
Equilibria configurations for

epitaxial crystal growth with adatoms

Marco Caroccia, Riccardo Cristoferi, Laurent Dietrich

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh, PA 15213

June 14, 2017

Abstract

The behavior of a surface energy F(E, u), where E is a set of finite perimeter
and u ∈ L1(∂∗E,R+) is studied. These energies have been recently considered in the
context of materials science to derive a new model in crystal growth that takes into
account the effect of atoms freely diffusing on the surface (called adatoms), which
are responsible for morphological evolution through an attachment and detachment
process. Regular critical points, existence and uniqueness of minimizers are discussed
and the relaxation of F in a general setting under the L1 convergence of sets and the
vague convergence of measures is characterized. This is part of an ongoing project
aimed at an analytical study of diffuse interface approximations of the associated
evolution equations.

1 Introduction

In this paper we investigate the behavior of a surface energy of the form

(1.1) F(E, u) :=

ˆ
∂E
ψ(u) dHn−1

and in particular we characterize its lower semi-continuous envelope. Here ψ : R+ → R+

is a convex function, R+ := [0,∞), u ∈ L1(∂E,R+) is a Borel function representing the
adatom density, and E ⊂ Rn, a smooth set, represents the region occupied by the crystal.

The above quantity, proposed by Burger in [6], is the underlying energy for the evolu-
tion equations

(1.2)

{
∂tu+ (ρ+ uH)V = D∆∂Etψ

′(u) on ∂Et,
bV + ψH − (ρ+ uH)ψ′(u) = 0 on ∂Et,

where {Et}t∈I are evolving smooth sets, V is the normal velocity to ∂Et, H is its mean
curvature, u(·, t) : ∂Et → R+ is the adatom density on ∂Et, ρ > 0 is the constant
volumetric mass density of the crystal, b > 0 is a constant called kinetic coefficient and
D > 0 is the diffusion coefficient of the adatoms. The above system of evolution equations
is a refinement of the classical model for surface diffusion, one of the most important
mechanisms for crystal growth (see [26]), which, according to the Einstein-Nernst relation,
can be written as

(1.3) ρV −D∆∂Etµ = F · ν on ∂Et .
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Here µ denotes the chemical potential and F represents the deposition flux to the surface
(in (1.2), F ≡ 0). The evolution equation (1.3) has been widely used to study properties
of crystal growth from an analytic point of view (see [3, 4, 8, 13, 14, 16, 18]). Nonetheless,
it does not take into consideration the effect of the atoms freely diffusing on the surface
(called adatoms), which are responsible for surface evolution through an attachment and
detachment process. Taking into account their role is a relatively new feature in mathe-
matical models. System (1.2) was introduced first by Fried and Gurtin [17] a decade ago.
It accounts also for the kinetic effects through the term bV , that represents a dissipative
force associated to these attachments and detachments. To focus on the role of adatoms,
(1.1) is a surface energy depending only on u, neglecting the elastic bulk and anisotropic
surface terms that are usually considered in the study of (1.3). Thus, in our case, the
chemical potential µ reduces to ψ′(u).

So far, the only analytical results about (1.1) and (1.2) have been obtained in [6],
where a study of critical points and minimizers is presented and where the dynamics are
studied in two dimensions near equilibrium configurations. In order to perform numerical
simulation on the system (1.2), in [23] (in the particular case in which ψ(s) = 1 + s2/2)
the authors introduce a diffuse interface approximation based on the energy

(1.4) Fε(φ, u) :=

ˆ
Rn

(
ε

2
|∇φ|2 +

1

ε
G(φ)

)
ψ(u) dx

(here G is a double well potential) and show formal convergence of the associated evolution
equations to (1.2). Numerical analysis based on a level set approach is carried out in [24].

Our paper is a first step of an ongoing project in studying analytically the above
convergence. In the spirit of the work by Taylor ([25]) and Cahn-Taylor [27], the idea is to
see the approximate evolution equations proposed in [23] as a gradient flow of (1.4) and
obtain information about the limiting equations by using Γ-convergence techniques (see
[5, 9, 10]). A natural question is whether Fε Γ-converges in some suitable topology to F .
For this reason, we rewrite the energy (1.1) within the context of sets of finite perimeter
and Radon measures, and set

F(E,µ) :=

ˆ
∂∗E

ψ(u) dHn−1 ,

when the measure µ is absolutely continuous with respect to Hn−1 ¬ ∂∗E and u is the
Radon-Nikodym derivative with respect to Hn−1 ¬ ∂∗E, and +∞ otherwise. Here ∂∗E
is the reduced boundary of E (that coincides with ∂E in the case of smooth sets). We
adopt a natural topology given by the L1 convergence of sets and the weak*-convergence of
measures. We show that in general F fails to be lower semi-continuous (see Corollary 4.5)
for that topology. To be precise, our main result can be stated as follows (see Theorem
4.12).

Theorem 1.1. Let ψ : R+ → R+ be a non decreasing convex function. The lower semi-
continuous envelope of F is

F(E,µ) :=

ˆ
∂∗E

ψ (u) dHn−1 + Θµs(Rn) ,

where ψ is the convex subadditive envelope of ψ, and Θ := lims→∞ ψ(s)/s. Here µ =
uHn−1 ¬ ∂∗E + µs is the Radon-Nikodym decomposition of µ.
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The novelty of this result relies on the fact that we allow both ∂∗E and µ to vary. To our
knowledge, in the literature, results in this context involve either a fixed reference measure
(see Bouchitte-Buttazzo [7, Section 3.3], and [15]) or consider integrands depending on the
jump of a BV function and the normal to its jump set (see [2, Section 5]).

In the relaxation F of F , we obtain the convex subadditive envelope of ψ, since sub-
additivity and convexity are necessary conditions for lower semi-continuity, issuing from
oscillation phenomena. In turn, concentration effects lead to the recession part Θµs. The
key ingredient in our construction of the recovery sequences, where ψ > ψ, is an interplay
between increasing the perimeter and decreasing the adatom density accordingly. This is
done in Proposition 4.13 and Lemma 4.14. As a consequence, we also obtain the following
general fact which can be seen as a local estimate of the lack of upper semi-continuity of
the perimeter in L1.

Theorem 1.2. Let E be a set of finite perimeter in RN and f ∈ L1(∂∗E,R+). Here
L1(∂∗E,R+) is meant with respect to the Hn−1 ¬ ∂∗E measure. Then, there exists a se-
quence (Ek)k∈N of bounded, smooth sets of finite perimeter such that 1Ek

→ 1E in L1

and

lim
k→+∞

P (Ek;A) = P (E;A) +

ˆ
∂∗E∩A

f dHn−1

for all open sets A in Rn such that Hn−1(∂A ∩ ∂∗E) = 0.

It is worth noticing that with f ≡ α we get P (Ek;A)→ (1+α)P (E;A). The non triviality
of the above results relies on the fact that the sequence (Ek)k∈N does not depend on A.

We also investigate critical points and minimizers of F and F under a total mass
constraint

ρ|E|+
ˆ
∂∗E

u dHn−1 = m.

In Proposition 3.5 we define a notion of regular critical points of F and if ψ is strictly
convex and of class C1 we characterize them as the balls with constant adatom density c
satisfying

(ψ(c)− cψ′(c))H∂E = ρψ′(c)

where H∂E denotes the mean curvature of ∂E. The above condition can be written as

H∂Eψ(c)− ψ′(c)ρeff = 0 ,

where ρeff := ρ + cH∂E plays the role of an effective density, as can be seen in (1.2). In
Theorem 3.7, we provide sharp assumptions on ψ to ensure that the constrained minimum
of F can be reached by a ball with constant but non-zero adatom density. Nonetheless in
Proposition 3.13 we show that the energy restricted to those couples can exhibit a plateau
of minimizers even if ψ is strictly convex. For what concerns F , in Theorems 5.1 and 5.4
we define corresponding notions of regular critical points and constrained minimizers and
show that the above results still hold for the absolutely continuous part (E, u) of (E,µ) if
|E| > 0.

It is interesting to notice that due to the structure of the problem we are able to prove
existence of minimizers without using the Direct Method of the Calculus of Variations.
However, for the sake of completeness a compactness result for sequences of bounded
energy is proven in the Appendix (Theorem C.1).

Finally, we would like to point out that the parabolicity condition

(1.5) ψ(s)− sψ′(s) ≥ 0

3



plays a central role in our analysis, as it defines ψ (see Remark A.12) and appears in
different other contexts. It was introduced in [6] as a stability condition and appears as a
parabolicity condition in the evolution equations, as we will discuss in a forthcoming paper
about the aforementioned Γ-convergence-type analysis and associated evolution equations.
In particular, by adapting the method developed in the current paper, we will show that
Fε Γ-converges to F .

The organization of this paper is as follows: in Section 2 we recall some basic facts
that we will use throughout the paper. Section 3 deals with critical points and the study
of constrained minimizers. Section 4 is the central part of this paper, and is where we
prove Theorem 1.1. Section 5 studies minimizers of the relaxed functional. Finally, in the
appendix we prove some basic facts about the convex subadditive envelope of a function
and present some additional and general results derived from Section 4.

2 Preliminaries

We recall the following, which can be found in [2, Section 3] and [20, Section 11].

2.1 Sets of finite perimeter

Definition 2.1. Let E be an Ln measurable set of Rn. We call perimeter of E in Rn

P (E) := sup

{ˆ
E

div(φ)dx : φ ∈ C1
c (Rn,Rn), ‖φ‖∞ ≤ 1

}
.

We say that E is a set of finite perimeter if |E| <∞ and P (E) <∞.

Remark 2.2. If E is a set of finite perimeter, then the characteristic function 1E ∈
BV (Rn) is of bounded variation. Its distributional derivative D1E is a Rn-valued finite
Radon measure on Rn. We will write |D1E | for its total variation measure.

Definition 2.3. For any Borel set F ⊂ Rn the relative perimeter of E in F is defined as:

P (E;F ) = |D1E |(F ).

Definition 2.4. Let E ⊂ Rn be a set of finite perimeter. The reduced boundary of E is
the set

∂∗E :=

{
x ∈ supp|D1E | : lim

r→0

D1E(Br(x))

|D1E |(Br(x))
=: νE(x) exists and satisfies |νE(x)| = 1.

}
Remark 2.5. It is well known that the reduced boundary of a set of finite perimeter is
an n− 1 rectifiable set and

|D1E | = Hn−1x∂∗E, D1E = |D1E |νE .

Moreover, the following generalized Gauss-Green formula holds true

(2.1)

ˆ
E

div T dx = −
ˆ
∂∗E

T · νE dHn−1 for every T ∈ C1
c (Rn,Rn).
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2.2 Smooth manifolds

Here we recall some differentiability and integrability results for smooth manifolds.

Definition 2.6. Let M ⊂ Rn be a C1 hypersurface and let us denote by TxM the tangent
space to M at x ∈ M . A function f : Rn → Rm is said to be tangentially differentiable
with respect to M at x if the restriction of f to x+TxM is differentiable at x, and we will
call ∇Mf(x) an associated Jacobian matrix. Moreover, if f : Rn → Rm is tangentially
differentiable at x ∈M , we define the tangential jacobian of f with respect to M at x as

JMf(x) :=
√

det ([∇Mf(x)]T∇Mf(x)) ,

where [∇Mf(x)]T denotes the transpose matrix of ∇Mf(x).

Theorem 2.7. Let M ⊂ Rn be a C1 hypersurface and let f : Rn → Rn be an injective C1

function. Then, the following area formula holds

(2.2) Hn−1(f(M)) =

ˆ
M
JMf(x) dHn−1(x) .

Moreover, if g : Rn → [0,∞] is a Borel function, then also the following change of variable
formula holds

(2.3)

ˆ
f(M)

g(y) dHn−1(y) =

ˆ
M
g (f(x)) JMf(x) dHn−1(x) .

Definition 2.8. Let M ⊂ Rn be a C1 hypersurface. We say that a vector field T : M → Rn
is tangential to M if T (x) ∈ TxM for every x ∈ M . We say that the vector field T is
normal to M if T (x) ⊥ TxM for every x ∈M .

Definition 2.9. Given a C2 hypersurface without boundary M ⊂ Rn and a unit normal
vector field νM : M → Sn−1, there exists a normal vector field HM ∈ C0(M,Rn) such that

(2.4)

ˆ
M
∇Mφ dHn−1 =

ˆ
M
φ HMdHn−1

for every φ ∈ C1
c (Rn) (here ∇Mφ(x) is identified to a vector). HM is called the mean

curvature vector field of M . Up to the orientation choice, this defines the scalar mean
curvature HM through

HMνM := HM .

Definition 2.10. Given a C2 hypersurface without boundary M ⊂ Rn and a vector field
T ∈ C1

c (Rn,Rn) we define the tangential divergence of T on M by

divMT := div T − (∇TνM ) · νM = tr(∇MT ).

This provides another formulation of (2.4) as

(2.5)

ˆ
M

divMT dHn−1 =

ˆ
M
T ·HMdHn−1

for all T ∈ C1
c (Rn,Rn).
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Choosing T = νM in (2.5) and localizing around any point of M we obtain the well
known relation

(2.6) divM (νM ) = HM .

We adopt the convention of outward normal derivatives so that balls have positive cur-
vature. Finally, we recall the product formula for the divergence of tangential vector
fields.

Proposition 2.11. Under the assumptions of Definition 2.10, if T ∈ C1
c (Rn;Rn) is tan-

gential, that is T (x) ∈ TxM at all points, then for all φ ∈ C1(Rn)

(2.7) divM (φT ) = φ divMT +∇Mφ · T .

This yields the integration by parts formula

(2.8)

ˆ
M
φ divMT dHn−1 = −

ˆ
M
∇Mφ · TdHn−1 .

