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1 The Fibonacci sequence
Let F0 = 0, F1 = 1 and define a recurring sequence by

∀n ∈ N∗, Fn+1 = Fn + Fn−1.

This is the celebrated Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, .... Can we compute
the value of Fn for all n ∈ N without doing the whole summation ? Observe that
this recurrence relation can be written as follows:[
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More precisely it is encoded in the first row of this equality, and the second one just
states Fn = Fn. The advantage of this formulation is the following[
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So that if one can compute An, one can compute Fn. This is where eigenvalues and
eigenvectors appear.
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The λ are eigenvalues of A and the columns of S are associated eigenvectors. By
the end of the chapter, you will be able to find these by yourselves. Now observe
that

A = SDS−1

So A2 = SDS−1SDS−1 = SD2S−1. Similarly,

An = SDnS−1

And the nth power of a diagonal matrix is easy to compute. Exercise: check that
this allows you to compute
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2 Other applications
Eigenvalues and eigenvectors are very natural objects. An eigenvector of a linear
transformation (and by extension of a matrix) is a vector whose direction does not
change when transformed. The associated eigenvalue is the length multiplier. For
instance, the axis of a rotation is an eigenvector for it and the eigenvalue is 1. Due
to their nature and to their deep mathematical meaning, they appear everywhere.
Here is a non-exhaustive list of examples where they are found important.

• Mechanics: finding the principal axes of a body and associated moments of
inertia is exactly finding eigenvectors and eigenvalues of a matrix.

• Physics, chemistry: coupled systems of linear differential equations (for in-
stance to describe concentrations of several chemicals reacting) may be solved
by diagonalization (i.e. exactly what we did above).

• Data analysis: Principal component analysis is an application of diagonaliza-
tion. Google’s Pagerank algorithm looks for specific eigenvalues of very large
matrices.

• Economics: Leontief’s model of a government’s economy looks for equilibria
by investigating eigenvalues.
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