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Ex 1
1. Let us prove that for all n× n matrices A, (AT )T = A.

Fix 1 ≤ i, j ≤ n. Then by definition of transpose ((AT )T )ij = (AT )ji = Aij . This is true
for all 1 ≤ i, j ≤ n so (AT )T = A.

2. Similarly, (λA)T
ij = (λA)ji = λAji = λ(AT )ij

3. Similarly, (A+B)T
ij = (A+B)ji = Aji +Bji = AT

ij +BT
ij = (AT +BT )ij .

Ex 2

1. We obtain B2 =

0 0 1
0 0 0
0 0 0

 and B3 = 0.

2. We have A = I3 +B.

3. An = (I3 +B)n. Now, since I3 and B commute, that is, I3B = BI3, we are allowed to
use Newton’s binomial formula to get for all n ≥ 2
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n

k

)
BkIn−k

3 =
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(
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)
Bk =
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1

)
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2

)
B2

since all the next terms are 0 by the above. This yields

An = I3 + nB + n(n− 1)
2 B2 =

1 n n(n+ 1)/2
0 1 n
0 0 1



1