2.3 Radon measures

Finally, we recall some basic properties of Radon measures that we will use in Section 4.
For a reference see, for instance, [2], [20].

Definition 2.12. We denote by M(Rn) the space of locally finite non-negative Radon
measures endowed with the weak* topology. Namely, a sequence (µk)k∈N ⊂M(Rn) is said
to weakly*-converges to µ ∈M(Rn) if

lim
k→+∞

ˆ
Rn

φ dµk =

ˆ
Rn

φ dµ

for every φ ∈ Cc(Rn). In this case, we will write µk
∗
⇀ µ.

A useful continuity property for sequences of weakly*-convergent measures is the fol-
lowing.

Lemma 2.13. Let (µk)k∈N ⊂M(Rn), µ ∈M(Rn) be such that µk
∗
⇀ µ. Then

(2.9) lim
k→+∞

µk(E) = µ(E) ,

for all bounded Borel sets E ⊂ Rn for which µ(∂E) = 0. In particular, for any x ∈ Rn it
holds that

(2.10) lim
k→+∞

µk(Br(x)) = µ(Br(x)) ,

for all but countably many r > 0.

The following compactness result for finite Radon measures holds.

Lemma 2.14. Let (µk)k∈N ⊂M(Rn) be such that

(2.11) sup
k∈N

µk(Rn) <∞ .

Then there exists a subsequence of (µk)k∈N that weakly*-converges to some µ ∈M(Rn).

Finally, we recall that the spaceM(Rn) is a (separable) metric space (for a proof, see,
for instance, [11, Proposition 2.6]).

Proposition 2.15. The weak*-convergence onM(Rn) is metrizable by a distance that we
will denote dM. In particular, it holds that

µk
∗
⇀ µ ⇔ lim

k→∞
dM(µk, µ) = 0

6



3 The constrained minimization problem

3.1 Setting

Definition 3.1. Let ψ : R+ → (0,+∞), be convex and C1 with

0 < ψ(0) < ψ(s)

for every s > 0. We define the energy functional

F(E, u) :=

ˆ
∂∗E

ψ(u) dHn−1 ,

where E ⊂ Rn is a set of finite perimeter and u ∈ L1(∂∗E,R+) is a Borel function. Here
the space L1(∂∗E,R+) is meant with respect to the Hn−1 ¬ ∂∗E measure.

We are interested in studying the optimal shapes and adatom distributions (the func-
tion u) under a total mass constraint.

Definition 3.2. For m > 0, define

(3.1) γm := inf{F(E, u) : (E, u) ∈ Cl(m) } ,

where

Cl(m) :=
{

(E, u) : E is a set of finite perimeter, u ∈ L1(∂∗E;R+) , J (E, u) = m
}
,

and

(3.2) J (E, u) := ρ|E|+
ˆ
∂∗E

udHn−1 .

Here ρ > 0 is a constant that denotes the volumetric mass density of the crystal.

3.2 Critical points

We start our investigation by studying the properties of critical points of the energy. To
this aim we need to perform variations of a given couple (E, u) ∈ Cl(m) in such a way
that the constraint (3.2) stays satisfied at first order.

Definition 3.3. Let (E, u) ∈ Cl(m) with E of class C2 and u(x) ≥ τ forHn−1-a.e. x ∈ ∂E,
for some τ > 0. We define the set of admissible velocities for (E, u) as

(3.3) Ad(E, u) :=

{
(v, w) ∈ C1

b (∂E)× C1
b (∂E) :

ˆ
∂E

[w + v(uH∂E + ρ)] dHn−1 = 0

}
where C1

b means C1 and bounded functions.

By using the above admissible velocities, it is possible to derive the Euler-Lagrange
equations for F . For that, we will need to apply Lebesgue’s dominated convergence theo-
rem and make use of the following technical growth assumption.

(H) There exists p ≥ 1 and A,B > 0 such that

ψ(s), ψ′(s) ≤ A+Bsp

and u ∈ Lp(∂∗E;R+), H∂E ∈ Lp/(p−1)(∂∗E).
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Proposition 3.4. Let (E, u) ∈ Cl(m) as in the previous definition and let (v, w) ∈
Ad(E, u). Assume moreover that (H) holds. Then, the first variation of the functional F
computed at (E, u) with respect to the variations (3.11) and (3.12) is given by

(3.4)
d

dt

∣∣∣
t=0
F(Et, ut) =

ˆ
∂E

[ψ′(u)w + ψ(u)vH∂E ] dHn−1 .

The main result of this section is a characterization of the regular critical points. This
extends a result proved in [6] by using the evolution equation. Here, we use the Euler-
Lagrange equations.

Proposition 3.5. Let (E, u) ∈ Cl(m) be a regular critical point for F , i.e., (E, u) is as
in Definition 3.3 and satisfies

(3.5)

ˆ
∂E

[ψ′(u)w + ψ(u)vH∂E ] dHn−1 = 0 for all (v, w) ∈ Ad(E, u).

Assume that ψ is strictly convex and that E is bounded. Then E is a ball B and u is a
constant c such that

(3.6) (ψ(c)− cψ′(c))H∂B = ρψ′(c) .

Conversely, any such (B, c) is a regular critical point. Finally, if (B, c) is a regular critical
point (see Remark A.12) , then

(3.7) 0 < c < s0 := sup{s ∈ R+ | ψ(s)− ψ′(s)s > 0} .

Remark 3.6. In order to justify our definition of admissible variations, we argue as
follows: take a set E of class C2 and denote by νE the exterior normal to E on ∂E. It is
well known (see [19]) that it is possible to find δ > 0 such that every point z in the set

(∂E)δ := { y ∈ Rn : d(y, ∂E) < δ } ,

where y 7→ d(∂E, y) denotes the distance of y from ∂E, can be uniquely written as

(3.8) z = x+ sνE(x)

for some x ∈ ∂E and some |s| < δ. Then, consider the extension of the exterior normal to
(∂E)δ given by (with an abuse of notation we make use of the same symbol)

νE(z) := νE(x) ,

where z ∈ (∂E)δ is written as in (3.8). The above extension is unique and well defined.
Fix a function ϕ : (−δ, δ) → R with 0 ≤ ϕ ≤ 1, such that ϕ ≡ 1 on [− δ

4 ,
δ
4 ] and

ϕ ∈ C∞c ([− δ
2 ,

δ
2 ]). Let v ∈ C1(∂E) and, for

(3.9) |t| < t̄ :=


δ/2

sup∂E |v|
if v 6≡ 0 ,

+∞ otherwise ,

consider the C1 diffeomorphism Φt : Rn → Rn given by

(3.10) Φt(z) :=

{
z + tϕ(s)v(x)νE(x) if z ∈ (∂E)δ as in (3.8) ,
z otherwise in Rn .
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Define the variations

(3.11) Et := Φt(E) .

Now let w ∈ C1(∂E) and set ut : ∂Et → R as

(3.12) ut(y) := u(Φ−1
t (y)) + tw(Φ−1

t (y)) .

We want the mass constraint to be satisfied at the first order1, i.e.,

d

dt

∣∣∣
t=0
J (Et, ut) = 0 .

Moreover, to preserve positivity of ut without further restricting the admissible velocities,
we require u ≥ τ > 0 on ∂E. It is well known that (see [20], Prop. 17.8)

d

dt

∣∣∣
t=0
|Et| =

d

dt

∣∣∣
t=0
|Φt(E)| =

ˆ
∂E
νE ·

∂Φt

∂t

∣∣∣
t=0

dHn−1 =

ˆ
∂E
v dHn−1.

By the change of variable formula (see (2.3)) we can write
ˆ
∂Et

ut(y) dHn−1(y) =

ˆ
∂E
ut(φt(x))J∂Eφt(x) dHn−1(x)

=

ˆ
∂E

[u(x) + tw(x) ]J∂Eφt(x) dHn−1(x) ,

where J∂Eφt is given in Definition 2.6. Using the fact that (see [20, (17.30)])

(3.13)
d

dt

∣∣∣
t=0

J∂Eφt = div(vνE) = vH∂E ,

we obtain
d

dt

∣∣∣
t=0

ˆ
∂Et

ut(y) dHn−1 =

ˆ
∂E

[w + uvH∂E ] dHn−1 ,

and thus

(3.14)
d

dt

∣∣∣
t=0
J (Et, ut) =

ˆ
∂E

[w + v(uH∂E + ρ) ] dHn−1 .

This justifies our definition of the set of admissible velocities Ad(E, u): it can be seen as
(part of) the tangent space to Cl(m) at the point (E, u).

Proof of Proposition 3.4. We have

d

dt

∣∣∣
t=0
F(Et, ut) =

d

dt

∣∣∣
t=0

ˆ
∂Et

ψ(ut(y)) dHn−1(y)

=
d

dt

∣∣∣
t=0

ˆ
∂E
ψ(ut(φt(x)))J∂Eφt(x) dHn−1(x)

=
d

dt

∣∣∣
t=0

ˆ
∂E
ψ (u(x) + tw(x)) J∂Eφt(x) dHn−1(x)

=

ˆ
∂E

[
ψ′ (u(x))w(x) + ψ (u(x)) v(x)H∂E(x)

]
dHn−1(x) ,

where in the last equality we have used (3.13) and Lebesgue’s dominated convergence
theorem thanks to (H), Hölder’s inequality, and the fact that v and w are bounded.

1See Section B in the Appendix for why this guarantees existence of curves of competitors with constant
mass and prescribed initial velocities.
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Proof of Proposition 3.5. Step one: u is constant on each connected component of ∂E.
Let T ∈ C1

c (M,Rn) be a tangential vector field. Then by (2.8), (v, w) := (0,div∂E(T )) ∈
Ad(E, u). Since (E, u) satisfies (3.5), using (2.8) we get

0 =

ˆ
∂E
ψ′(u)div∂E(T ) dHn−1.

Using the fact that T is an arbitrary tangential vector field, we conclude that∇∂E (ψ′(u)) =
0 on ∂E in the sense of distributions, which implies that ψ′(u) is constant on each con-
nected component of ∂E. By use strict convexity of ψ, u is constant on each connected
component of ∂E.

Step two: H∂E is constant on each connected component of ∂E, which are spheres.
Let v ∈ C1(∂E) and consider the admissible velocities (v,−v(uH∂E + ρ)) ∈ Ad(E, u).
Using the fact that u is a constant c, we obtain

0 = −ψ′(c)
ˆ
∂E
v(uH∂E + ρ) dHn−1 + ψ(c)

ˆ
∂E
vH∂E dHn−1

=
(
ψ(c)− cψ′(c)

) ˆ
∂E
vH∂E dHn−1 − ρψ′(c)

ˆ
∂E
v dHn−1 .(3.15)

We claim that ψ(c) − cψ′(c) 6= 0. Indeed, assume it is zero. Then, using (3.15) with a
non-zero average v we have ψ′(c) = 0 and thus ψ(c) = 0, which is impossible. In order to
conclude, take v ∈ C1(∂E) with zero average. Using again (3.15), we get

(
ψ(c)− cψ′(c)

) ˆ
∂E
vH∂E dHn−1 = 0 ,

and so ˆ
∂E
vH∂E dHn−1 = 0 .

Since this is valid for all v ∈ C1(∂E) with zero average, we conclude that H∂E has to
be constant on each component of ∂E. Finally, the fact that we are assuming E to be
compact allows us to conclude that each connected component of ∂E is a sphere by using
Alexandrov’s theorem [1].

Step three: connectedness and bounds on u. Assume by contradiction that ∂E has
at least two connected components that we denote (∂E)1 and (∂E)2. Let c1, c2 be the
values of the adatom density in (∂E)1 and (∂E)2 respectively. Moreover, we will denote
by H1, H2 the constant curvature of (∂E)1 and (∂E)2 respectively. Consider admissible
velocities (v, w) that are equal to (v1, w1) on (∂E)1, (v2, w2) on (∂E)2 and identically
zero on all other connected components. Using the admissibility definition (3.3) and the
computations similar to the ones of the previous steps, we get

ˆ
(∂E)1

w1 dHn−1 + (c1H1 + ρ)

ˆ
(∂E)1

v1 dHn−1

=−
ˆ

(∂E)2

w2 dHn−1 − (c2H2 + ρ)

ˆ
(∂E)2

v2 dHn−1 .(3.16)

Similarly, as (E, u) is critical, using Step 1 and Step 2 above, the criticality condition (3.5)
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can be written as

ψ′(c1)

ˆ
(∂E)1

w1 dHn−1 +H1ψ(c1)

ˆ
(∂E)1

v1 dHn−1

+ψ′(c2)

ˆ
(∂E)2

w2 dHn−1 +H2ψ(c2)

ˆ
(∂E)2

v2 dHn−1 = 0(3.17)

Using (3.16) in (3.17), we get(ˆ
(∂E)2

w2 dHn−1

)[
ψ′(c2)− ψ′(c1)

]
+

(ˆ
(∂E)2

v2 dHn−1

)[
H2ψ(c2)− ψ′(c1)(c2H2 + ρ)

]
+

(ˆ
(∂E)1

v1 dHn−1

)
ψ′(c1)(c1H1 + ρ) = 0 .

(3.18)

Taking v1 = v2 ≡ 0 and w2 such that

ˆ
(∂E)2

w2 dHn−1 6= 0 ,

in (3.18) gives us ψ′(c2) = ψ′(c1). By strict convexity this implies c1 = c2 =: c. Now,
taking w2 = v1 ≡ 0 and v2 such that

ˆ
(∂E)2

v2 dHn−1 6= 0 ,

in (3.18) gives us equation (3.6). Finally, taking w2 = v1 ≡ 0 and v1 such that

ˆ
(∂E)1

v1 dHn−1 6= 0 ,

in (3.18) gives us ψ′(c)(cH1 +ρ) = 0. Notice that we cannot have ψ′(u1) = 0, because this
would contradict equation (3.6). Thus, we get cH1 + ρ = 0. In particular, this implies
that c > 0 and thus H1 = −ρ/c < 0. Repeating the above computations with the roles of
(∂E)1 and (∂E)2 exchanged, gives us H1 = H2 < 0.

