; and T; disappears.

12



Note that since the arc removed in Phase 2 is chosen arbitrarily, this procedure can be imple-
mented in the 2-Stage framework: on Monday, we leave some edge out of any cycle that Phase
1 wants to buy. This does not require any knowledge of the Tuesday costs.

Analysis of Phase 1
We find that the expected cost of the arcs chosen is given by

1

n ( / ;(n — De(l - 2)"2dz + (1— a)*! / (n=1)a(1 - x)"—2dx)

:n@-%umﬂ_m%):1—(n—1)a(1—a>"1-

This is minimised at o = 1/n giving a value which is asymptotically equal to 1 — e~L.

Analysis of Phase 2

It remains to show that the cost added in this phase is o(1) whp. First of all, it is known (see,
e.g., [5], Ch. 14.5), that for some K > 0, m < K logn with probability at least 1 — O(n=2).
An easy calculation shows that with probability 1 — o(n~2) over Tuesdays’ prices, for every
ordered partition (Vi,V2) of V the cheapest Tuesday’s arc from V; to Va2 has cost at most
4logn Indeed, the probability that this is not so can be bounded from above by

n

n—1 k(n—F) n/2 k(n—k) n/2
n 4logn n 4logn en\k _4logn kn
— < — < —_— n
(k) <1 n ) . 2Z<k) <1 n ) <23 (%)
k=1 k=1 k=1
= o(n7?).

Assuming the above conditions hold the arcs added at Phase 2 increase the total weight of the
2
obtained solution by at most O(long).

Concentration

The proof is analogous to the proof in section 2.2. Given a A > 0, we pick the appropriate
constant C, and use Azuma’s inequality to show the total cost of the arcs with cost less than
C/n is concentrated around its mean. Then we show that the probability the total cost of the
remaining arcs is anything significant is exponentially small, by showing that (with probability
exponentially close to 1) there are not too many vertices left unconnected, and for any small
set of vertices, there is a set of edges connecting them to the remaining vertices which doesn’t
cost anything significant.

H
3.2 Matching lower bound on OPT

In any feasible solution each vertex v besides the root r has to have a unique edge directed to
it. So we can obtain a lower bound on what is achievable by looking at each vertex individually.
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For any realization of cps, taking expectations over ¢ we have
min {CM(XM) +E [min cr(Xr): XpUXris an arborescence] }
XM XT
S . . E | mi _ . . 1 -
> me {rwn;%{cM(w, v)}, [{Un;%{cT(w, v)}] } g min {rﬁ;%{cM(w, v)}, /n}
VFET

vET

And so taking expectations over cjs, we obtain, where X; are independent, uniformly dis-
tributed between 0 and 1,

OPT > (n—1)E[min{l/n, X1, Xs,..., Xn1)]

= (n-1) </;/On(n —De(l - )" de + (1 - %) " /wlzl/n %dw)

~ 1—e L

4 Open questions

As far as this piece of work is concerned, the main open question is how to close the gap
between the results of Theorems 2 and 3.

Another natural question might be to consider a 2-stage version of the random assignment
problem. See Aldous [1], [2], Linusson and Wastlund [12] and Nair, Prabhakar and Sharma
[13] for recent work on the standard one-stage analysis. In principal, one could try to carry
out a similar 2-stage probabilistic analysis for any combinatorial optimization problem.
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A Hardness of approximation in worst case

We describe a gap preserving reduction from set cover. Let S1,Ss,...,S, C [n] be a set cover
instance. We construct an MST instance with n 4+ m + 1 vertices by defining the function cjs
and the random function ¢p. Denote the vertices by {r,v1,...,vm,1,...,n}. Set the Monday

edge cost of {r,v;} to 1 and set all the other Monday edge costs to oco.

1, if {u,v} = {r,v;};
0, otherwise.

em({u, v}) = {

Make the Tuesday edge costs uniformly distributed over n functions, where the j-th function
sets to oo the cost of edges in the cut separating T; = {j} U {v;: S; 3 j} from the rest of the
graph, and sets the other edges costs to 0.

00, if {u,v} € (TJ,T]),

0, otherwise.

@ ({u,v}) = {

If Si; US;, U---US;, = [n] then by buying Monday edges {r,v;,} where j = 1,...,k, we can
complete the spanning tree on Tuesday with 0-cost edges for any future.

On the other hand, consider any set X; of Monday edges such that the expected total cost of
the spanning tree is finite. Then each {u,v} € X3 must have the form {r,v;,}. Consider set
of sets corresponding to these edges, {Si, ..., S;,}. For any £ € [n], we must have £ € S;, for
some %;; otherwise with probability 1/n, we realize future ¢, and have to buy an infinite cost
edge across cut (T}, T}).
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