21-268 – Review questions #1

Laurent Dietrich Carnegie Mellon University, Spring 2017, Sec. A and B

Reminder

The first midterm will be on Feb. 22. It will be closed book, without notes or calculator. These are midterm-like problems inended to help you prepare and will not be collected, but solutions will be posted. I strongly advise you to try to solve them before looking at the solutions.

- 1. Prove that $S = \{(x, y) \in \mathbb{E}^2 \mid x^2 + y^2 < 4\}$ is open.
- 2. Find the limits of the following functions as $(x, y) \to (0, 0)$ if they exist or prove that they do not. Justify your answer in either case (not necessarily by finding $\delta(\varepsilon)$, theorems about sums, product, quotient or the squeeze theorem can be way faster).

(a)
$$f(x,y) = \frac{x^4}{x^4 + y^2}$$

(b)
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$

(c)
$$f(x,y) = \frac{\sin(x^2+y^2)}{\cos(x^4+y^4)}$$

(d)
$$f(x,y) = \frac{xy(y^2 - x^2)(y^2 - 4x^2)}{x^4 + y^4}$$

(e)
$$f(x,y) = \frac{xy(y^2 - x^2)(y^2 - 4x^2)}{x^6 + y^6}$$

3. (a) Let $f(x,y) = \frac{7x^6}{x^4+y^4}$ for $(x,y) \neq (0,0)$. For $\varepsilon > 0$, find $\delta > 0$ such that

$$|f(x,y)| < \varepsilon \text{ if } 0 < \sqrt{x^2 + y^2} < \delta.$$

(b) Same question with
$$f(x,y) = \frac{x^3y^2}{x^4+y^4}$$
.

4. Let $F(x, y, z) = \begin{pmatrix} y^2 e^{x^2} - z \\ xy \sin(z) \\ \cos(z) + e^y \end{pmatrix}$. What is the domain of F and where are its partial derivatives

continuous functions ? Compute the Jacobian matrix of ${\cal F}$ there.

5. For each of the following, determine if $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist and find them if they do.

a)
$$f(x,y) = \frac{x|y|}{x^4 + y^4}$$
 if $(x,y) \neq (0,0)$ and $f(0,0) = 0$

- (b) $f(x,y) = \frac{x^4}{x^4 + y^4}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
- (c) $f(x,y) = \frac{|y|^5}{x^4 + y^4}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
- 6. Let $f(x,y) = xy^3$. Find $a(x,y), b(x,y), \varepsilon_1(x,y,\Delta x,\Delta y), \varepsilon_2(x,y,\Delta x,\Delta y)$ that satisfy the definition of differentiability for f.
- 7. Assume that f(x, y) defines a function differentiable at all points and that $\frac{\partial f}{\partial x}(1, 0) = 5$, $\frac{\partial f}{\partial y}(1, 0) = 6$, $\frac{\partial f}{\partial x}(0, 1) = 8$, $\frac{\partial f}{\partial y}(0, 1) = 9$, and $\frac{\partial f}{\partial x}(1, 1) = 11$, $\frac{\partial f}{\partial y}(1, 1) = 12$. Let $z(s, t) = f(1 s^2 t^2, t^3 + s^3)$ and find $\frac{\partial z}{\partial x}(1, 0) = \frac{\partial f}{\partial y}(1, 0) = 0$.

$$\frac{\partial z}{\partial t}(0,1)$$
 and $\frac{\partial z}{\partial t}(0,0)$

8. Consider the set of equations in \mathbb{E}^4

$$\begin{cases} xy + z^2 w^2 = 1\\ xz + y^2 w^2 = 1 \end{cases}$$

- (a) Find $\frac{\partial w}{\partial y}$ by implicit differentiation, first by **assuming** that w = w(y, z), x = x(y, z).
- (b) Can you do this assumption around the point (w, x, y, z) = (1, 0, 1, 1) (which is solution of the equation) ?
- 9. Define $f(x,y) = \frac{|x|^5}{x^4 + y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. At what points (x,y) does $\frac{\partial f}{\partial x}$ exist ? Same question for $\frac{\partial f}{\partial y}$.

10. Let

 $F(w, x, y, z) = w + x + y + z + \sin(wxyz), \quad G(w, x, y, z) = w + x + 2y + 2z + \cos(wxyz) - 1$

and consider solving

$$\begin{cases} F(w, x, y, z) = 0\\ G(w, x, y, z) = 0 \end{cases}$$

near (w, x, y, z) = (0, 0, 0, 0). For solving for w, z as functions of x, y are the assumptions of the implicit function theorem satisfied ? Same question for solving for w, x, for x, y, for x, z and for y, z (each time in terms of the remaining variables of course).

- 11. Let $f(x,y) = y^3 + 3x^2y 6x^2 6y^2$.
 - (a) Find all the critical points of f.
 - (b) Determine which ones are relative minima, maxima or saddle points.
 - (c) Compute the Laplacian of f at these points. Remark: observe that the Laplacian is the trace of the Hessian matrix. As such, it is also the sum of its eigenvalues (this is a general theorem of Linear algebra).