The above conclusion is valid for any couple of connected components of ∂E. So, we
deduce that E is the complement of a disjoint union of balls. This is impossible because
E has finite volume. Thus ∂E is made by one single connected component and, in turn,
E is a ball. Finally, since H∂E , ψ

′(c) > 0 we have ψ(c)− cψ′(c) > 0, which yield c < s0 by
definition of s0.

Step four: sufficient conditions. Conversely, let (B, c) be a ball with constant adatom
density satisfying (3.6). Using (3.3) we get

ˆ
∂B

[ψ′(c)w + ψ(c)vH∂B ] dHn−1 =

(ˆ
∂B
v dHn−1

)[(
ψ(c)− cψ′(c)

)
H∂B − ρψ′(c)

]
= 0.

11



3.3 Existence and uniqueness of minimizers

In this section we address the question of existence and uniqueness of minimizers for the
constrained minimization problem (3.1). In particular, we prove that the minimum can
be achieved by a ball with constant adatom density. A similar result can be found in [6].
We present here an alternative proof under more general assumptions and that takes into
account also the mass constraint.

Theorem 3.7. Fix m > 0. Assume that

(A1) ψ′(0) < (n− 1)
(
ωn
m

) 1
n ρ

1−n
n ψ(0) ,

where ωn = |B1|, and that either one of the following two conditions holds true:

(A2a) ψ is superlinear at infinity, i.e., lims→∞ ψ(s)/s =∞,

(A2b) ψ(s) = as+ b+ g(s) with b ≤ 0 and

lim
s→∞

s1/(n−1)g(s) = lim
s→∞

sn/(n−1)g′(s) = 0.

Then there exist R ∈ (0,∞) and a constant c > 0 such that (BR, c) ∈ Cl(m) and

F(BR, c) = γm .

Moreover, if (E, u) ∈ Cl(m) is a minimizing couple, then E is a ball, and if ψ is strictly
convex, then u is constant.

Remark 3.8. Examples of functions satisfying (A1-2) are ψ(s) := 1 + γs2 for some γ > 0
and, less trivially, ψ(s) :=

√
1 + s2 when n ≥ 3. We will later make use of (A2b) for

functions that are linear on some interval (s0,+∞).

Remark 3.9. The above theorem does not ensure uniqueness of minimizers, which is false
in general (see Proposition 3.13). Moreover, in the case hypothesis (A1) or both (A2a)
and (A2b) are not satisfied, we will show in Remark 3.12 that the following phenomena
can occur:

(i) there is no minimizer,

(ii) the minimizer has zero adatom density.

Finally we point out that when ψ is not strictly convex there can be a minimizer with
non-constant u.

In the sequel we will often use the following reduction lemma.

Lemma 3.10. Let m > 0. For any (E, u) ∈ Cl(m) we have

(3.19) F(E, u) ≥ F(BR, u)

where

ū :=
1

P (E)

ˆ
∂∗E

udHn−1

and BR is a ball such that ρ|BR|+uP (BR) = m. Moreover, (3.19) is strict unless E = BR.
Finally, if ψ is strictly convex, then equality is reached if and only if (E, u) = (BR, u).
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Proof. By Jensen’s inequality

(3.20) F(E, u) =

ˆ
∂∗E

ψ(u) dHn−1 ≥ P (E)ψ (ū) =

ˆ
∂∗E

ψ (ū) = F(E, u) .

Notice that if ψ is strictly convex, then equality is reached if and only if u ≡ u. We can
thus replace u by ū without increasing the energy. Now assume that E is not a ball. Then
by the monotonicity of r 7→ ρ|Br|+ ūP (Br), it is possible to find a radius R ∈ (0,∞) such
that

ρ|BR|+ ūP (BR) = m,

that is, (BR, ū) ∈ Cl(m). We claim that P (BR) < P (E), i.e., F(BR, ū) < F(E, u).
Suppose not. Then by the isoperimetric inequality we would have that

P (BR) ≥ P (E) > P (B) ,

where B is a ball with |B| = |E|. This implies that |BR| > |B| = |E| and, in turn, that

m = ρ|BR|+ ūP (BR) > ρ|E|+ ūP (E) = m,

and we reached a contradiction.

We now turn to the proof of Theorem 3.7.

Proof of Theorem 3.7. By Lemma 3.10 we can reduce our study of minimizers to balls
with constant adatom density satisfying the constraint. This is a one parameter family.
Indeed, define

(3.21) Rm :=

(
m

ρωn

)1/n

,

and, for any R ∈ (0, Rm), set

(3.22) ū(R) :=
m− ρωnRn

nωnRn−1
.

Then (BR, ū(R)) ∈ Cl(m) for every R ∈ (0, Rm). Let

(3.23) e(R) := F(BR, u(R)) = nωnR
n−1ψ (ū(R)) .

We have

e′(R) = nωnR
n−2

[
(n− 1)ψ (ū(R))−Rψ′ (ū(R))

(
ρ

n
+

(n− 1)m

nωnRn

)]
,

and using (A1) we obtain

e′(Rm) = nωnR
n−2
m

[
(n− 1)ψ(0)−

(
m

ρωn

) 1
n

ψ′(0)ρ

]
> 0 .

Moreover, if (A2a) is satisfied then

e(R) = (m− ωnRn)
ψ (ū(R))

ū(R)
−→
R→0

∞ ,

while if (A2b) holds true, we get

(3.24) e′(R) = nωnR
n−2

[
(n− 1)b− aRρ

n
+ o
R→0

(R)

]
< 0 in some (0, Rm).

This concludes that there exists R ∈ (Rm, Rm) such that e(R) = F(BR, u(R)) = γm.
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Remark 3.11. Notice that the criticality condition e′(R) = 0 is equivalent to the general
condition (3.6) introduced previously.

Remark 3.12. Assume that (A1) does not hold , for instance by considering ψ(s) = as+b
with b > aRm/(n−1). In this case we have e′(R) > 0 for R ∈ (0, Rm), and thus the expected
minimizer is given by a Dirac delta with infinite adatom density. This is clearly not an
admissible minimizer in the present setting (see Section 4). On the other hand, neither
(A2a) nor (A2b) are satisfied by

ψ(s) :=


(s+a)2

2 if s < R̄ ,

(R̄+ a)s+ a2

2 −
R̄2

2 if s ≥ R̄ ,

where a > 0 and R̄ > 0 are sufficiently small. However, here it holds that e′(R) < 0 for
all R ∈ (0, Rm) and thus we get that (BRm

, 0) is the minimizer.

We now turn to the study of uniqueness of such minimizers. As the next proposition
shows, even when ψ is strictly convex there may be a continuum of minimizing balls.

Proposition 3.13. For every 0 ≤ R1 < R2 ≤ Rm, there exists a strictly convex function
ψ satisfying the assumptions of Definition 3.1 and such that

{R ∈ (0, Rm) : e(R) = γm} = [R1, R2] .

Proof. Let h(R) := −n−1
R for R ∈ (0, Rm] and let f : (0, Rm] → R be a C1 negative

function with
f(R) = h(R)− ϕ(R) in (0, R1) ,

f(R) = h(R) in [R1, R2] ,

f(R) > h(R) in (R2, Rm] ,

where ϕ > 0 is such that ϕ(R)/Rn−1 → 0 as R → 0. Moreover we will impose that
‖f−h‖C1 < ε for some ε > 0 that will be chosen later. Let g : (0, Rm]→ R be the solution
of the problem

(3.25)

{
g′(R) = f(R)g(R) ,
g(Rm) = gm ,

for some gm > 0 (notice that g is decreasing). We recall that ū : (0, Rm] → R+ (defined
in (3.22)) is invertible, since

ū′(R) = −ρ
n
− (n− 1)m

nωnRn
< 0 .

Moreover, ū(Rm) = 0 and limR→0 ū(R) = ∞. Thus, the function ψ(s) := g
(
ū−1(s)

)
is

well defined. By considering e : (0, Rm]→ R+, defined in (3.23), we have that

e′(R) = nωnR
n−2

(
(n− 1)g(R) +Rg′(R)

)
,

and thus, by the definition of g, it holds that

e′(R) < 0 for R ∈ (0, R1) ,

e′(R) = 0 for R ∈ [R1, R2] ,
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e′(R) > 0 for R ∈ (R2, Rm] .

Hence
{R ∈ (0, Rm) : e(E) = γm} = [R1, R2] .

Observe that ψ is strictly convex and satisfies ψ(s) > ψ(0) > 0. The latter can be seen
from the fact that

(3.26) g′(R) = ψ′ (ū(R)) ū′(R) < 0, ū′(R) < 0, ψ(0) = g(Rm) = gm > 0

for all R ∈ (0, Rm). In what concerns strict convexity, by differentiating (3.25) we get that[
f2(R) + f ′(R)

]
g(R) = g′′(R) = ψ′′ (ū(R))

(
ū′(R)

)2
+ ψ′ (ū(R)) ū′′(R)

and thus, using (3.26), we are led to

ψ′′ (ū(R))
(
ū′(R)

)2
=

(
f2(R) + f ′(R)− f(R)

ū′′(R)

ū′(R)

)
g(R).

Notice that

h2(R) + h′(R)− h(R)
ū′′(R)

ū′(R)
=

n(n− 1)ρωnR
n−2

ρωnRn + (n− 1)m
> 0 ,

for all R ∈ (0, Rm]. Then

f2(R) + f ′(R)− f(R)
ū′′(R)

ū′(R)
= (f(R)− h(R))2 + (f(R)− h(R))′ − (f(R)− h(R))

ū′′(R)

ū′(R)

+ 2h(R)(f(R)− h(R)) + h2(R) + h′(R)− h(R)
ū′′(R)

ū′(R)
.

Using ϕ(R)/Rn−1 → 0 as R→ 0 and that ū′′(R)/ū′(R) is of order 1/R as R→ 0, choosing
ε > 0 small enough we guarantee that ψ′′(s) > 0 for all s ∈ (0,∞).

Example 3.14. If ψ(s) := 1 + γs2 for some γ > 0 and in dimension n = 2 one can
show that R 7→ e(R) has exactly one critical point R∗(γ) which corresponds to the global
minimizer, with

R∗(γ) =
1

ρ

√
2
√
γ2m2ρ2 − πγmρ+ π2 + γmρ− 2π

3πγ

Notice that R∗(γ) −→
γ→+∞

Rm. A similar asymptotic behavior has been observed also in

[6] with a misprint in the value of R∗ that, however, does not affect the limiting analysis
done by the author.

4 The relaxed functional

The family (E, u) of couples where E is a set of finite perimeter and u ∈ L1(∂∗E,R+) is
not closed under any reasonable topology as depicted in Figure 4.1, which motivates us to
embed L1(∂∗E,R+) into Radon measures in order to take this effect into account.
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Figure 4.1: This example shows that we can easily escape from the class of couples (E, u)
with u ∈ L1(∂∗E,R+)

4.1 Topology and necessary conditions for lower semicontinuity

For every couple (E, u) with E a set of finite perimeter and u ∈ L1(∂∗E,R+) a Borel
function, let µ ∈M+

b (Rn) be given by

µ := uHn−1 ¬ ∂∗E = u|D1E |.

With this identification we can write
ˆ
∂∗E

ψ(u) dHn−1 =

ˆ
Rn

ψ

(
dµ

d|D1E |

)
d|D1E | .

We consider the extension of F to the space

S := C(Rn)×M+
b (Rn),

where C(Rn) denotes the family of all sets of finite perimeter in Rn, as

(4.1) F(E,µ) :=



ˆ
∂∗E

ψ(u) dHn−1 if µ = u|D1E |

with u ∈ L1(∂∗E,R+) a Borel function ,

+∞ otherwise .

Remark 4.1. Couples (E, u|D1E |) ∈ S will be called absolutely continuous couples and
will be sometimes denoted by (E, u) to simplify the notation.

We are now in position to define our topology.

Definition 4.2. We endow S with the product of the L1 topology and the weak-* topology
in M(Rn). In particular, given ((Ek, µk))k∈N ⊂ S and (E,µ) ∈ S, we say that

(Ek, µk)→ (E,µ) in S

if and only if 1Ek
→ 1E in L1 and µk

∗
⇀ µ in M(Rn). Moreover, we define the distance

dS on S, which metrizes the above topology, as

dS [(E,µ), (F, ν)] := ‖1E − 1F ‖L1 + dM(µ, ν) ,

where dM is the distance given by Proposition 2.15.
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Figure 4.2: The set Ek and its limit E in R3. On ∂∗Ek (on the left) we fix u to be piecewise
constant and equal to a or b in the upper part (depending on the different slopes of hk)
and 0 everywhere else. The limit set E (on the right) will have a piecewise constant u as
in (4.4) defined on ∂∗E.

In the sequel we will always use the above topology without mentioning it explicitly.
We now prove some necessary conditions that ψ has to satisfy in order to ensure the
lower semicontinuity of F . These conditions are in contrast with the superlinearity of the
prototypes ψ(u) = 1 + γu2 used in [6] (and with the classical assumption (A2a)).

Proposition 4.3. Assume F that is lower semicontinuous. Then, for all a, b, α, β, λ ∈ R+

with 0 ≤ λ ≤ 1, ψ has to satisfy the relation

(4.2) ψ

(
aλ
√

1 + α2 + b(1− λ)
√

1 + β2√
1 + (λα− (1− λ)β)2

)
≤ ψ(a)λ

√
1 + α2 + ψ(b)(1− λ)

√
1 + β2√

1 + (λα− (1− λ)β)2
.

