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How fast travelling waves can attract small initial data

L Introduction

Model under study

Ou—DPu=v— wu

doyv = pu—v
Orv —dAv = f(v)

—0yv =0

(1)

where f(v) is of the ignition type.
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L Introduction

Model under study

Oy — DO u=v—pu

doyv = pu—v
Orv —dAv = f(v)

—Oyv=0

(1)

where f(v) is of the ignition type.

m Initially (with f KPP) proposed by Berestycki, Roquejoffre, Rossi to model
the influence of transportation networks on biological invasions.

m Enjoys a comparison principle.

m Motivation : robustness of the propagation enhancement discovered by
BRR.
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What | will not explain

m There exists a T.W. : (¢, ¢, %) with ¢ > 0 unique and ¢, 1) smooth
connecting (0,0) and (1/u,1)

u(t,x) = ¢(X + Ct)7 V(t7X7y) = ¢(X + th}/)

m Moreover ¢(D) o CooV'D where co, is the unique T.W. speed for :

—+

O« —u" + coold = Vv — pu u—1/p

doyv = pu—v
0+ v cooﬁxv—dafyv:f(v) v—1

Oyv=0

(2)

which is well posed.
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Back to our system : what happens ?

Theorem 1

Let (uo, vo) be front-like. There exists w > 0 indep. of D s.t. fore > 0 small
there exists two shifts £ s.t.

t

d(x + c& +ct) — Cee ™ < pu(t,x) < pg(x + c&f + ct) + Cee™
W(x + c& +ct) — Cee ™ < v(t,x,y) < (x4 c& + ct) + Cee *

where C = C(d).

=

c(1+8) c(L£¢€)
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Consequence

Let (uo, vo) be > 0 smooth and compactly supported. There exists § > 0 and
M > 0 indep. of D such that if

o, vo > 1 — 8 for x € (~Mv/'D, MV/D)

then pu, v stays trapped (up to an exponentially decaying error) between two
shifts of a pair of travelling waves evolving in both directions.
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Consequence

| Theorem2 |

Let (uo, vo) be > 0 smooth and compactly supported. There exists § > 0 and
M > 0 indep. of D such that if

o, vo > 1 — 8 for x € (~Mv/'D, MV/D)

then pu, v stays trapped (up to an exponentially decaying error) between two
shifts of a pair of travelling waves evolving in both directions.

Idea of proof.

m Upper bound : (min(d, &), min(v, 7)) is a supersolution (i is like T with
reversed x). Can be put above (uo, w) at inital time.
m Lower bound (idea of FML) :

u=max (0,6 + 6~ 1/u— qu(t)/umin(r,))
v =max (0,9 + 1% —1— qu(t,y) min(T, f))
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L Results

Subsolution provided initial shifts are large enough.

%\51‘%&)

M and ¢ arise when one wants to put (u, v)(0) below (uo, vo).
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What about small initial data when D is large ?

There exists M, 8 > 0 independent of D > d such that if
w>1-—4¢ forxe (=M, M)

then after a time tp = DY?In D + O(1) one has pu and v satisfying the
assumptions of Theorem 2.
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Idea of proof.

m D > d so expect u ~ 0 for small times. Subsolution (0, v) (close to the
solution) where :

doyv +v =0
Oy — dAv = f(v)

oyv =0

(4)

m (4) has a steady state p(y) > 1 — ¢ (provided L is not too small).
Berestycki—Nirenberg '92 : 3 T.W. connecting 0 and p(y) with speed ¢,
indep. of D. This gives :

O
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Lemma 4 (Behaviour at the bottom)

Under the assumptions of Theorem 3, there holds
v(t,x,—L) > (1 = 6")p:(x) — Ce

where C, b > 0 do not depend on D and . is a regularisation of 1(—i’f @4)-
272
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End of the proof of Theorem 3.
Rescale by x < x/+/D. Goal :

liminfinf  min  {uu®(Tp + t,x),v2(To + t,x,y)} > p(~L) > 1 -6 (5)

t—+ocoD>d (ny)egLyM

where Tp = v/DInD and Q. m = (—M, M) x (—L,0), i.e. we want to connect
with Theorem 2.
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Under the assumptions of Theorem 3, there holds
v(t,x,—L) > (1 = 6")p:(x) — Ce

where C, b > 0 do not depend on D and . is a regularisation of 1(—i’f @4)-
272

End of the proof of Theorem 3.
Rescale by x < x/+/D. Goal :
liminfinf  min  {uu®(Tp + t,x),v2(To + t,x,y)} > p(~L) > 1 -6 (5)

t—+ocoD>d (ny)egLyM

where Tp = v/DInD and Q. m = (—M, M) x (—L,0), i.e. we want to connect
with Theorem 2.
m Easy but tedious : LHS of (5) can be characterised as lim of
P (Tp, 4 ta, x») or vP*(Tp, + ta, Xa, yn) Where t, — +o0, D, > d,
(xn, ¥n) € Qi m. Extract so that (D,) has a limit in [d, +o0].
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m Since f > 0 and by the Key lemma, (un, vn) > (u,,v,) solution of

2
O, — O, = v, — pu,

da}/!n =pU, — Vv,

Vo = P(=L)@Tp, +, (X0 + x)VDp) — Ce= Pt

(6)
Idea : v, (t,x,—L) e p(—L) > 1—0 loc. unif. in R x R (either (D,)

bounded and it is immediate, or since In(D,) — +0o0)

Issue if D, unbounded : uniform in time regularity ?

m Regularity in y is OK by rescaling.

m Regularity in x falls but : (6) is linear and () bounded in C3, so use the
maximum principle.
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Now extract : (Uso, Vo) global in time (since t, — +00) :

2
atuoo - a><><L’c>o = Voo — MUl

dOy Voo = plico — Voo

OtVoo — dafyvOO =0

v = P70 (7)
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Now extract : (Uso, Vo) global in time (since t, — +00) :

2
atuoo - a><><L’c>o = Voo — MUl

dOy Voo = plico — Voo
OtVoo — dafyvOO =0

v = P70 (7)

The maximum principle applies in the standard way for u and on every y-slice
for v : plso, Voo = p(—L) and this proves (5) and thus Theorem 3.
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Additional information

Initial datum supported on the road : v =0, o = 1 1)(x)

There exists ap, a1 and ,ui indep. of D such that
m If L < apv D, extinction occurs.
m If L > a1V/D, invasion occurs if i < pu— and extinction if i > p".
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Merci pour votre attention !
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