
How fast travelling waves can attract small initial data

How fast travelling waves can attract small initial data

Laurent Dietrich
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How fast travelling waves can attract small initial data

Introduction

Model under study

d∂yv = µu − v

∂tu − D∂2
xxu = v − µu

∂tv − d∆v = f (v)

−∂yv = 0
(1)

where f (v) is of the ignition type.

Initially (with f KPP) proposed by Berestycki, Roquejoffre, Rossi to model
the influence of transportation networks on biological invasions.

Enjoys a comparison principle.

Motivation : robustness of the propagation enhancement discovered by
BRR.
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Introduction

What I will not explain

There exists a T.W. : (c, φ, ψ) with c > 0 unique and φ, ψ smooth
connecting (0, 0) and (1/µ, 1)

u(t, x) = φ(x + ct), v(t, x , y) = ψ(x + ct, y)

Moreover c(D) ∼
D→+∞

c∞
√
D where c∞ is the unique T.W. speed for :

d∂yv = µu − v

−u′′ + c∞u′ = v − µu u → 1/µ0← u

c∞∂xv − d∂2
yyv = f (v)

∂yv = 0

v → 10← v

(2)
which is well posed.
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Introduction

What I will explain

What kind of initial data are attracted by these travelling waves ?

Front-like initial data

c.c. initial data with a large enough support w.r.t D (expected, see below)

... but that is not everything !
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Context : propagation enhancement

Enhancement by diffusion : the homogeneous case

{
∂tv − ∂2

xxv = f (v) t > 0, x ∈ R
v0(x) = 1(−L,L)(x)

(3)

Kanel ’64 + Zlatoš ’06 (+ FML ’77) : ∃L0 > 0 s.t.

If L < L0, v → 0 as t → +∞ unif. on R.

If L > L0, v converges to a pair of T.W. in both directions with speed c.

Enhancement is paid in size of the initial data that lead to extinction.
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Results

Back to our system : what happens ?

Theorem 1

Let (u0, v0) be front-like. There exists ω > 0 indep. of D s.t. for ε > 0 small
there exists two shifts ξ±1 s.t.

φ(x + cξ−1 + ct)− Cεe−ωt ≤ µu(t, x) ≤ µφ(x + cξ+
1 + ct) + Cεe−ωt

ψ(x + cξ−1 + ct)− Cεe−ωt ≤ v(t, x , y) ≤ ψ(x + cξ+
1 + ct) + Cεe−ωt

where C = C(d).

ū

u

u

c(1 + ξ̇) c(1− ξ̇)
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Results

Consequence

Theorem 2

Let (u0, v0) be ≥ 0 smooth and compactly supported. There exists δ > 0 and
M > 0 indep. of D such that if

µu0, v0 > 1− δ for x ∈ (−M
√
D,M

√
D)

then µu, v stays trapped (up to an exponentially decaying error) between two
shifts of a pair of travelling waves evolving in both directions.

Idea of proof.

Upper bound : (min(ū, ũ),min(v̄ , ṽ)) is a supersolution (ũ is like u with
reversed x). Can be put above (u0, v0) at inital time.

Lower bound (idea of FML) :u = max
(

0, φ+ φ̃− 1/µ− qu(t)/µmin(Γ, Γ̃)
)

v = max
(

0, ψ + ψ̃ − 1− qv (t, y) min(Γ, Γ̃)
)
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Results

Subsolution provided initial shifts are large enough.

M

u

min(ū, ũ)

u

1 − δ

c(1 + ξ̇) c(1 + ξ̇)c(1− ξ̇) c(1− ξ̇)

M and δ arise when one wants to put (u, v)(0) below (u0, v0).
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Results

What about small initial data when D is large ?

Theorem 3

There exists M ′, δ′ > 0 independent of D > d such that if

v0 > 1− δ′ for x ∈ (−M ′,M ′)

then after a time tD = D1/2 lnD + O(1) one has µu and v satisfying the
assumptions of Theorem 2.
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Results

Idea of proof.

D � d so expect u ' 0 for small times. Subsolution (0, v) (close to the
solution) where :

d∂yv + v = 0

∂tv − d∆v = f (v)

∂yv = 0

(4)

(4) has a steady state p(y) > 1− δ (provided L is not too small).
Berestycki–Nirenberg ’92 : ∃ T.W. connecting 0 and p(y) with speed cp
indep. of D. This gives :
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Results

Lemma 4 (Behaviour at the bottom)

Under the assumptions of Theorem 3, there holds

v(t, x ,−L) ≥ (1− δ′′)ϕt(x)− Ce−bt

where C , b > 0 do not depend on D and ϕt is a regularisation of 1(−
cp
2
t,

cp
2
t).

End of the proof of Theorem 3.
Rescale by x ← x/

√
D. Goal :

lim inf
t→+∞

inf
D>d

min
(x,y)∈ΩL,M

{µuD(TD + t, x), vD(TD + t, x , y)} ≥ p(−L) > 1− δ (5)

where TD =
√
D lnD and ΩL,M = (−M,M)× (−L, 0), i.e. we want to connect

with Theorem 2.

Easy but tedious : LHS of (5) can be characterised as lim of
µuDn (TDn + tn, xn) or vDn (TDn + tn, xn, yn) where tn → +∞, Dn > d ,
(xn, yn) ∈ ΩL,M . Extract so that (Dn) has a limit in [d ,+∞].
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Results

Since f ≥ 0 and by the Key lemma, (un, vn) ≥ (un, vn) solution of

d∂yvn = µun − vn

∂tun − ∂
2
xxun = vn − µun

vn = p(−L)ϕTDn +tn ((x∞ + x)
√
Dn)− Ce−b(tn+t)

(6)
Idea : vn(t, x ,−L) →

n→+∞
p(−L) > 1− δ loc. unif. in R× R (either (Dn)

bounded and it is immediate, or since ln(Dn)→ +∞)

Issue if Dn unbounded : uniform in time regularity ?

Regularity in y is OK by rescaling.

Regularity in x falls but : (6) is linear and (ϕt) bounded in C3, so use the
maximum principle.
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Now extract : (u∞, v∞) global in time (since tn → +∞) :

d∂yv∞ = µu∞ − v∞

∂tu∞ − ∂2
xxu∞ = v∞ − µu∞

∂tv∞ − d∂2
yyv∞ = 0

v∞ = p(−L)
(7)

The maximum principle applies in the standard way for u and on every y -slice
for v : µu∞, v∞ ≡ p(−L) and this proves (5) and thus Theorem 3.
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Additional information

Initial datum supported on the road : v0 ≡ 0, µu0 = 1(−L,L)(x)

Theorem 5

There exists a0, a1 and µ± indep. of D such that

If L < a0

√
D, extinction occurs.

If L > a1

√
D, invasion occurs if µ < µ− and extinction if µ > µ+.
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Merci pour votre attention !
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