Remark 4.4. Relation (4.2) is obtained by testing F on a sequence of wriggled planes
with a piecewise constant adatom density u as illustrated in Figure 4.2.

Proof of Proposition 4.3. Fix 0 ≤ β ≤ α, 0 ≤ λ ≤ 1 and, for every k ∈ N∗, define the
piecewise C1 function hk : [0, 1]→ R as

(4.3) hk(s) :=


sα+ 1− (1−λ)j

k (α+ β) if s ∈
[
j
k ,

j+λ
k

]
,

−sβ + 1 + λ(j+1)
k (α+ β) if s ∈

[
j
k + λ

k ,
j+1
k

]
.

Set

Sk :=
k−1⋃
j=0

([
j

k
,
j + λ

k

]
× Rn−2

)
, Tk := Sck.
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Let Q := [0, 1]n−1 ⊂ Rn−1. For every k ∈ N∗, consider the functions Hk : Q → R defined
as

Hk(z) := hk(z · e1) = hk(z1) ,

where we write z = (z1, . . . , zn−1) ∈ Rn−1 and the set

Ek := {(z, s) ∈ Q× R | 0 ≤ s ≤ Hk(z)} .

Moreover we define the adatom density uk : ∂∗Ek → [0,∞) as

uk(x) =


a on Gr (Hk, Sk ∩Q◦) ,
b on Gr (Hk, Tk ∩Q◦) ,
0 elsewhere ,

where, for any function f : Rn−1 → R and for any A ⊂ Rn−1,

Gr(f,A) := {(z, f(z)) ∈ Rn | z ∈ A}.

Let µk := uk|D1Ek
|.

Claim: Up to extracting a subsequence (not relabeled), it holds that

(Ek, µk)→ (E, u|D1E |) ,

where
E := {(z, s) ∈ Q× R | 0 ≤ s ≤ H(z)} ,

H : Q→ R is given by

H(z) := (λα− (1− λ)β)(z · e1) + 1

and u : ∂∗E → [0,∞) is the adatom density

(4.4) u(x) :=

 λa
√

1+α2+b(1−λ)
√

1+β2√
1+(λα−(1−λ)β)2)

for z ∈ Gr (H,Q◦) ,

0 elsewhere.

Moreover
P (Ek; ∂Q× R)→ P (E; ∂Q× R) .

Let us show how to derive the condition (4.2) assuming the validity of the claim. Notice
that

F(Ek, µk) =

ˆ
∂∗Ek

ψ(uk(x)) dHn−1(x)

= |Q|+ P (Ek; ∂Q× R) +

ˆ
∂∗Ek∩(Q◦×R)

ψ(uk(x)) dHn−1(x)

= |Q|+ P (Ek; ∂Q× R) +

ˆ
(Q◦×R)∩Sk

ψ(a)
√

1 + |∇Hk(z)|2 dz

+

ˆ
(Q◦×R)∩Tk

ψ(a)
√

1 + |∇Hk(z)|2 dz

= |Q|+ P (Ek; ∂Q× R) + ψ(a)λ
√

1 + α2 + ψ(b)(1− λ)
√

1 + β2 ,
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where we used the identity

(4.5) Hn−1(Q◦ ∩ Sk) = Hn−1(Q ∩ Sk) = λ, Hn−1(Q◦ ∩ Tk) = Hn−1(Q ∩ Tk) = 1− λ.

Analogously

F(E, u) = |Q|+ P (E; ∂Q× R)

+ ψ

(
λa
√

1 + α2 + b(1− λ)
√

1 + β2√
1 + (λα− (1− λ)β)2)

)√
1 + (λα− (1− λ)β)2).

By the semicontinuity of F and the fact that P (Ek; ∂Q×R)→ P (E; ∂Q×R), we obtain
(4.2). We now focus in proving the claim. We divide the proof in two steps.

Step one: Ek → E and P (Ek; ∂Q×R)→ P (E; ∂Q×R). By the definition of Hk and H
we have

(4.6) sup
z∈Q
{|Hk(z)−H(z)|} ≤ C

k

for a constant C depending on α, β, λ only. In particular Hk → H in C0(Q) and thus
Ek → E. Also by construction we obtain

|P (Ek; ∂Q× R)− P (E; ∂Q× R) | ≤
ˆ
∂Q
|Hk(y)−H(y)|dHn−2(y) <

C

k
.

Step two: µk
∗
⇀ u|D1E |. Notice that

µk(Rn) < max{a, b}P (Ek) < C

for some constant C > 0 and for some R > 0. Thus, up to a subsequence (not relabeled),

we can assume µk
∗
⇀ µ for some measure µ. Moreover, by (4.6) we have that µ(A) = 0

for all open sets A ⊂ Rn such that |D1E |(A) = 0. In particular, for Hn−1-almost every
x ∈ ∂E the function

v(x) := lim
r→0

µ(Br(x))

|D1E |(Br(x))

turns out to be well defined. This implies that we can write

µ = v|D1E |.

It remains to show that v = u. By (2.9) and (2.10) we have, for all but countably many
r > 0,

µ(Br) = lim
k→∞

µk(Br) .

Fix x̄ /∈ Gr(H,Q◦). Then, for r small enough, we have that µk(Br(x̄)) = 0. Thus,
µ(Br(x̄)) = 0, that implies v(x̄) = 0 for all x̄ ∈ Rn \Gr(H,Q◦).

Let us now fix x̄ ∈ Gr(H,Q◦). For r > 0 set

Dr := {z ∈ Q◦ | (z,H(z)) ∈ Br(x) ∩Gr(H,Q◦)},
Dk
r := {z ∈ Q◦ | (z,Hk(z)) ∈ Br(x) ∩Gr(Hk, Q

◦)}
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so that Br(x̄) ∩ ∂E = Gr(H,Dr), Br(x̄) ∩ ∂Ek = Gr(Hk, D
k
r ). In particular,

µk(Br(x̄)) =

ˆ
∂Ek∩Br(x̄)

uk(x) dHn−1(x)

=

ˆ
Dk

r

uk(z,Hk(z))
√

1 + |∇Hk(z)|2 dz

= a
√

1 + α2 Hn−1(Dk
r ∩ Sk) + b

√
1 + β2 Hn−1(Dk

r ∩ Tk).

Notice that, by (4.6),
lim

k→+∞
Hn−1(Dk

r ∩ Sk) = λHn−1(Dr) ,

and
lim

k→+∞
Hn−1(Dk

r ∩ Tk) = (1− λ)Hn−1(Dr) .

Thus
µ(Br(x̄)) = a

√
1 + α2λHn−1(Dr) + b

√
1 + β2(1− λ)Hn−1(Dr).

On the other hand, we have that

|D1E |(Br(x̄)) =

ˆ
Dr

√
1 + |∇H(z)|2 dz = Hn−1(Dr)

√
1 + (λα− (1− λ)β)2.

Hence

v(x̄) =
aλ
√

1 + α2 + b(1− λ)
√

1 + β2√
1 + (λα− (1− λ)β)2

= u(x̄) .

This proves the claim and thus concludes the proof.

Corollary 4.5. If F is lower semicontinuous then ψ is a convex function such that

(4.7) ψ(a+ b) ≤ ψ(a) + ψ(b) ,

for all a, b ∈ R+.

Proof. Take α = β = 0 in (4.2) to deduce that ψ is convex and set α = β =
√

3, λ = 1
2 to

obtain (4.7).

The above result indicates that the conditions we are imposing so far on ψ are, in
general, not sufficient to ensure the lower semicontinuity of F . Moreover, even when ψ
is an admissible function, as in Definition 3.1, and such that (4.7) is satisfied, we do not
expect F to be lower semicontinuous. Indeed, concentration phenomena can take place,
as illustrated in Figure 4.1, or along a sequence of shrinking balls with adatom density
blowing up (see Remark 3.12). On the other hand, (4.7) guarantees the finiteness of
lims→+∞ ψ(s)/s. Taking all of this together into consideration, we build a candidate for
the relaxed functional by replacing ψ with its convex and subadditive envelope (see Section
A) and by adding its recession function on the singular part of the measure.

Definition 4.6. Given ψ : R+ → R be as in Definition 3.1, let ψ be its convex subadditive
envelope (see Definition A.2), and set

Θ := lim
s→+∞

ψ(s)

s
.

We define the functional F := S→ [0,∞) as

(4.8) F(E,µ) :=

ˆ
∂∗E

ψ (u) dHn−1 + Θµs(Rn) ,

where we write µ = uHn−1 ¬ ∂∗E + µs using the Radon-Nikodym decomposition.
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Remark 4.7. Notice that, since the function s 7→ ψ(s)/s is non increasing (see Lemma
A.3), Θ in the above definition is well defined.

The following result is a slight variation2 of [2, Theorem 2.34]. For the reader’s conve-
nience, we include here the proof adopting their notation.

Theorem 4.8. F is lower semicontinuous.

Proof. Let ((Ek, µk))k∈N ⊂ S be a sequence converging to (E,µ) in S, that is 1Ek
→ 1E

in L1 and µk
∗
⇀ µ in M(Rn). Let

µk = ukHn−1 ¬ ∂∗Ek + µsk, µ = uHn−1 ¬ ∂∗E + µs.

In view of the characterization of ψ (see Lemma A.5), there exist families of real numbers
{aj}j∈N, {bj}j∈N with aj , bj ≥ 0 and such that

ψ(s) := sup
j∈N
{ajs+ bj}, Θ = sup

j∈N
{aj} .

Consider A1, . . . , Am pairwise disjoint open, bounded subsets of Rn. For any gj ∈ C1
c (Aj),

with 0 ≤ gj ≤ 1, we have

ˆ
Aj∩∂∗Ek

ψ(uk) dHn−1 + Θµsk(Rn) ≥
ˆ
Aj∩∂∗Ek

gj(ajuk + bj) dHn−1 +

ˆ
Aj

gjaj dµsk

=

ˆ
Aj∩∂∗Ek

gjajuk dHn−1 +

ˆ
Aj∩∂∗Ek

gjbj dHn−1 +

ˆ
Aj

gjaj dµsk

=

ˆ
Aj

gjaj dµk +

ˆ
Aj∩∂∗Ek

gjbj dHn−1.

Adding with respect to j, we obtain

F(Ek, µk) ≥
m∑
j=1

ˆ
Aj

gjaj dµk +

ˆ
Aj∩∂∗Ek

gjbj dHn−1.

Since bj ≥ 0 and 〈|D1E |, gj〉 ≤ lim infk〈|D1Ek
|, gj〉 for all j (here 〈·, ·〉 is the duality

pairing), taking the liminf we get

lim inf
k→+∞

F(Ek, µk) ≥
m∑
j=0

ˆ
Aj

gjaj dµ+

ˆ
Aj∩∂∗E

gjbj dHn−1

=

m∑
j=0

ˆ
Aj∩∂∗E

gj(aju+ bj) dHn−1 +

ˆ
Aj

gjaj dµs.(4.9)

Let N be a |D1E |−negligible set on which µs is concentrated, and define the functions
ϕj : Rn → R and ϕ : Rn → R as

ϕj(x) :=

{
aju(x) + bj for x ∈ ∂∗E \N ,
aj for x ∈ N ,

ϕ(x) :=

{
ψ(u(x)) for x ∈ ∂∗E \N ,
Θ for x ∈ N ,

2Mainly we can remove the assumption of weak*-convergence of |D1Ek | to |D1E | thanks to the subad-
ditivity of ψ.

21



and set ν := |D1E |+ µs. With this notation, equation (4.9) can be written as

lim inf
k→+∞

F(Ek, µk) ≥
m∑
j=0

ˆ
Aj

gjϕj dν.

Taking the supremum among all the gj ∈ C1
c (Aj) with 0 ≤ gj ≤ 1, we get (since ϕj ≥ 0

for all j)

lim inf
k→+∞

F(Ek, µk) ≥
m∑
j=0

ˆ
Aj

ϕj dν.

By [2, Lemma 2.35], we have that

ˆ
Rn

sup
j
{ϕj}dν = sup

∑
j∈J

ˆ
Aj

ϕj dν


where the supremum ranges over all finite sets J ⊂ N and all families of pairwise disjoint
open and bounded sets Aj ⊂ Rn. Thus, we conclude that

lim inf
k→+∞

F(Ek, µk) ≥
ˆ
Rn

sup
j
{ϕj} dν =

ˆ
Rn

ϕdν

=

ˆ
∂∗E

ψ(u(x)) dHn−1 + Θµs(Rn) = F(E,µ).

4.2 The relaxed functional

We start by recalling the notion of relaxation of a functional. We refer to [9] and [5] for a
treatment of Γ-convergence.

Definition 4.9. Let (X, τ) be a topological space and let F : X → [−∞,+∞]. We define
F : X → [−∞,+∞], the lower semi-continuous envelope (or relaxed functional) of F as
the largest lower semi-continuous functional G : X → [−∞,+∞] such that G ≤ F .

The following characterization of the relaxed functional holds true.

Proposition 4.10. Assume (X, τ) is a topological space satisfying the first axiom of count-
ability, i.e. every point x ∈ X has a countable base of neighborhoods. Then, the relaxed
functional F : X → [−∞,+∞] of F : X → [−∞,+∞] is characterized by the following
two conditions:

i) (Liminf inequality) for every x ∈ X and every sequence (xk)k∈N such that xk → x,

F (x) ≤ lim inf
k→∞

F (xk).

ii) (Recovery sequences) for every x ∈ X there exists a sequence (xk)k∈N such that xk → x
and

lim sup
k→∞

F (xk) ≤ F (x).

Remark 4.11. Notice that the space S is separable. In particular, it satisfies the first
axiom of countability.
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We now prove the main theorem of this section.

