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We can parametrize C with y =z =1t for t € [0,1]. . 7(t) = (¢,¢), so the derivative is (1,1) so
the derivative factor can be ignored in both differentials. The integral becomes:
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/0 2() (t)dt + /0 B(t?)(t%)dt = (2+ B) /0 /fidt
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This time, the parametrization is y = 2% = ¢, with ¢ € [0, 1], so
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The integral is then:

/0 l 2v(t%) <2—%)dt+ /0 1 Bi(t¥)dt = (1 + B) fu ifidt
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Consider the function F(z,y) = x2y®. Then \/'f
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Since (P, Q) is the gradient of some scalar function R2? — R, this is a conservative vector field

with F being the potential, thus these functions are path-independent and any curve from (0, 0)
to (1,1) will evaluate to the same thing.

Problem 2

L J Note that the domain of this function is R?, which is simply connected, and C itself is a simple,

closed curve; so the hypotheses of Green’s theorem are satisfied (except for the fact that the
curve is clockwise; we will have to remember to add a negative sign). Then noting that

= 2a:y3 L |z
F= [21: + 3x2y2] r= [y]

/ F.di= / (2z1%)dz + (2z + 32°y°)dy
C C

which by Green’s theorem is

//R (%(21: + 3z%y?) - %(2;@3)) dA

(2 + 6zy?) — (6zy?))dA = 2dA
R R

which is simply twice the area of the bounded region. Since it is made up of four rectangles of
width 1, the area is 1 +2+ 3 +4 = 10, so after doubling and applying the negative sign we find
our answer to be —20.
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\ Problem 3
Splitting the terms up a bit, we want to show
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So let P = u% and Q = ug%. Then
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Thus note that the integrand of the left-hand side is equal to %—2 - %1;-. The left-hand side is
thos 8Q P
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/ Pdz + Qdy = / u%drz + u—vdy
c c 9y

which, by Green’s theorem, equals

or

which is what we needed to prove.

Problem 4

()

Like in 2, we have

/ = / (20 + 202" V)dz + (3y* + (1 + y)e™)dy
C C
We can show that this integral is path-independent by claiming there is some f such that

g—m = 2z + 2zy2e™ Y % = 392 + (1 + zy)e™¥

Note that 3%(6“'2?’) = 2mye$2y. Integrating across the z-variable differential equation gives
f=2+ye"V + g(y)
By inspection of the y-variable equation, we claim g(y) = 33. So
f=a® 9ty

Since, by the chain rule, %(ye”2y) = ™'V + g2ye”V = 1+ mzy)emzy, the y-partial of f is in
fact the j term, like we need it to be. Since we have found the necessary f, we know not

only that this integral is path-independent, but also that it evaluates to f(c,d) — f(a,b) by the
two-dimensional extension of the Fundamental Theorem of Calculus, so our answer is

2+ d3 + de”d — o® — b® — bes™®






