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Ex 1

1. Let us prove that for all n x n matrices A, (AT)T = A.

Fix 1 <i,j < n. Then by definition of transpose ((AT)T);; = (AT);; = A;;. This is true
forall 1 <i,j <nso (AT)T = A.

2. Similarly, ()\A)iTj = (A)j; = Mj; = MATD);;

3. Similarly, (A + B)z; =(A+B)j; =A;+Bji = A?; + Bij;' = (AT + BT),;.
Ex 2

1. We obtain B2 = and B3 = 0.
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2. We have A = I3+ B.

3. A" = (I3 + B)". Now, since I3 and B commute, that is, [3B = B3, we are allowed to
use Newton’s binomial formula to get for all n > 2
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since all the next terms are 0 by the above. This yields
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