Theorem 4.12. The functional F is the relaxation of F . To be precise, the following
hold:

(i) for every (E,µ) ∈ S and every sequence ((Ek, µk))k∈N ⊂ S with (Ek, µk)→ (E,µ),
we have that

F(E,µ) ≤ lim inf
k→∞

F(Ek, µk) ,

(ii) for every (E,µ) ∈ S there exists ((Ek, µk))k∈N ⊂ S with (Ek, µk) → (E,µ) such
that

lim sup
k→∞

F(Ek, µk) ≤ F(E,µ) .

The proof of the above theorem is long and will be divided into several steps. Let us
first sketch it briefly. The liminf inequality will be a consequence of Theorem 4.8 and the
fact that ψ ≤ ψ. In order to construct recovery sequences, the case ψ = ψ will be easier to
deal with so let us assume here that there exists x0 ∈ (0,∞) such that ψ = ψ in [0, s0] and
ψ < ψ in (s0,∞) (see Remark A.12). We will approximate the two terms of F separately.
For the first one, for the sake of simplicity consider a smooth set E ⊂ Rn and a constant
adatom density u ≡ c > x0. We construct a recovery sequence (Ek, uk) ∈ S as follows:
write c = rs0 for some r > 1. Then, since ψ is linear in [s0,∞), we have

ψ(c) = ψ(rs0) = rψ(s0) = rψ(s0) .

Therefore take uk ≡ s0 and we let (Ek)k∈N be a sequence of smooth sets converging to E
in L1 and such that

Hn−1(∂Ek)→ rHn−1(∂E) .

This will be done by a wriggling process (Lemma 4.14) similiar to the one pictured in Figure
4.3 for the unit circle. To treat the second term we are led by the following observation:

Figure 4.3: Approaching the unit circle by curves with constant but bigger perimeter.
Notice that the recovery sequence here exhibits features similar to numerical simulations
of the evolution equation in [24].

a couple (∅, δ0) can be recovered by shrinking spheres with increasing adatom density.
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This, combined with the fact that any µs can be approximated by a sum of such Dirac
deltas and with a suitable mollification argument, will allow us to recover any (∅, µs) (see
Prop. 4.16). In a last step, we show that we can combine these two approximations to get
close to any such (E,µ) as much as we want.

We now prove a density result in S allowing us to restrict the analysis to the above
scenario.

Proposition 4.13. Let (E, u) ∈ S. Then, there exists a sequence of bounded smooth sets
(Ek)k∈N and a sequence of functions (uk)k∈N with uk ∈ L1(∂Ek,R+), with the following
properties:

(i) for every k ∈ N there exists a family (Mk
i )i∈N ⊂ ∂Ek of smooth manifolds with

Lipschitz boundary, with Hn−1
(
∂Ek \

⋃
i∈NM

k
i

)
= 0, such that uk is constant on

each Mk
i , for every i ∈ N,

(ii) Ek → E in L1, and |D1Ek
| ∗⇀ |D1E |,

(iii) µk
∗
⇀ µ, where µk := ukHn−1 ¬ ∂Ek and µ := uHn−1 ¬ ∂∗E,

(iv) F(Ek, uk)→ F(E, u).

Proof. Step one: approximation of a bounded set. Assume that E is bounded and let
Q ⊂ Rn be an open cube of side L such that E ⊂ Q and ∂∗E ⊂ Q. By a standard
argument (see [2, Theorem 3.42]), it is possible to construct a sequence of bounded smooth
sets (Ek)k∈N with Ek ⊂ Q such that

(4.10) Ek → E in L1 , |D1Ek
| ∗⇀ |D1E | , P (Ek)→ P (E) .

For every k ∈ N, write

Q =

kn⋃
j=1

Qki ,

where each Qkj is a closed cube of side 2L/k with edges parallel to the coordinate axes.
By [12], up to an arbitrarily small rotation of the Ek’s and of E, it is possible to assume
that

(4.11) Hn−1

 ∂Ek ∩
kn⋃
j=1

∂Qkj

 = 0 , Hn−1

 ∂∗E ∩
kn⋃
j=1

∂Qkj

 = 0

for every k ∈ N. Notice that ∂Ek ∩ (Qkj )
◦, where (Qkj )

◦ denotes the open cube, is made by

at most countably many smooth manifolds with Lipschitz boundary. Call them (Mk
i )i∈N.

By using (4.10), together with (4.11), up to a subsequence of the Ek, it is also possible to
assume that

(4.12)
∑
j∈Ik

∣∣∣∣∣ Hn−1(∂Ek ∩Qkj )
Hn−1(∂∗E ∩Qkj )

− 1

∣∣∣∣∣ < 1

k
,

∑
j∈Jk

Hn−1(∂Ek ∩Qkj ) <
1

k
,

where we set
Ik := { j ∈ {1, . . . , kn} : Hn−1(∂∗E ∩Qkj ) 6= 0 }

and
Jk := { j ∈ {1, . . . , kn} : Hn−1(∂∗E ∩Qkj ) = 0 } .
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Finally, let us define the function uk : ∂Ek → R as

(4.13) uk(x) :=

 
∂∗E∩Qk

j

uHn−1 =
1

Hn−1(∂∗E ∩Qkj )

ˆ
∂∗E∩Qk

j

uHn−1 ,

if x ∈ Ek ∩ (Qkj )
◦, with j ∈ Ik, and uk(x) := 0 otherwise. Notice that uk is not defined

only in a set of Hn−1 measure zero.
Let µk := ukHn−1 ¬ ∂Ek and µ := uHn−1 ¬ ∂∗E. We want to prove that µk

∗
⇀ µ. Take

ϕ ∈ Cc(Rn) and fix δ > 0. Using the uniform continuity of ϕ, it is possible to find k̄ ∈ N
such that, for every k ≥ k̄, it holds |ϕ(x) − ϕ(y)| < δ whenever x, y ∈ Qkj and for every

j = 1, . . . , kn. Let us denote by xkj the center of the cube Qkj . Then we have that∣∣∣∣ ˆ
∂Ek

ϕuk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣ ≤ kn∑
j=1

∣∣∣∣∣
ˆ
∂Ek∩Qk

j

ϕuk dHn−1 −
ˆ
∂∗E∩Qk

j

ϕu dHn−1

∣∣∣∣∣
=
∑
j∈Ik

∣∣∣∣∣
ˆ
∂Ek∩Qk

j

ϕuk dHn−1 −
ˆ
∂∗E∩Qk

j

ϕu dHn−1

∣∣∣∣∣
=
∑
j∈Ik

∣∣∣∣∣
( 

∂∗E∩Qk
j

u dHn−1

)(ˆ
∂Ek∩Qk

j

ϕ dHn−1

)
−
ˆ
∂∗E∩QL

j

ϕu dHn−1

∣∣∣∣∣
=
∑
j∈Ik

∣∣∣∣∣
( 

∂∗E∩Qk
j

u dHn−1

)(ˆ
∂Ek∩Qk

j

(ϕ− ϕ(xkj )) dHn−1 + ϕ(xkj )Hn−1(∂Ek ∩Qkj )

)

−
ˆ
∂∗E∩Qk

j

(ϕ− ϕ(xkj ))u dHn−1 − ϕ(xkj )

ˆ
∂∗E∩Qk

j

u dHn−1

∣∣∣∣∣
≤
∑
j∈Ik

[(ˆ
∂∗E∩Qk

j

u dHn−1

)∣∣∣∣∣Hn−1(∂Ek ∩Qkj )
Hn−1(∂∗E ∩Qkj )

− 1

∣∣∣∣∣ ( δ + |ϕ(xkj )| )

]

≤ δ + sup |ϕ|
k

‖u‖L1(∂∗E) ,

(4.14)

where in the first step we used (4.11) and in the last one the first condition in (4.12).
Letting k →∞ we get that∣∣∣∣ ˆ

∂Ek

ϕuk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣→ 0 .

Since ϕ ∈ Cc(Rn) is arbitrary and supk∈N µk(Rn) <∞ we conclude that µk
∗
⇀ µ. Finally,

we claim that F(Ek, uk)→ F(E, u) as k →∞. Indeed,

|F(Ek, uk)−F(E, u)| =
∣∣∣∣ ˆ

∂Ek

ψ(uk) dHn−1 −
ˆ
∂∗E

ψ(u) dHn−1

∣∣∣∣
≤
∑
j∈Ik

∣∣∣∣∣
ˆ
∂Ek∩Qk

j

ψ(uk) dHn−1 −
ˆ
∂∗E∩Qk

j

ψ(u) dHn−1

∣∣∣∣∣+ ψ(0)
∑
j∈Jk

Hn−1(∂Ek ∩Qkj )

≤
∑
j∈Ik

∣∣∣∣∣Hn−1(∂Ek ∩Qkj )
Hn−1(∂∗E ∩Qkj )

− 1

∣∣∣∣∣
ˆ
∂∗E∩Qk

j

ψ(u) dHn−1 + ψ(0)
∑
j∈Jk

Hn−1(∂Ek ∩Qkj )

≤
ψ(0)(1 + P (E)) + Θ‖u‖L1(∂∗E)

k
,
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where in the second step we used Jensen’s inequality, while in the last one we invoked
(4.12) and the fact that ψ(u) ≤ ψ(0) + Θu. Letting k →∞ we conclude the proof of this
step.

Step two: reduction to bounded sets. Let E be a set of finite perimeter, and assume
that E is not bounded. Using the coarea formula (see [2][Theorem 2.93]), for every k ∈ N
it is possible to find a sequence (Rk)k∈N with Rk ↗ ∞, such that Fk := E ∩ BRk

(0)
satisfies

‖1Fk
− 1E‖L1 <

1

2k
, P (Fk) = P (E,BRk

(0)) +Hn−1(∂BRk
(0) ∩ E) ,

with Hn−1(∂BRk
(0) ∩ E) < 1/2k. Moreover, extracting if necessary a subsequence (not

relabeled), we can also assume that
ˆ
∂∗E\BRk

(0)
u dHn−1 <

1

2k
.

Define ũk : ∂∗Fk → R as

ũk(x) :=

{
u(x) if x ∈ ∂∗E ∩BR(0) ,
0 otherwise .

Then

|F(Fk, ũk)−F(E, u)| =
∣∣∣∣ ˆ

∂∗E
ψ(u) dHn−1 −

ˆ
∂∗Fk

ψ(ũk) dHn−1

∣∣∣∣
=

∣∣∣∣∣
ˆ
∂BRk

∩E
ψ(0) dHn−1 +

ˆ
∂∗E\BRk

(0)
ψ(u) dHn−1

∣∣∣∣∣
≤ Hn−1(∂BRk

∩ E)ψ(0) +

ˆ
∂∗E\BRk

(0)
ψ(u) dHn−1

≤ 2ψ(0) + Θ

2k
,

where in the last step we used again the fact that ψ(u) ≤ ψ(0) + Θu. Moreover, for every
ϕ ∈ Cc(Rn), we have

(4.15)

∣∣∣∣ˆ
∂∗E

ϕu dHn−1 −
ˆ
∂∗Fk

ϕũk dHn−1

∣∣∣∣ =

∣∣∣∣∣
ˆ
∂∗E\BRk

(0)
ϕu dHn−1

∣∣∣∣∣ ≤ sup |ϕ|
2k

.

Set µ̃k := ũkHn−1 ¬ ∂∗Fk and µ := uHn−1 ¬ ∂∗E. Using (4.15) and the fact that supk∈N µk(Rn) <
∞ we can apply Lemma 2.14. Up to a (not relabeled) subsequence, we can assume that
dM(µ̃k, µ) ≤ 1/2k. Now, by Step one, for every k ∈ N let (Ek, uk) ∈ S, with Ek smooth
and bounded, be such that

‖1Ek
− 1Fk

‖L1 <
1

2k
, dM(µ̃k, µk) ≤

1

2k
, |F(Fk, ũk)−F(Ek, uk)| ≤

1

2k
,

where µk := ukHn−1 ¬ ∂Ek. Then the sequence ((Ek, uk))k∈N satisfies the requirements of
the lemma.

We now carry on the wriggling construction. The idea is to wriggle by a suitable factor
each piece of M where uk is constant, staying in a small tubular neighborhood and leaving
the boundary untouched, so that we can glue all the pieces together afterwards.
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Lemma 4.14. Let M ⊂ Rn be a bounded smooth (n − 1)-dimensional manifold having
Lipschitz boundary such that Hn−1(M) <∞, and let r ≥ 1. Then, there exist a sequence
of smooth (n− 1)-dimensional manifolds (Nk)k∈N such that

∂Nk = ∂M , Nk ⊂ (M)1/k , Hn−1(Nk)→ rHn−1(M) .

Proof. If r = 1, it suffices to set Nk = M . Assume r > 1. For k ∈ N∗, let Ck ⊂ M be a
compact set such that M \ Ck ⊂ (∂M)1/k and let ϕk ∈ C∞c (M) be such that

(4.16) 0 ≤ ϕk ≤ 1 , ϕk ≡ 1 on Ck , |∇Mϕk| ≤ Ck ,

for some constant C > 0. In the sequel, τ1(x), . . . , τn−1(x) will denote an orthonormal
base of the tangent space of M at a point x ∈ M . Fix a point x̄ ∈ M and let v ∈ Rn be
such that

(4.17) 0 <

n−1∑
i=1

(v · τi(x̄))2 , |x̄ · v| < π

2
.

We claim that it is possible to find a sequence (tk)k∈N such that

(4.18)

ˆ
M

√√√√1 +
t2k
k2

cos2(tk(x · v))
n−1∑
i=1

(τi(x) · v)2 dHn−1(x) = rHn−1(M) .

Indeed, by continuity it is possible to find λ, ε > 0 such that

(4.19) Hn−1(G) = λ , G :=

{
x ∈M : ε <

n−1∑
i=1

(v · τi(x))2 , |x · v| < π

2
− ε

}
.

For every t > 0 define

Zt :=
{
x ∈M : t|x · v| mod π ∈

(π
2
− ε, π

2
+ ε
)}

,

and notice that

(4.20) lim inf
t→∞

Hn−1(G \ Zt) ≥
λ

2
.

Let δ := cos(π/2− ε) > 0. By using (4.19) and (4.20), we have that

lim inf
t→∞

ˆ
M

√√√√1 +
t2

k2
cos2(t(x · v))

n−1∑
i=1

(τi(x) · v)2 dHn−1(x)

≥ lim inf
t→∞

ˆ
G\Zt

√
1 +

t2

k2
δ2ε2 dHn−1(x)

≥ lim inf
t→∞

λ

2

√
1 +

t2

k2
δ2ε2 = +∞ .

Moreover, it holds that

(4.21) tk ≤ Ck ,
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where C :=
√

4r2(Hn−1(M))2 − λ2/(λδε). Let ν(x) be a unit normal vector to M at x,
for every k ≥ 1 let

zk(s) :=
1

k
sin(tks) ,

and define wk : M → Rn as
wk(x) := x+ vk(x)ν(x) ,

where vk(x) := zk(x · v)ϕk(x). Set Nk := wk(M). Using the area formula (see 2.2) we get

Hn−1(Nk) =

ˆ
M
JMwk dHn−1 =

ˆ
M

√
det
(

[∇Mwk]T · ∇Mwk
)

dHn−1 .

Since the above determinant is invariant under rotations, for every fixed x ∈ M we can
compute∇Mwk with respect to the orthonormal base of Rn given by τ1(x), . . . , τn−1(x),ν(x).
It holds that

∇Mwk = Id + νM ⊗∇M (ϕkvk) + (ϕkvk)DMν

where Id denotes the n × (n − 1) matrix defined as (Id)ij := δij for i = 1, . . . , n and
j = 1, . . . , n− 1. Then[
∇Mwk

]T · ∇Mwk = Idn−1 + νTM ⊗∇M (ϕkvk) + ϕkvkDMν + (∇M (ϕkvk)⊗ ν)(ϕkvkDMν)

+ (∇M (ϕkvk)⊗ ν)(ν ⊗∇M (ϕkvk)) +∇M (ϕkvk)⊗ νT

+ ϕkvkDMν
T + ϕkvkDMν(ν ⊗∇M (ϕkvk) + (ϕkvk)

2DMνD
∗
Mν

= Idn−1 +∇M (ϕkvk)⊗∇M (ϕkvk)

+ ϕkvk[DMν + (∇M (ϕkvk)⊗ νM )DMνDMν
T

+DMν(ν ⊗∇M (ϕkvk) + ϕkvkDMνD
∗
Mν] ,

where Idn−1 denotes the (n − 1) × (n − 1) identity matrix, and ν∗ is the projection of ν
on the tangent space of M at x. In the last step we used the fact that ν∗(x) = 0. Using
(4.16) and (4.21) it is possible to write[

∇Mwk
]∗ · ∇Mwk = Idn−1 +∇M (ϕkvk)⊗∇M (ϕkvk) + (ϕkvk)Ak ,

where the Ak’s are uniformly bounded. We now use the identity det(Id + a⊗ a) = 1 + |a|2
to write

det
[

Idn−1 +∇M (ϕkvk)⊗∇M (ϕkvk)
]

= 1 + |∇M (ϕkvk)|2 .
Then ∣∣∣∣ˆ

M

√
det
(

[∇Mwk]∗ · ∇Mwk
)

dHn−1 −
ˆ
M

√
1 + |∇M (ϕkvk)|2 dHn−1

∣∣∣∣→ 0(4.22)

since Ak is uniformly bounded and |ϕkvk| → 0 (by the uniform continuity of the determi-
nant and a Taylor expansion). Moreover, the fact that ϕ2

k|∇Mvk|2 and |vk|2|∇Mϕk|2 are
uniformly bounded, allows us to estimateˆ

M\Ck

√
1 + |∇M (ϕkvk)|2 dHn−1 ≤

ˆ
M\Ck

√
1 + ϕ2

k|∇Mvk|2 + |vk|2|∇Mϕk|2 dHn−1

+

ˆ
M\Ck

√
2|∇Mϕk · ∇Mvk| dHn−1

≤ CHn−1(M \ Ck) + C

ˆ
M\Ck

√
|∇Mϕk| dHn−1

≤ C(1 +
√
k)Hn−1(M \ Ck) =

C(1 +
√
k)

k
→ 0 ,(4.23)
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as k →∞. Thus, the combination of (4.22) and (4.23) yields

(4.24)

∣∣∣∣ ˆ
M

√
det
(

[∇Mwk]∗ · ∇Mwk
)

dHn−1 −
ˆ
Ck

√
1 + |∇M (ϕkvk)|2 dHn−1

∣∣∣∣→ 0 ,

as k →∞. Now, notice that for points in Ck it holds

1 + |∇M (ϕkvk)|2 = 1 + |∇Mvk|2 = 1 +
t2k
k2

cos2(tk(x · v))

n−1∑
i=1

(τi(x) · v)2

and thus by (4.18) we have that

(4.25)

ˆ
Ck

√
1 + |∇Mvk|2 dHn−1 = rHn−1(M) .

Hence, by (4.10) and (4.25), we conclude that Hn−1(Nk) → rHn−1(M), as k → ∞.
Finally, since ϕ is compactly supported in M , ∂M = ∂Nk for all k ∈ N∗.

We now combine the above results to obtain recovery sequences for absolutely contin-
uous couples (see Remark 4.1).

Proposition 4.15. Let (E, u) ∈ S be an absolutely continuous couple. Then, for every
ε > 0 there exists an absolutely continuous couple (F, v) ∈ S such that

dS[(F, v), (E, u)] < ε , |F(F, v)−F(E, u)| < ε .

Proof. In the case ψ = ψ, there is nothing to prove. Therefore, assume that there exists
s0 > 0 such that ψ < ψ in (s0,∞) (see Remark A.12). Let (Ek, uk) ∈ S and Mk

i ⊂ ∂Ek
be the sequences given by Proposition 4.13 relative to (E, u). Notice that, by looking at
the way the Mk

i are obtained, we can assume that each one of them is contained in a cube
of diagonal 1/2k and of center xki . Write

uk(x) =:
∞∑
i=1

uki 1Mk
i
(x) .

Using (4.14), and the extraction of a subsequences (not relabeled), we can assume that

(4.26) ‖uk‖L1(∂Ek) ≤ ‖u‖L1(∂∗E) +
1

k
.

Fix k ∈ N large enough and let

(4.27) rki := max

{
1,

uki
s0

}
.

Let δk > 0 be such that (∂Ek)δk is a normal tubular neighborhood of the whole ∂Ek to
avoid self-intersection when wriggling. By Lemma 4.14 for every i ∈ N it is possible to
find a sequence of smooth manifolds (Nk

i )k∈N with Lipschitz boundary such that

(4.28) Nk
i ⊂ (Mk

i )εki
,

∣∣∣Hn−1(Nk
i )− rkiHn−1(Mk

i )
∣∣∣ ≤ 2−i

k
,

where εki := min(δk,
2−i

k ). Define

(4.29) vki = min
{
s0, u

k
i

}
.
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Observe that when rki = 1 then Nk
i = Mk

i and vki = uki , i.e., we do not modify anything.

Now, let Fk be the bounded set whose boundary is ∂Fk :=
⋃
i∈NN

k
i , and let vk ∈

L1(∂Fk;R+) be defined as vk := vki on Nk
i . Notice that Fk is well defined, since the Nk

i

are disjoint, smooth and ∂Nk
i = ∂Mk

i by construction. Then,

‖1Ek
− 1Fk

‖L1 ≤
1

k
.

Let ϕ ∈ Cc(Rn). By uniform continuity of ϕ, fixed η > 0 it is possible to find k̄ ∈ N such
that |ϕ(x) − ϕ(y)| < η for every x, y ∈ Rn with |x − y| < 1/k̄. Increasing k if necessary,
we can assume that 1/k < 1/k. Then∣∣∣∣ ˆ

∂Fk

ϕvk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣ =

∣∣∣∣∣∑
i∈N

ˆ
Nk

i

ϕvk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣∣
≤
∑
i∈N

∣∣∣∣∣
ˆ
Nk

i

ϕvk dHn−1 −
ˆ
Mk

i

ϕuk dHn−1

∣∣∣∣∣+

∣∣∣∣ ˆ
∂Ek

ϕuk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣
≤ η

(
‖uk‖L1(∂Ek) + ‖vk‖L1(∂Fk)

)
+ sup |ϕ|

∑
i∈N

∣∣∣Hn−1(Nk
i )vki −Hn−1(Mk

i )uki

∣∣∣ .
In this last step we used the uniform continuity of ϕ, the facts that Mk

i and Nk
i are

contained in cubes of diagonal 1/(2k) and 1/k, respectively, and that 1/k < 1/k. Observe
that the summands in the last term are zero if rki = 1, so denote J ⊂ N the set of indexes
i for which rki > 1. We thus have∣∣∣∣ˆ

∂Fk

ϕvk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣
≤ η

(
‖uk‖L1(∂Ek) + ‖vk‖L1(∂Fk)

)
+ s0 sup |ϕ|

∑
i∈J

∣∣∣Hn−1(Nk
i )− rkiHn−1(Mk

i )
∣∣∣

+

∣∣∣∣ˆ
∂Ek

ϕuk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣
≤ 2η

(
‖u‖L1(∂∗E) +

1

k

)
+
s0 sup |ϕ|

k
+

∣∣∣∣ ˆ
∂Ek

ϕuk dHn−1 −
ˆ
∂∗E

ϕu dHn−1

∣∣∣∣
where in the last step we used (4.26), (4.27), (4.28) and (4.29). Now, by recalling that

ukHn−1 ¬ ∂Ek
∗
⇀ uHn−1 ¬ ∂∗E ,

and using the arbitrariness of η, we conclude that the above quantities go to zero as
k → ∞. In particular µk

∗
⇀ µ, where µk := vkHn−1 ¬ ∂Fk and µ := uHn−1 ¬ ∂E. Finally,

observe that∣∣F(Fk, vk)−F(E, u)
∣∣ ≤ ∣∣∣∣ˆ

∂Fk

ψ(vk) dHn−1 −
ˆ
∂Ek

ψ(uk) dHn−1

∣∣∣∣
+

∣∣∣∣ˆ
∂Ek

ψ(uk) dHn−1 −
ˆ
∂∗E

ψ(u) dHn−1

∣∣∣∣
goes to zero as k → ∞ thanks to similar computations of the ones above and (iv) of
Proposition 4.13. This concludes the proof.

We now prove the approximation in energy of a measure µ that is singular with respect
to |D1E |.
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Proposition 4.16. Let µ ∈M(Rn) be such that µ(Rn) <∞. Then for every ε > 0 there
exists an absolutely continuous couple (E, u) such that

dS[(E, u), (∅, µ)] < ε , |F(E, u)−Θµ(Rn)| < ε.

The proof of Proposition 4.16 is a consequence of the following lemma.

Lemma 4.17. Let f ∈ C∞c (Rn) with f ≥ 0. For every ε > 0 there exists an absolutely
continuous couple (F,w) such that

dS[(F,w), (∅, fLn)] < ε
∣∣F(F,w)−F(∅, fLn)

∣∣ < ε.

Before proving this lemma, we first show how to derive Proposition 4.16 from it.

Proof of Proposition 4.16. Let {ηr}r>0 be a mollifying kernel, and define

fr(x) :=

ˆ
B1/r(0)

ηr(x− y) dµ(x).

By standard arguments we know that fr ∈ C∞c (Rn) and frLn
∗
⇀ µ as r → 0. In particular,

for every ε > 0 we can find δ > 0 such that

dM(fδLn, µ) < ε/3.

Moreover, since ˆ
Rn

fr dx −→
r→0

µ(Rn),

up to further decreasing δ we can also ensure that∣∣F(∅, fδLn)−F(∅, µ)
∣∣ = Θ | ‖fδ‖L1 − µ(Rn)| < ε/3.

Applying Lemma 4.17 we find an absolutely continuous couple (F,w) such that

dS[(F,w), (∅, fδLn)] < ε/3,
∣∣F(F,w)−F(∅, fδLn)

∣∣ < ε/3.

Applying Proposition 4.15 let (E, u) be an absolutely continuous couple such that

dS[(E, u), (F,w)] < ε/3,
∣∣F(E, u)−F(F,w)

∣∣ < ε/3.

Using the triangle inequality, we conclude that

dS[(E, u), (∅, µ)] < ε,
∣∣F(E, u)−F(∅, µ)

∣∣ < ε.

Proof of Lemma 4.17. Let {Qkj }j∈N be a diadic partition of Rn in cubes of size |Qkj | = 2−nk

and centers xkj . We introduce the set of indexes

J0 = {j ∈ {1, . . . , 2nk} : |Qkj ∩ {f > 0}| 6= 0} ,

and we set

0 < mk := min

{ˆ
Qk

j

f dx : j ∈ J0

}
< sup

Rn
{f}2−nk.
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Since supp(f) is compact, we can infer that

(4.30) #(J0)|Qkj | < C

where here, and in what follows, C will always stand for a constant depending on f and
n only and whose value can change from line to line. Let

rk := m
1/(n−1)
k 2−2k, Bk

j := Brk(xkj ) ⊂⊂ Qkj ,

and define (see Figure 4.4)

(4.31) Fk :=
⋃
j∈J0

Bk
j , wk(x) :=

∑
j∈J0

1∂Bk
j
(x)

P (Bk
j )

ˆ
Qk

j

f(y) dy.

Figure 4.4: In the background the set supp(f). On the top the diadic division and the set
Fk built as the union of small balls (in black). The adatom density wk is defined to be
constant on each ∂Bk

j (evidenced in white circles).

Notice that, since Bk
j ∩ Bk

m = ∅ for j 6= m, the function wk ∈ L1(∂∗Fk;R+) is well
defined. We also notice that, by construction, for each j ∈ J0 it holds

(4.32)
1

P (Bk
j )

ˆ
Qk

j

f(y) dy ≥ C22(n−1)k.

Since ψ(x)/x↘ Θ, that for each ε > 0 and for k big enough

(4.33)

∣∣∣∣∣P (Bk
j )ψ

(
1

P (Bk
j )

ˆ
Qk

j

f dy

)
−Θ

ˆ
Qk

j

f dy

∣∣∣∣∣ < ε

ˆ
Qk

j

f dy, for all j ∈ J0.
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Since

F(Fk, wk) =
∑
j∈J0

ˆ
∂Bk

j

ψ(wk) dHn−1 =
∑
j∈J0

P (Bk
j )ψ

(
1

P (Bk
j )

ˆ
Qk

j

f dy

)

= Θ
∑
j∈J0

ˆ
Qk

j

f dy +
∑
j∈J0

(
P (Bk

j )ψ

(
1

P (Bk
j )

ˆ
Qk

j

f dy

)
−Θ

ˆ
Qk

j

f dy

)
,

invoking (4.33) and (4.30), for large k, we are led to

(4.34)

∣∣∣∣F(Fk, wk)−Θ

ˆ
Rn

f dy

∣∣∣∣ ≤ ε∑
j∈J0

ˆ
Qk

j

f dy ≤ εC.

We now claim that the sequence (Fk, wk) defined in (4.31) converges to (∅, fLn). Equation
(4.30) together with definition of rk, implies that |Fk| → 0, and thus 1Fk

→ 0 in L1. Let
µk := wkHn−1 ¬ ∂Fk and µ := fLn. Noticing that

(4.35) µk(Rn) = µ(Rn) < +∞ ,

by Lemma 2.14, up to a (not relabeled) subsequence, we have that µk
∗
⇀ ν for some

ν ∈ M(Rn). In order to prove that ν = fLn, we compute its density. For this, for any
ball Br we introduce the subset of indexes

in(Br; k) := {j ∈ {1, . . . , 2nk} : Qkj ⊂⊂ Br)},
bd(Br; k) := {j ∈ {1, . . . , 2nk} : Qkj ∩ ∂Br 6= ∅}.

Step one: estimate on the cardinality of bd(Br; k): #(bd(Br; k)). Notice that if Qkj ∩
∂Br 6= ∅ then

Qkj ⊆ {x ∈ Rn : d(x, ∂Br) ≤
√
n2−k}

since
√
n2−k is the diagonal of each cube. Observe that∣∣∣{x ∈ Rn : d(x, ∂Br) ≤

√
n2−k}

∣∣∣ ≤ CP (Br)2
−k,

and thus we have

(4.36) #(bd(Br; k)) ≤ CP (Br)2
(n−1)k.

Step two: ν = fLn. Let x ∈ supp(f), r > 0, Br = Br(x), and consider

Dr(k) :=
⋃

j∈in(Br;k)

Qkj .

In view of (4.36), we have

|Br \Dr(k)| ≤ H0(bd(Br; k))|Qkj | ≤ CP (Br)2
−k .(4.37)

Notice also that

(4.38) µk(Dr(k)) =
∑

j∈in(Br;k)

µk(Q
k
j ) =

∑
j∈in(Br;k)

µ(Qkj ) =

ˆ
Dr(k)

f dx.
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Thus (4.38) and (4.37) imply that

(4.39)

∣∣∣∣µk(Dr(k))−
ˆ
Br

f dx

∣∣∣∣ −→k→∞ 0.

Also, by (4.36), we have

|µk(Br)− µk(Dr(k))| ≤
∑

j∈bd(Br;k)

ˆ
Qk

j

f dy ≤ C#(bd(Br; k))2−nk ≤ CP (Br)2
−k −→

k→∞
0.

By the triangle inequality and (4.39) we obtain

(4.40)

∣∣∣∣µk(Br)− ˆ
Br

f dx

∣∣∣∣ ≤ |µk(Br)− µk(Dr(k))|+
∣∣∣∣µ(Dr(k))−

ˆ
Br

f dx

∣∣∣∣→ 0.

Clearly, if x /∈ supp(f) we have µk(Br(x)) = 0 for a small enough r > 0 and for a large
enough k, implying that ν(Br(x)) = 0. On the other hand, in view of (4.40), if x ∈ supp(f)
then for every r > 0

µkh(Br(x))→
ˆ
Br(x)

f dy .

Thus, by 2.10 for all but countably many r > 0

µkh(Br(x))→ ν(Br(x)).

This argument shows that

(4.41) lim
r→0

ν(Br(x))

rn
=

{
0 if x /∈ supp(f),
f(x) if x ∈ supp(f) ,

and hence ν = fLn. Since the limit measure ν does not depend on the subsequence µkh ,

we conclude that µk
∗
⇀ fLn.

We are finally in position to prove the relaxation result.

Proof of Theorem 4.12. Step one: liminf inequality. Let (E,µ) ∈ S and let ((Ek, µk))k∈N ⊂
S with (Ek, µk) → (E,µ). If there exists k̄ ∈ N such that µk has a singular part with
respect to |D1Ek

| for all k ≥ k̄, then F(Ek, µk) = ∞ for all k ≥ k̄. So we can assume,
without loss of generality, that, up to a subsequence (not relabeled), µk = uk|D1Ek

|, with
uk ∈ L1(∂∗Ek,R+) for all k ∈ N. Since ψ ≤ ψ, we have that

F(Ek, µk) =

ˆ
∂∗Ek

ψ(uk) dHn−1 ≥
ˆ
∂∗Ek

ψ(uk) dHn−1 = F(Ek, µk) .

Using the semi-continuity of F (see Lemma 4.8), we get that

lim inf
k→∞

F(Ek, µk) ≥ lim inf
k→∞

F(Ek, µk) ≥ F(E,µ) .

Step two: limsup inequality. Let (E,µ) ∈ S and write µ = u|D1E |+ µs, where µs is
the singular part of µ with respect to |D1E |. For every k ∈ N∗, using Propositions 4.15
and 4.16, we can find (Fk, vk) and (Gk, wk) in S such that

dS [(E, u), (Fk, vk)] < 1/(3k) ,(4.42)

dS[(Gk, wk), (∅, µs)] < 1/(3k) ,(4.43) ∣∣∣∣ˆ
∂∗Fk

ψ(vk) dHn−1 −
ˆ
∂∗E

ψ(u) dHn−1

∣∣∣∣ < 1/(2k) ,(4.44) ∣∣∣∣ˆ
∂∗Gk

ψ(wk) dHn−1 −Θµs(Rn)

∣∣∣∣ < 1/(2k) .(4.45)
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Define Ek := Fk4Gk, the symmetric difference of Fk and Gk. Up to arbitrarily small
isometries of the connected component of Gk, it is possible to assume that (see [21])

Hn−1(∂∗Fk ∩Gk) = 0 ,

and that (4.43) still holds. In particular

Hn−1(∂∗Ek) = Hn−1(∂∗Fk) +Hn−1(∂∗Gk).

Now, define uk : ∂∗Ek → R+ as

uk(x) :=

{
vk(x) if x ∈ ∂∗Fk ,
wk(x) if x ∈ ∂∗Gk .

Set µk := ukHn−1 ¬ ∂∗Ek. Using (4.42) and (4.43), we get that

dM(µ, µk) < 1/(2k) ,

and, using | |a| − |b| | ≤ |a− b|, we obtain

‖1E − 1Ek
‖L1 = ‖1E − |1Fk

− 1Gk
| ‖L1 ≤ ‖1E − 1Fk

‖L1 + ‖1Gk
‖L1 ≤ 1/(2k)

that is,

(4.46) dS [(E,µ), (Ek, µk)] < 1/k .

Finally, noticing that

F(Ek, µk) =

ˆ
∂∗Ek

ψ(uk) dHn−1 =

ˆ
∂∗Fk

ψ(vk) dHn−1 +

ˆ
∂∗Gk

ψ(wk) dHn−1

and using (4.44) and (4.45), we get

(4.47)
∣∣F(Ek, µk)−F(E,µ)

∣∣ < 1/k .

Since, by construction,
sup
k∈N

µk(Rn) <∞ ,

Remark 4.4 together with(4.46) gives us that (Ek, uk)→ (E,µ) in S. Thus, ((Ek, uk))k∈N
is the desired recovery sequence.

Remark 4.18. Observe that for any (E, u) ∈ S the wriggling process developed in Lemma
4.14 will produce sequences (Ek, uk) such that

J (Ek, uk)→ J (E, u).

The same holds true also for the sequences provided by Proposition 4.13 and Proposition
4.16. Hence, given (E,µ) ∈ S, the recovery sequence provided by Theorem 4.12, will
satisfy

J (Ek, uk)→ |E|+ µ(Rn).
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5 Minimizers and critical points of the relaxed energy

We now study minimizers and critical points of the relaxed energy F and their relation
with those of F .

Theorem 5.1. Assume that ψ is strictly convex. Let (E,µ) ∈ S be such that |E| > 0 and
its absolutely continuous part (E, u) is a regular critical point for F , i.e., (E, u) is as in
Definition 3.3 and satisfies

(5.1)

ˆ
∂E

[ψ ′(u)w + ψ(u)vH ] dHn−1 = 0 for all (v, w) ∈ Ad(E, u) ,

where Ad(E, u) is defined in Definition 3.3. Then E is a ball B with constant adatom
density c < s0 satisfying condition (3.6), namely

(ψ(c)− cψ′(c))H∂B = ρψ′(c) .

Proof. Notice that (E, u) ∈ Cl(m̃), where m̃ := m − µs(Rn). Since |E| > 0 we have
that m̃ > 0. In the case ψ = ψ the result follows using the same steps of the proof of
Proposition 3.5 applied to the couple (E, u) ∈ Cl(m̃).

Otherwise, we will obtain the result by adapting the same proof as follows: step 1
implies that, on each connected component of ∂E, ψ ′(u) is constant. Thus, for every fixed
connected component (∂E)i of ∂E, we have two possibilities: ψ ′(u) ≡ Θ or ψ ′(u) < Θ.

In the first case u ≥ s0 Hn−1- a.e. on (∂E)i, so that ψ − uψ ′(u) ≡ 0. We claim that
this is impossible. Indeed, arguing as in step 2 of Proposition 3.5, take v ∈ C1((∂E)i) such
that

(5.2)

ˆ
(∂E)i

v dHn−1 6= 0 ,

and consider the admissible velocities (v,−v(uH + ρ)) ∈ Ad(E, u). Using the fact that u
is constant on (∂E)i and (5.1), we obtain

0 =
(
ψ(u)− uΘ

) ˆ
(∂E)i

vH∂E dHn−1 − ρΘ

ˆ
(∂E)i

v dHn−1 = −ρΘ

ˆ
(∂E)i

v dHn−1 6= 0 ,

where in the last step we used (5.2) and that ρ,Θ 6= 0.
So, we have that, on each connected component of ∂E, ψ ′(u) < Θ, that in turn implies

that u < s0 Hn−1-a.e. on ∂E. But for such values of u, the functions ψ and ψ agree. Thus
we can conclude by arguing as in steps 2,3 and 4 of the proof of Proposition 3.5.

Remark 5.2. The necessary condition c < s0 is physically relevant and it prevents the
occurrence of large concentrations of atoms freely diffusing on the surface of the crystal.
It will have a considerable importance in the study of gradient flows associated to F ,
as it will lead them to be attracted by points nearby which the equations are parabolic
(parabolicity will be given by ψ(c)− cψ′(c) > 0, i.e., by c < s0).

We now prove that the minimum of F can be reached by balls with constant adatom
density. Observe that due to the previous theorem, the density cannot be arbitrarily big
(the balls cannot be arbitrarily small), even though a Dirac delta (∅, δ) could still be a
minimizer since this is not an absolutely continuous couple.
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Definition 5.3. Fix m > 0 and set

γm := inf{F(E,µ) : (E,µ) ∈ Cl(m) } ,

where
Cl(m) :=

{
(E,µ) ∈ S : J (E,µ) = m

}
,

and
J (E,µ) := ρ|E|+ µ(Rn) .

Theorem 5.4. Fix m > 0. If ψ satisfies the assumptions of Theorem 3.7, then there exist
R ∈ (Rm, Rm) and a constant 0 < c < s0 such that the pair (BR, c) ∈ Cl(m), and

F(BR, c) = γm = γm .

Moreover, every minimizing couple (E,µ) ∈ Cl(m) is such that either E is a ball or E = ∅.

Proof. Let (E,µ) ∈ Cl(m) and let ((Ek, uk))k∈N ⊂ S be a recovery sequence given by
Theorem 4.12 such that

F(Ek, uk)→ F(E,µ) .

By Remark 4.18 we have that

(5.3) mk := J (Ek, uk)→ J (E,µ) .

For every k ∈ N, by Theorem 3.7 let Rk, ũk > 0 be such that

J (BRk
, ũk) = J (Ek, uk) , F(BRk

, ũk) = γmk
.

Moreover, if Ek is not a ball, then

F(BRk
, ũk) < F(Ek, uk) .

Thus
F(E,µ) = lim

k→∞
F(Ek, uk) ≥ lim sup

k→∞
F(BRk

, ũk) ≥ lim sup
k→∞

F(BRk
, ũk) .

With the notation introduced in the proof of Theorem 3.7, we infer that

0 < Rmk
≤ Rk ≤ Rmk

.

By continuity of m 7→ Rm and m 7→ Rm, this implies that, up to subsequences (not
relabeled), Rk → R ∈ (Rm, Rm) and ũk → ũ > 0. In particular, we get

J (BR, ũ) = m, F(E,µ) ≥ F(BR, ũ) .

This allows us to restrict the analysis to balls with constant adatom density again. From
here notice that ψ satisfies (A1) just as ψ does. Then either ψ = ψ, and thus ψ cannot be
superlinear and it has to satisfy (A2b), or ψ 6= ψ (and hence s0 < +∞) which implies that
ψ again satisfies (A2b) (because it is linear on (s0,+∞), see Section A). In both cases the
proof of Theorem 3.7 applies, and there exists a ball B and c > 0 such that J (B, c) = m
and

γm = γm = F(B, c).

Finally, let (E, u|D1E |+ µs) be a minimizer of F in Cl(m) with |E| > 0 and assume E is
not a ball. Set m1 := m − µs(RN ) > 0. Then (E, u) ∈ Cl(m1). Thus, applying Lemma
3.10 to this couple, we get that

F(E, u) > F(B, u) ,
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where B is a ball with |B| = |E| and u :=
ffl
∂∗E u dHn−1. Then (E, u|D1E |+µs) ∈ Cl(m)

and
F(E, u|D1E |+ µs) > F(B, u|D1B|+ µs) ,

which is in contradiction with the minimality of (u|D1E |+ µs).

Remark 5.5. Minimizers of F can be have less structure than minimizers of F in the
following terms:

i) the additivity of the singular part of F allows for a huge variety of phenomena. For
instance, if Θγm = m, any couple of Dirac deltas suitably weighted will produce a
minimizing couple (∅,m1δ1 +m2δ2).

ii) for the same reason, if there exists a minimizer (E, u|D1E | + µs) with a non-zero
singular part µs, any couple µs1, µ

s
2 such that (µs1 + µs2)(Rn) = µs(Rn) will produce

another minimizer (E, u|D1E |+ µs1 + µs2).

Observe that there are two distinct ways of seeing a ball with constant adatom density in
our setting. One is (BR(c), c) representing a ball of crystal with a constant adatom density
on its surface. Another is (∅, ρ1BR(c)

Ln + cHn−1 ¬ ∂BR(c)) These representations have the
same mass but the former one is better energetically, provided

ψ(c) ≤ Θc+
ΘρR(c)

n
.

A Convex subadditive envelope of a function

Definition A.1. Let g : R→ R. We say that g is subadditive if for every r, s ∈ R,

g(r + s) ≤ g(r) + g(s) .

Definition A.2. Let g : [0,∞) → R be a function. We define its convex subadditive
envelope convsub(g) : [0,∞)→ R as

convsub(g)(s) := sup{ f(s) : f : [0,∞)→ R is convex, subadditive and f ≤ g } .

The aim of this section is to characterize the convex subadditive envelope of admissible
energy densities (see Definition 3.1). To this end, we need a few preliminary results which
are related to the parabolicity condition (1.5).

Lemma A.3. Let g : (0,+∞) → R be convex and subadditive. Then, s 7→ g(s)/s is
non-increasing in (0,+∞). In particular for L-a.e. s ∈ R we have

g(s)− g′(s)s ≥ 0 .

Proof. Assume, by contradiction, that there exist 0 < r < s with

(A.1)
g(r)

r
<
g(s)

s
.

Let t := r + s. By subadditivity, we get

(A.2)
g(t)− g(r)

t− s
=
g(r + s)− g(s)

r
≤ g(r)

r
.
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Moreover, (A.1) yields
g(r)

r
<
g(s)− g(r)

s− r
.

These two inequalities together violate the convexity of g.
Finally, since r 7→ g(r)/r is non-increasing, it is differentiable L-a.e. on R. In particu-

lar, fixed r ∈ R for which g′(r) exists, we have that

g′(r) = lim
s→r+

g(s)− g(r)

s− r
≤ g(r)

r
,

where in the last step we used (A.2).

Lemma A.4. Let g : (0,+∞) → R be a convex function. Let D ⊂ R be the set where g′

is defined. Then, the function r 7→ g(r)− g′(r)r is non-increasing on D.

Proof. It suffices to observe that for any 0 < r ≤ s, since g′ is a.e. non-decreasing and
r < 0,

g′(s)s− g′(r)r ≥ g′(s)(s− r) ≥
ˆ s

r
g′(t) dt = g(s)− g(r)

We now recall a classical result for convex functions (see [22], Appendix).

Lemma A.5. Let g : R→ R be a convex function. Then, there exist families (aj)j∈N and
(bj)j∈N of real numbers such that

g(r) = sup
j
{ ajr + bj } .

Moreover as r → +∞
g(r)− g(0)

r
↗ sup

j
{aj}.

Remark A.6. In Lemma A.5, one can select the supremum of all affine functions that
equal g at all rational numbers and with slope equal to or in between its left and right
derivatives there. When g is C1 these are just the tangents of g at the rationals.

We now introduce the main object we need in order to identify the relaxation of our
functional F .

Definition A.7. Let g : R → [0,∞) be as in Definition 3.1. Let (aj)j∈N and (bj)j∈N be
the two families given by the previous lemma. We define

g(r) = sup{ ajr + bj : j ∈ N , bj ≥ 0 } ,

Remark A.8. Notice that since ψ is increasing, we have that aj ≥ 0 for all j ∈ N.

Proposition A.9. Let ψ : R → [0,∞) be as in Definition 3.1. Then ψ is the convex
subadditive envelope of ψ.

We divide the proof of the above proposition in a sequence of lemmas.

Lemma A.10. Let ψ and ψ be as in Definition A.7. Then ψ is convex and subadditive.
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Proof. As a supremum of affine functions, ψ is convex. Further, for all ε > 0 there exists
j ∈ N such that

ψ(r + s) ≤ aj(r + s) + bj + ε

≤ ajr + bj + ajs+ bj + ε (since bj ≥ 0)

≤ ψ(r) + ψ(s) + ε

The arbitrariness of ε > 0 leads to the subadditivity.

Lemma A.11. Let ψ,ψ be as above. Let

y = ψ′(r)r + b(r)

be the equation of the tangent line to the graph of ψ at the point (r, ψ(r)). Define

s0 := sup{ r ∈ [0,∞) : b(r) ≥ 0 } .

Then ψ ≡ ψ in [0, s0], and ψ is linear on [s0,∞) (with eventually s0 = +∞).

Proof. Notice that b(0) = ψ(0) > 0 and that, since ψ is C1 and convex, b is non-increasing
and continuous. Thus, we have two cases: either b(r) ≥ 0 for all r ∈ (0,∞), and in that
case ψ = ψ in all [0,∞), or there exists a point r ∈ (0,∞) such that b(r) < 0. In the
latter, by continuity and monotonicity of b, we have that

(A.3) s0 := sup{ r ∈ [0,∞) : b(r) ≥ 0 }

is a well defined number in (0,+∞). Since, by definition,

ψ = sup{ ajr + bj : j ∈ N , bj ≥ 0 } ,

it is now clear, using Lemma A.5, that ψ and ψ coincide on [0, s0]. Moreover, from the
above we get that a maximizing sequence in the definition of ψ(r) when r > s0 satisfies
bj → 0, thus ψ is a linear extension of ψ past s0.

Proof of Proposition A.9. Call R the convex subadditive envelope of ψ. In the case ψ = ψ
we have ψ = ψ = R so there is nothing to prove. Assume that ψ = ψ only on some [0, s0].
Assume, by contradiction, that there exists r∗ ≥ s0 such that ψ(r∗) < R(r∗) ≤ ψ(r∗), and
still call (by abuse) r∗ ≥ s0 the infimum of such points. Then we have

ψ(r∗) = ψ(r∗), ψ′(r∗) ≥ ψ(r∗) =: a ,

and since r∗ ≥ s0,
ψ(r∗)− ψ′(r∗)r∗ ≤ ψ(r∗)− ar∗ = 0 .

By Lemmas A.3 and A.4, one has

ψ(r)− ψ′(r)r ≡ 0

for all r ≥ r∗, i.e. ψ ≡ ψ there, which contradicts our assumption.

Remark A.12. The above result is still valid even if ψ is not C1, by the same arguments
using the right-derivatives. Since ψ is C1, we can give another characterization of ψ through
the parabolicity condition

ψ(r)− ψ′(r)r ≥ 0.

From (A.3) we can infer that

(A.4) ψ(r) =

{
ψ(r) if r ∈ [0, s0),
ψ′(s0)r if r ∈ [s0,+∞),

where
s0 := sup{r ∈ R+ | ψ(r)− ψ′(r)r > 0} .

40



B Mass preserving curves with prescribed (tangential) ini-
tial velocity

Let (E, u) as in (3.3) and assume also that ψ,ψ′, u,H∂E satisfies hypothesis (H). We show
here that the set Ad(E, u), as used in the proof of Proposition 3.4 and 3.5, in this context
plays the role of the tangent space at the point (E, u) to the manifold Cl(m). In particular,
for any couple (v, w) ∈ Ad(E, u), we build a curve ((Et, ut))|t|<ε ∈ Cl(m) such that

d

dt
F(Et, ut)

∣∣∣
t=0

=

ˆ
∂E

[ψ′(u(x))w(x) + ψ(u(x))v(x)H(x)] dHn−1(x).

We proceed as follows. Let (v, w) ∈ Ad(E, u), consider the diffeomorphism Φt : ∂E → Rn
defined as

Φt(x) := x+ tv(x)νE(x)

and consider its extension on Rn through a cut off ϕ as in Remark 3.6. Fix ξ ∈ C1
b (∂E)such

that ˆ
∂E
ξ(x) dHn−1(x) > 0

and for t, s ∈ (−ε, ε) define the curve

Et := Φt(E); ut,s(x) := u(Φ−1
t (x)) + tw(Φ−1

t (x)) + sξ(Φ−1
t (x)) on ∂Et.

Define the C1 function

φ(t, s) := |Et|+
ˆ
∂Et

ut,s(x) dHn−1(x)

and notice that

φ(0, 0) = m(B.1)

∂φ

∂t
(0, 0) = 0,(B.2)

∂φ

∂s
(0, 0) > 0.(B.3)

Indeed, relations (B.1) and (B.2) follow respectively by the construction of Et and the
same computation explained in Remark 3.6. For (B.3) instead, we immediately see that
it is just a consequence of our choice of ξ thanks to

∂φ

∂s
(0, 0) =

∣∣∣
(t,s)=0

ˆ
∂Et

ut,s(x) dHn−1(x)

=
∂

∂s

∣∣∣
(t,s)=0

ˆ
∂E

[u(x) + tw(x) + sξ(x)]J∂EΦt(x) dHn−1(x)

=

ˆ
∂E
ξ(x) dHn−1(x) > 0.

The implicit function theorem applied to the function φ now guarantees that (up to further
decrease ε) we can find a curve γ : (−ε, ε)→ (−ε, ε) such that γ(0) = 0 and

(B.4) φ(t, γ(t)) = m.
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This means that
(
Et, ut,γ(t)

)
∈ Cl(m) for all t ∈ (−ε, ε). Moreover by differentiating (B.4)

and thanks to (B.2),(B.3) we also obtain γ̇(0) = 0. Hence

d

dt

∣∣∣
t=0
F
(
Et, ut,γ(t)

)
=

d

dt

∣∣∣
t=0

ˆ
∂E
ψ(u(x) + t(w(x) + γ(t)ξ(x))J∂EΦt(x) dHn−1(x)

=

ˆ
∂E

[ψ′(u(x))w(x) + ψ(u)v(x)H(x)] dHn−1(x).

In particular, in order to compute the constrained first variation, we can restrict ourselves
to any generic curve with prescribed initial velocity (v, w) ∈ Ad(E, u).

C Compactness

Theorem C.1. Let ((Ek, µk))k∈N ⊂ S be a sequence such that

sup
k∈N
F(Ek, µk) < +∞ , or sup

k∈N
F(Ek, µk) < +∞ .

Then, up to a subsequence it holds (Ek, µk)→ (E,µ) for some (E,µ) ∈ S.

Proof. From the fact that ψ(r) ≥ ψ(0) + Θr we gain

ψ(0)P (Ek) + Θµk(Rn) ≤ F(Ek, µk) ≤ F(Rk, µk) ,

and, in turn
sup
k∈N

P (Ek) < +∞ , sup
k∈N

µk(Rn) < +∞ .

Thanks to the compactness theorem for sets of finite perimeter (see [20, Theorem 12.26])
and from the weak*-compactness for finite Radon measures (see Lemma (2.14)) we con-
clude.

D Proof of Theorem 1.2

This theorem is, of course, completely independent from our energy functional setting and
could be proven by simplified versions of Proposition 4.13 and Lemma 4.14. However, for
the sake of shortness, we prefer to derive it directly as a consequence of our construction
of recovery sequences. Pick ψ(s) = 1 + s2/2, for which s0 =

√
2. Now choose

µ = s0(1 + f)Hn−1 ¬ ∂∗E.

Since u = s0(1 + f) ≥ s0, from (4.13) we get that uki ≥ s0 in the proof of Proposition 4.15
since the uki are averages of u. Thus, the Ek will always be wriggled locally by a factor
1 + f and we will always have

µk = s0Hn−1 ¬ ∂Ek.

More precisely the recovery sequence from Theorem 4.12 (ii) satisfies

Ek → E in L1 , s0|D1Ek|
∗
⇀ s0(1 + f)|D1E|.

Having (2.9) in mind, this concludes.
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E Further geometric constraints

To take into account additional physical constraints, for instance when depositing adatoms
respectively on a flat surface or in a cylindrical box, one can replace everywhere in the
above analysis the perimeter P (E) with the relative perimeter P (E;A) where A is an open
half-space or an open cylinder. In the statements about critical points or minimizers, balls
can then be replaced by the suitable isoperimetric set: half-balls in the case of a half-space,
balls in the corners in the case of a cylinder for small masses, and flat graphs for large
enough masses.
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